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Draft genome sequence of three hydrocarbon-degrading 
Pseudomonadota strains isolated from an abandoned century-
old oil exploration well
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ABSTRACT We present genome sequences of three Pseudomonadota strains isolated 
from an abandoned century-old oil exploration well. A Pseudomonas sp. genome showed 
a size of 5,378,420 bp, while Acinetobacter genomes sized 3,522,593 and 3,864,311 bp. 
Genomes included catabolic genes for benzoate, 4-hydroxybenzoate, salicylate, vanillate, 
indoleacetate, anthranilate, n-alkanes, 4-hydroxyphenylacetate, phenylacetate, among 
others.
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S tudies focused in hydrocarbon bioremediation have highlighted the potential 
of exploring microorganisms containing genes related to hydrocarbon-degrading 

enzymes (1, 2). Specifically, bacteria belonging to genera Pseudomonas (3) and Acineto
bacter (4) have shown potential to degrade alkanes and aromatic hydrocarbons (5, 6). 
Here, we report the genomic sequencing of three strains retrieved from an abandoned 
old-century oil exploration well, located in the Cahuita National Park, Costa Rica, which is 
characterized by a continuous efflux of methane and the presence of a complex mixture 
of hydrocarbons (7). Sampling details and isolation methods are described by Rojas-Gät
jens et al. (7). Such microorganisms were identified as one strain of Pseudomonas sp. 
termed C11 and two different Acinetobacter strains termed C4 and C10.

Isolates stored in glycerol 20% at –80°C were grown in lysogeny broth (8) (150 mL) 
and incubated overnight (180 rpm, 30°C). Genomic DNA extraction was performed 
using cetyltrimethylammonium bromide protocol (9). DNA was sequenced at Novo
gene company Ltd., Singapore. A paired-end sequencing library was prepared using 
the Illumina HiSeq Preparation Kit and loaded onto NovaSeq PE150 system. The 
raw data quality was evaluated using FastQC v0.11.9 (10), and low-quality reads and 
adapter sequences were filtered using Trimmomatic v0.36 (11). The remaining reads 
were assembled with SPADES v5.2.0 (12), followed by assembly polishing through 
Pilon v1.24 (13). Contigs smaller than 500 bp were removed with BBMap suite v37.36 
(14). The quality assessment of each assembly was summarized using QUAST v5.2.0 
(15). Genome annotation was determined using NCBI Prokaryotic Genome Annotation 
Pipeline (16). Default parameters were used for all software. Genome assembly statistics 
and annotation features are presented in Table 1.

Taxonomic analysis was performed using the tetra correlation search tool of 
JspeciesWS v4.0.2 (17). This analysis showed that C4 strain is related to Acinetobacter 
johnsonii, C10 is closely related to Acinetobacter pittii, and C11 only can be classified 
as Pseudomonas sp. Consistently, average nucleotide identity (18) showed that C4 and 
C10 share more than 96% and 99% of its genome with A. johnsonii and A. pittii strains, 
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respectively. Nonetheless, there were no identity values above the species threshold 
(>95%) for C11, suggesting that such isolate could represent a new Pseudomonas species. 
To evaluate the metabolic capacities of each strain, we analyzed the proteome generated 
by genome annotation to identify enzymes related to hydrocarbons biodegradation by 
using the Hydrocarbon Aerobic Degradation Enzymes and Genes database (19) and the 
ProteinOrtho v6.3.0 tool (20). A matrix for plotting a heatmap was built using tidyverse 
(21), RColorBrewer v1.1–3 (22), colorRamps v2.3.1, and ComplexHeatmap v2.14.0 (23). 
The results are showed in Fig. 1, revealing the presence of genes related to aromatic 
compounds degradation, including benzoate, 4-hydroxybenzoate, vanillate, salicylate, 
anthranilate, indoleacetate, and phenylacetate as well medium- and long-chain alkanes.

FIG 1 Genes related to hydrocarbons biodegradation identified in three bacterial strains isolated from an abandoned 

century-old oil exploration well in Cahuita National Park, Costa Rica. The color scale in the heatmap indicates the absence 

(light blue color) or presence (reddish color) of 27 different catabolic genes related to the biodegradation of specific 

aromatic or aliphatic hydrocarbons. The gene names are indicated on the right of the heatmap. The dendrogram on 

the left represents the clustering of the genes based on the Manhattan algorithm. Gene description of the protein 

product: hpcB, homoprotocatechuate 2,3-dioxygenase; ahpF, alkyl hydroperoxide reductase subunit F; ssuD, alkanesulfonate 

monooxygenase; hpaB, 4-hydroxyphenylacetate 3-monooxygenase, oxygenase component; hpaC, 4-hydroxyphenylacetate 

3-monooxygenase, reductase component; alkG, rubredoxin, subunit 2; rubA, rubredoxin, subunit 1; antC, anthranilate 

1,2-dioxygenase, reductase component; antB, anthranilate 1,2-dioxygenase, small subunit of terminal oxygenase compo

nent; antA, anthranilate 1,2-dioxygenase, large subunit of terminal oxygenase component; lacC, laccase domain-containing 

protein 1; lacA, galactoside acetyltransferase; tynA, 2-phenylethylamine oxidase; paaK, phenylacetate-coenzyme A ligase; salA, 

salicylate 1-hydroxylase; paaE, 1,2-phenylacetyl-CoA epoxidase, subunit E; hpd, 4-hydroxyphenylpyruvate dioxygenase; pobA, 

phenoxybenzoate dioxygenase, alpha subunit; pcaH, protocatechuate 3,4, dioxygenase, beta subunit; pcaG, protocatech

uate 3,4, dioxygenase, alpha subunit; vanA, vanillate O-demethylase, oxygenase subunit; vanB, vanillate O-demethylase, 

oxidoreductase subunit; catA, catechol 1,2-dioxygenase; benD, 1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate dehydrogen

ase; benC, benzoate 1,2-dioxygenase, electron transfer component; benA, benzoate 1,2-dioxygenase, alpha subunit; benB, 

benzoate 1,2-dioxygenase, beta subunit.
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TABLE 1 Annotation and genome assembly statistics of three hydrocarbon-degrading strains belonging to 
Pseudomonas and Acinetobacter genera isolated from an abandoned century-old oil exploration well

Isolate
Feature

Pseudomonas sp. C11 Acinetobacter johnsonii C4 Acinetobacter pittii C10

BioProject 
accession no.

PRJNA997083 PRJNA997083 PRJNA997083

Assembly 
accession no.

JAWIIP000000000.1 JAVQMB000000000.1 JAWIIO000000000.1

No. of raw reads 1,175,0304 7,211,368 7,795,620
Genome size (bp) 5,378,420 3,522,593 3,864,311
No. of contigs 35 59 14
No. of predicted 

genes
4,943 2,009 1,812

Coverage (1×) 
(bp) 51,813 78,898 72,299

G + C content (%) 62.85 41.44 38.72
N50 (bp) 312,100 113,976 2,118,397
No. of tRNA 60 63 61
No. of rRNA 3 3 3
No. of ncRNA 33 11 30
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