
REVSTAT – Statistical Journal
Volume 22, Number 1, January 2024, 45–60

https://doi.org/10.57805/revstat.v22i1.454

Tales of the Wakeby Tail and Alternatives
when Modelling Extreme Floods

Author: Jesper Rydén
– Department of Energy and Technology, Swedish University of Agricultural Sciences,

Uppsala, Sweden
jesper.ryden@slu.se

Received: March 2020 Revised: January 2022 Accepted: January 2022

Abstract:

• Estimation of return levels, based on extreme-value distributions, is of importance in the earth
and environmental sciences. The selection of an appropriate probability distribution is crucial.
The Wakeby distribution has shown to be an interesting alternative. By simulation studies, we
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1. INTRODUCTION

In the earth sciences, statistical modelling of extreme events is of importance; in fields
like hydrology and oceanography there is a need to estimate return levels, for instance for
the sake of engineering design. For this purpose, quantiles of probability distributions are of
key interest, and hence choice of distribution is crucial. When using statistical methodology
based on likelihood functions, criteria like Akaike’s Information Criterion (AIC) and Bayesian
Information Criterion (BIC) can be employed for model choice [2], [25]. Often in the applied
literature, goodness-of-fit tests are employed as measures of deviation between the empirical
distribution and the potential distribution family.

The tail behaviour of the probability distribution is a key factor in extreme-value anal-
ysis, e.g. when estimating return levels. When a block-maximum approach is chosen for
studying annual maxima of some quantity (e.g. daily maximum rainfall), extreme-value the-
ory tells that certain distributions serve as limiting distributions, that can be summarised in
the Generalised Extreme Value (GEV) distribution. However, the results are valid asymp-
totically and not seldom only small samples are available. In hydrology, one occasionally also
considers the lognormal distribution and other alternatives, like the five-parameter Wakeby
distribution, first presented in 1978 by Houghton [16] and to be investigated more closely in
the sequel of this paper. Griffiths [10] claims that “the distribution has a secure theoretical
basis and is hydrologically more realistic”. A list of applications of this distribution is given
in a recent paper by Busababodhin et al. along with proposed estimation techniques [7].

In recent years, generalisations of conventional distributions have been introduced,
with the intention of being more flexible. Exponentiated distributions have for instance been
proposed: exponentiated exponential, exponentiated Gumbel etc. For an investigation of the
exponentiated Gumbel applied to series of significant wave height, see Persson and Rydén [23].
Another generalisation of the Gumbel distribution, the so-called Beta Gumbel distribution,
was studied by Jonsson and Rydén [17], where this distribution was compared to the Gumbel
and GEV distributions in a case study of extreme precipitation. However, for that study the
difference between Beta Gumbel and GEV was minor, with respect to infomation criteria as
well as estimated return levels and their uncertainties.

This paper serves two purposes. First, to check the intended flexibility of the Wakeby
distribution through simulation studies for various sample sizes. Estimation of parameters
will be made conveniently by L-moments [13], and hence the likelihood-based AIC and BIC
are not options for model choice. Examinations of the differences between simulated samples
and candidate distributions are based on various measures of minimum distance. As the tail
behaviour is of particular interest for typical applications, upper quantiles are also compared.
The second purpose is to study data of unregulated extreme floods in northern Sweden.
Several distributions are considered, in particular the effects on estimated return levels due
to various distribution assumptions on the tails. Moreover, the influence of record length is
of interest.

The paper is outlined as follows. Section 2 serves as a background, introducing first
of all the Wakeby distribution. Further, a review of the methodology for estimation by
L-moments is given as well as presentation of the approaches for discerning distributions.
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The simulation study is outlined and its main findings given in Section 3, and in Section 4
the case study of extreme floods in Sweden is presented, including estimated return levels for
various situations.

2. BACKGROUND

2.1. The Wakeby distribution with applications

The Wakeby distribution was presented by Houghton [16], along with results of goodness-
of-fit tests for observations of extreme floods. We here give the parametrisation by Hosking
and Wallis found in [15], a five-parameter distribution:

(2.1) x(F ) = ξ +
α

β

[
1− (1− F )β

]
− γ

δ

[
1− (1− F )−δ

]
,

where F ∈ [0, 1]. The following parameter restrictions are valid: either β + δ > 0 or β = γ =
δ = 0; if α = 0 then β = 0; if γ = 0 then δ = 0. The generalised Pareto distribution follows
with the formulation in equation (2.1) as the special α = 0 or γ = 0. Note that the defini-
tion is stated in terms of the quantile function, which faciliates estimation of return levels.
In addition, simulation of random numbers can be performed by the inverse method.

This distribution has been applied successfully for various quantities in the earth sci-
ences. A list of applications is given in [7]. In his landmark paper [16], Houghton examined the
fit of observations of floods from stations in the United States, and Griffiths [10] investigated
flood data from New Zealand.

2.2. Estimation of parameters

In this study, we employ estimation by L-moments, which is convenient for the five-
parameter Wakeby distribution. For instance, Busababodhin et al. point out that maximum-
likelihood estimates are not easily obtained [7]. Moreover, the methodology is in widespread
use in many countries; see [6] for a list of studies performed by L-moments. Hosking [13]
claims that estimation of parameters by L-moments is occasionally more accurate in small
samples. Furthermore, quantile functions can be expressed in terms of L-moments, a clear
advantage in hydrological sciences when estimating return levels. For the computational work
in this paper, the implementations in the R packages lmom and lmomco were used ([14], [5]),
following the parameterisation in equation (2.1).
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2.2.1. Introduction to L-moments

The methodology with L-moments was introduced by Hosking [13]. The L-moments
are the quantities λr as follows, and are linear functions of order statistics:

λr =
1
r

r−1∑
k=0

(−1)k

(
r − 1

k

)
E[Xr−k:r], r = 1, 2, ...,

where X1:n ≤ ··· ≤ Xn:n are the order statistics of a random sample of size n drawn from
the distribution of a random variable X. In applied studies, moments could be standardised,
becoming independent of the units of measurement. These so-called L-moment ratios are the
quantities

τr = λr/λ2, r = 3, 4, ... .

The measures τ3 and τ4 can be regarded as measures of skewness and kurtosis. For instance,
for a symmetrical distribution, τ3 = 0. Further details on L-moments are found in Appendix.

2.2.2. Remarks on estimation methodologies

The notion of L-moments has been extended, for instance trimmed L-moments (TL
moments), [9]. TL moments with the smallest value trimmed with an application to the
generalised Pareto distribution were considered in [1]. An estimation method using higher-
order L-moments, so-called LH-moments, was presented in [7].

Recently, versions of L-moments as well as maximum-likelihood methods for estima-
tion of high quantiles of the generalised Pareto and generalised extreme-value distribution
have been compared [27]. The authors concluded that “there are small differences when es-
timating high quantiles of the GPD or GEV distributions. It was revealed that L-moment
and maximum likelihood methods outperform LQ- and TL-moment methods: the L-moment
method is preferred for heavy-tailed distributions, while the maximum likelihood method is
recommended for light-tailed distributions.” Thus, from these findings, we are motivated in
the choice of estimation by L-moments in this paper.

2.3. Evaluating candidate distributions

Already in the paper by Houghton [16], goodness-of-fit tests were considered in the
analysis, and many papers in e.g. hydrology apply various versions of such tests. However,
as pointed out by Wilks [28]: “Of substantially more interest is the closeness of fit on the
right tail, since it is here that extrapolations of relevance to engineering design and other
applications will be made.” In the literature, there seems to be no concensus on a specific
procedure (in the forms of visualisations, goodness-of-fit measures, computer-intensive meth-
ods) to apply. Uses of criteria like AIC and BIC for model choice is often a convenient strat-
egy, not the least to compare distributions (or models) with varying number of parameters.
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However, in this paper we use L-moments for estimation, not maximum-likelihood estimation,
and hence other approaches have to be taken.

In the sequel of this paper, we will perform simulations from a particular distribution
and compare to candidate distributions (to be described in detail in Section 3). The so result-
ing samples will be compared by firstly, two general distance measures, secondly, comparison
of high quantiles. Moreover, when analysing observed river-flow data from stations in Section 4,
the so-called L-moment diagram will assist in interpretations.

2.3.1. Distance measures

In the literature, there is a substantial number of distance, or similarity, measures in
various scientific fields. A review is given by Cha, where measures also are categorised [8].
In the presentation below, we assume that two probability densities P and Q, each in a
discretised “histogram” form of B values, are to be compared.

Some measures are said to belong to Shannon’s entropy family. In this paper, we chose
the Kullback–Leibler distance [18]:

dKL =
B∑

j=1

pi ln
pi

qi
.

In another category, the measures are based on geometric means: the fidelity or squared-chord
family. The simplest version was chosen in this paper, the Fidelity similarity measure:

sF =
B∑

j=1

√
pjqj .

Other alternatives in this category are Bhattacharyya and Hellinger distances. Both dKL and
sF are interpreted that the smaller the value, the two objects (here, distributions) are closer
and have a higher degree of similarity.

2.3.2. Comparison of quantiles

For a simulated sample from a specified random variable X, the upper quantile x0.99

for which P(X > x0.99) = 0.01, is estimated, resulting in x∗0.99, say. Based on the simulated
sample, candidate distributions are fitted with L moments, and the related upper quantiles are
estimated. The absolute differences between these estimates and x∗0.99 are finally calculated.
Further details on the simulation procedure are given in Section 3.1.

3. SIMULATION STUDY: DIFFERENCES AMONG DISTRIBUTIONS

In this section, we investigate how distances between distributions differ, given sim-
ulated observations from a parent distribution. We will use the approaches presented in
Section 2.3. In addition to the Wakeby distribution, we will consider two other distributions
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often encountered in the earth sciences or hydrology: the generalised extreme value (GEV)
distribution and the three-parameter lognormal (LN3). Though familiar and well known in
the research domains mentioned, we present them below in order to present their parameters.

The GEV distribution has three parameters (location µ, scale σ and shape ξ), and is
commonly stated by its distribution function:

F (x;µ, σ, ξ) =

{
exp

{
−

[
1 + ξ x−µ

σ

]−1/ξ
}

, ξ 6= 0,

exp
{
− exp

[
−x−µ

σ

]}
, ξ = 0,

where µ ∈ R, σ > 0 and ξ ∈ R. The shape parameter ξ affects the support of this distribution:
when ξ = 0, the GEV distribution is the Gumbel distribution (with support R). When ξ > 0,
the distribution corresponds to the Fréchet distribution with support x ≥ µ + σ/ξ, and when
ξ < 0 it corresponds to the reversed Weibull distribution with support x ≤ µ− σ/ξ.

Consider the LN3 distribution with distribution function

F (x) = Φ(y), x > 0,

where y = (ln(x− ζ)− µ)/σ and Φ(y) is the distribution function of the standard normal
distribution. In other words, the density function of X is given as

f(x;µ, σ, ζ) =
1

(x− ζ)σ
√

2π
exp

{
−(ln(x− ζ)− µ)2

2σ2

}
, x > ζ ≥ 0,

where µ ∈ R, σ > 0. If X is distributed as above, Y = ln(X − ζ) has a normal distribution
with mean µ and variance σ2.

3.1. Algorithm of simulation study

In this study, we simulate from a given parent distribution: GEV or LN3. The sample
size n was chosen in the range from 25 to 200, in steps of 25 at the lower sample sizes.

1. For each sample size, simulate N = 5000 samples from a parent distribution.

2. For each sample, compute the L-moments by the R package lmomco and then
the probability-density functions for the candidate distributions LN3, Wakeby and
GEV, evaluated at the sample points.

3. Estimate the probability-density function for the sample (by the R routine den-

sity), and compute measures sF and dKL for comparison with the densities ob-
tained in step 2. In addition, compute the upper 0.99 quantiles for the sample and
the candidate distributions.

4. Register which distribution alternative had the smallest deviation from the sim-
ulated sample, in terms of sF, dKL and upper quantile, respectively. Over the N

samples the overall proportions of“winners”(in terms of smallest distance) from the
three distribution alternatives can be collected, resulting in a triple with the three
components summing up to one. For instance, with dKL considered, GEV, LN3
and Wakeby could result in the triple (0.25, 0.15, 0.60), i.e. Wakeby here resulted
in the smallest distance in the majority of cases.
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3.2. L-moment ratio diagram

Before turning to the simulations outlined above, let us illustrate the notion of the
so-called L-moment ratio diagram with simulations from a GEV distribution. In such a
diagram is found τ3 on the abscissa and τ4 on the ordinate. Probability distributions can be
illustrated as curves and in some cases as points. For instance, the uniform distribution has
(τ3, τ4) = (0, 0), for the Gumbel distribution (τ3, τ4)

.= (0.17, 0.15), and the GEV distribution
forms a curve in the τ3-τ4 plane [13].

In Figure 1, the curve for the GEV distribution is drawn along with dots corresponding
to L-moments from 500 simulated samples from a GEV distribution. The left panel shows
the result for sample size n = 25, the right panel shows the case n = 100. We note for the
smaller sample size a considerable spreading in the (τ3, τ4) plane, relatively the larger sample
size. This feature could be kept in mind, when facing real data in Section 4.
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Figure 1: Simulation from a GEV distribution with τ3 = τ4 = 0.14. The
solid curve represents a GEV distribution in the (τ3, τ4) space.
Left panel: sample size 25 (500 samples). Right panel: sample
size 100 (500 samples).

An illustration how this type of plot can assist in distinguishing between
distributions is found in [13], Section 3.5. This visualisation tecnique has shown
itself useful in hydrology [22],[20].

3.3. Case 1. Simulation from GEV distribution

We first study the case of the parent distribution being the standard Gum-
bel distribution,

F (x) = exp(−e−x), x ∈ R.

In Figure 2, the proportions of smallest distance are shown for the three potential
distributions as function of sample size. Thus, for each sample size, the propor-
tions obviously sum to one. The left panel shows results based on distance in
upper quantile, middle panel dKL and right panel sF.

From the plots in Figure 2, the Wakeby distribution is for all the measures
considered, and regardless of the sample size, the choice which for a majority of
cases is the closest to the simulated sample.

Figure 1: Simulation from a GEV distribution with τ3 = τ4 = 0.14. The solid curve represents
a GEV distribution in the (τ3, τ4) space. Left panel: sample size 25 (500 samples).
Right panel: sample size 100 (500 samples).

An illustration how this type of plot can assist in distinguishing between distributions is
found in [13], Section 3.5. This visualisation tecnique has shown itself useful in hydrology [22],
[20].

3.3. Case 1. Simulation from GEV distribution

We first study the case of the parent distribution being the standard Gumbel distribution:

F (x) = exp(−e−x), x ∈ R.
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In Figure 2, the proportions of smallest distance are shown for the three potential distributions
as function of sample size. Thus, for each sample size, the proportions obviously sum to one.
The left panel shows results based on distance in upper quantile, middle panel dKL and right
panel sF.
Tales of the Wakeby tail and alternatives when modelling extreme floods 9

Figure 2: Simulation from a Gumbel distribution (τ3 = 0.17, τ4 = 0.15).
For each sample size, the proportions of smallest distance for
each distribution family are displayed.

In the next example, a GEV distribution with τ3 = 0.07, τ4 = 0.25 is
the parent distribution, and results are shown in Figure 3. The conclusions are
similar to the preceding case: the Wakeby gives in the majority of cases the best
fit of the simulated data.

Figure 3: Simulation from a GEV distribution (τ3 = 0.07, τ4 = 0.25). For
each sample size, the proportions of smallest distance for each
distribution family are displayed.

3.4. Case 2. Simulation from log-normal distribution (LN3)

We here simulate from the LN3 distribution with τ3 = 0.07, τ4 = 0.25.
Results for the three measures are shown in Figure 4. Again, the Wakeby distri-
bution is the best option, regardless of sample size or measure.

Figure 2: Simulation from a Gumbel distribution (τ3 = 0.17, τ4 = 0.15). For each sample size,
the proportions of smallest distance for each distribution family are displayed.

From the plots in Figure 2, the Wakeby distribution is for all the measures considered,
and regardless of the sample size, the choice which for a majority of cases is the closest to
the simulated sample.

In the next example, a GEV distribution with τ3 = 0.07, τ4 = 0.25 is the parent distri-
bution, and results are shown in Figure 3. The conclusions are similar to the preceding case:
the Wakeby gives in the majority of cases the best fit of the simulated data.
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3.4. Case 2. Simulation from log-normal distribution (LN3)

We here simulate from the LN3 distribution with τ3 = 0.07, τ4 = 0.25.
Results for the three measures are shown in Figure 4. Again, the Wakeby distri-
bution is the best option, regardless of sample size or measure.

Figure 3: Simulation from a GEV distribution (τ3 = 0.07, τ4 = 0.25). For each sample size,
the proportions of smallest distance for each distribution family are displayed.

3.4. Case 2. Simulation from log-normal distribution (LN3)

We here simulate from the LN3 distribution with τ3 = 0.07, τ4 = 0.25. Results for the
three measures are shown in Figure 4. Again, the Wakeby distribution is the best option,
regardless of sample size or measure.
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Remark. Note that the GEV and LN3 simulations had the same choices of τ3 and τ4,
respectively. Actually, in order to have realistic values, Station 11 in the next section was
used here: fitting each distribution in case by L-moments and rendering parameters in the
relevant distribution for the actual simulation study. Obviously, the estimates of τ3 and τ4

remain the same, since the same original sample is considered.
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Remark. Note that the GEV and LN3 simulations had the same choices
of τ3 and τ4, respectively. Actually, in order to have realistic values, Station 11
in the next section was used here: fitting each distribution in case by L-moments
and rendering parameters in the relevant distribution for the actual simulation
study. Obviously, the estimates of τ3 and τ4 remain the same, since the same
original sample is considered.

Figure 4: Simulation from an LN3 distribution (τ3 = 0.07, τ4 = 0.25). For
each sample size, the proportions of smallest distance for each
distribution family are displayed.

4. Case study: Flood flows in Sweden

In this section we focus on flood flows from northern Sweden. The aim is
to fit annual maximum flows by the three distributions considered earlier in the
paper (GEV, LN3, Wakeby). We do not consider possible non-stationary effects
due to climate change; for further discussion, see [4], where no significant trends
were discerned in annual maximum daily flow in Sweden over the past 100 years.

Data are available from Swedish Meteorological and Hydrological Institute
(SMHI), online address: http://vattenwebb.smhi.se/station/#. Unregulated
rivers in northern Sweden were considered. As long series as possible were chosen,
for possible GEV asymptotics to work. In all, eleven stations were selected and
descriptions are given in Table 1. For the rest of the paper, they will for simplicity
be referred to as Station 1, . . . , Station 11.

For these stations, the L-moments were estimated for each time series, and
the results are shown in an L-moment diagram (Figure 5). One could note that
stations 7, 9, 10 and 11 tend to form a group in the plane. Indeed, these stations
belong to the same river system (Kalix, River ID 4000). Moreover, Stations 2, 4
and 6 are located close to the curve for GEV distribution.

Figure 4: Simulation from an LN3 distribution (τ3 = 0.07, τ4 = 0.25). For each sample size,
the proportions of smallest distance for each distribution family are displayed.

4. CASE STUDY: FLOOD FLOWS IN SWEDEN

In this section we focus on flood flows from northern Sweden. The aim is to fit an-
nual maximum flows by the three distributions considered earlier in the paper (GEV, LN3,
Wakeby). We do not consider possible non-stationary effects due to climate change; for fur-
ther discussion, see [4], where no significant trends were discerned in annual maximum daily
flow in Sweden over the past 100 years.

Data are available from Swedish Meteorological and Hydrological Institute (SMHI),
online address: http://vattenwebb.smhi.se/station/#. Unregulated rivers in northern
Sweden were considered. As long series as possible were chosen, for possible GEV asymptotics
to work. In all, eleven stations were selected and descriptions are given in Table 1. For the
rest of the paper, they will for simplicity be referred to as Station 1, ..., Station 11.

Table 1: Information on selected stations.

Nr. Station Name River ID River Area (km2) Start End

1 4 Junosuando 1000 Torne 4348.0 1968 2019
2 957 Övre Abiskojokk 1000 Torne 566.3 1986 2019
3 2012 Pajala pumphus 1000 Torne 11038.1 1970 2019
4 2357 Abisko 1000 Torneträsk 3345.5 1985 2019
5 2395 Kallio 2 1000 Muonio älv 14477.1 1988 2019
6 16722 Kukkolankoski övre 1000 Torne 33929.6 1911 2019

7 11 Männikkö 4000 Tärendö 5856.2 1976 2019
8 17 Räktfors 4000 Kalix 23102.9 1937 2019
9 1456 Kaalasjärvi 4000 Kalix 1472.5 1975 2019

10 2159 Killingi 4000 Kalix 2345.5 1976 2019
11 2358 Tärendö 2 4000 Kalix 13000.0 1985 2019
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For these stations, the L-moments were estimated for each time series, and the results
are shown in an L-moment diagram (Figure 5). One could note that stations 7, 9, 10 and 11
tend to form a group in the plane. Indeed, these stations belong to the same river system
(Kalix, River ID 4000). Moreover, Stations 2, 4 and 6 are located close to the curve for GEV
distribution.
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Nr . Station Name River ID River Area (km2) Start End

1 4 Junosuando 1000 Torne 4348.0 1968 2019

2 957 Övre Abiskojokk 1000 Torne 566.3 1986 2019
3 2012 Pajala pumphus 1000 Torne 11038.1 1970 2019
4 2357 Abisko 1000 Torneträsk 3345.5 1985 2019
5 2395 Kallio 2 1000 Muonio älv 14477.1 1988 2019
6 16722 Kukkolankoski övre 1000 Torne 33929.6 1911 2019

7 11 Männikkö 4000 Tärendö 5856.2 1976 2019
8 17 Räktfors 4000 Kalix 23102.9 1937 2019
9 1456 Kaalasjärvi 4000 Kalix 1472.5 1975 2019
10 2159 Killingi 4000 Kalix 2345.5 1976 2019
11 2358 Tärendö 2 4000 Kalix 13000.0 1985 2019

Table 1: Information on selected stations.
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Figure 5: L-moment ratio diagram. Solid line: GEV distribution.
Dashed line: Wakeby distribution, lower bound.
Numbers: Stations 1–11.

Figure 5: L-moment ratio diagram. Solid line: GEV distribution. Dashed line: Wakeby distribution,
lower bound. Numbers: Stations 1–11.

4.1. Estimated quantities

The measures dKL and sF were computed, comparing the original sample and the three
candidate distributions with parameters fitted by L-moments. These measures are presented
in Table 2 along with estimates of τ3, τ4 and the shape parameter ξ in the GEV distribution.

Table 2: Stations 1–11: Estimates of L-moment ratios τ3 and τ4; estimate of
shape parameter ξ in GEV; distance measures dKL and sF respectively,
between sample and fitted candidat distribution.

Station τ3 τ4 Shape ξ dGEV
KL dLN3

KL dWAK
KL sGEV

F sLN3
F sWAK

F

1 0.18 0.19 −0.016 7.304 7.289 7.596 1.765 1.766 1.731
2 0.07 0.12 0.16 13.239 13.262 13.232 2.217 2.215 2.210
3 0.008 0.09 0.27 6.175 6.209 6.130 1.918 1.913 1.926
4 0.07 0.12 0.16 11.667 11.696 11.627 2.269 2.267 2.271
5 0.05 0.08 0.19 12.054 12.077 12.049 2.403 2.397 2.425
6 0.08 0.11 0.15 2.123 2.135 2.091 1.264 1.264 1.264
7 0.07 0.17 0.16 8.862 8.863 9.131 1.949 1.948 1.934
8 0.01 0.08 0.26 2.704 2.690 2.649 1.449 1.446 1.442
9 0.04 0.19 0.21 9.230 9.224 9.039 1.844 1.843 1.825
10 0.05 0.18 0.19 14.759 14.778 15.108 2.062 2.061 2.052
11 0.07 0.25 0.16 11.415 11.417 11.817 1.766 1.765 1.720
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From this table, we may reflect upon the following:

• Absolute differences between the measures are generally quite small; the distribu-
tions are, in this meaning, close for description of data.

• For each distance measure, dKL and sF respectively, Wakeby gives the closest fit in
a majority of cases (7 out of 11 for each measure). For 5 out of 11 samples, both
measures dKL and sF gave preference for Wakeby.

• Station 6 has the longest period of observations, 109 years. Here one can note that
for the measure sF, all three distribution options yield results equal up to the third
decimal.

• The GEV distribution is, interestingly, seldom the distribution with minimum dis-
tance to the sample. The asympotics of the maximum distribution seems not to have
been attained for these samples. From the L-moment ratio diagram in Figure 5, Sta-
tions 2, 4 and 6 are close to the GEV curve, but for the measures considered, there
are only minor differences between the distribution options.

4.2. Return levels

A T -year return level xT is often defined as the high quantile for which the probability
that the annual maximum exceeds this quantile is 1/T , hence F (xT ) = 1− 1/T where F (.)
is the distribution function for the series of maxima. We consider T in the range from 10 to
1000 years and estimate return levels based on quantiles for the three distribution families
considered above: GEV, LN3, Wakeby.

In Figure 6, we note minor differences between distributions for low T values, but for
most stations a considerable spreading for T = 1000. In particular, for Stations 2, 9 and 11,
the Wakeby 1000-year return level is remarkably higher than the alternatives. Station 6, with
the largest observation period, also has a notable difference between distribution choices at
T = 1000, with the LN3 alternative resulting in the highest levels.

5. CONCLUDING REMARKS

In this paper, we have investigated the use of the Wakeby distribution. Through sim-
ulation studies, we found that based on several distance measures, the Wakeby distribution
has a good fit to the tail, regardless of the distribution of origin (lognormal or generalised
extreme-value distribution) and sample size. One could remark that although a certain distri-
bution was registred as the “winner” (in terms of smallest distance), for a particular sample
and choice of distance measure, often in practice the differences between distributions are
quite small; cf. the detailed numerical outcomes for the flood data (Table 2).

In addition, we examined annual extreme floods with respect to fit of distribution and
estimation of return levels. Uncertainties of return levels, e.g. in the form of confidence
intervals, were not provided in the study, but although intervals in this context typically
tend to be wide, the selection of the very distribution shows itself to be of interest for high
quantiles (T = 1000).



56 Jesper Rydén14 Jesper Rydén

500

600

700

800

0.9000.9250.9500.9751.000

1−1/T

M
ax

im
um

 fl
ow

 (m
3

s)

Distribution

GEV

LN3

WAK

Station nr 1

150

200

250

300

0.9000.9250.9500.9751.000

1−1/T

M
ax

im
um

 fl
ow

 (m
3

s)

Distribution

GEV

LN3

WAK

Station nr 2

1100

1200

1300

1400

0.9000.9250.9500.9751.000

1−1/T

M
ax

im
um

 fl
ow

 (m
3

s)

Distribution

GEV

LN3

WAK

Station nr 3

300

350

400

450

0.9000.9250.9500.9751.000

1−1/T

M
ax

im
um

 fl
ow

 (m
3

s)

Distribution

GEV

LN3

WAK

Station nr 4

1400

1600

1800

2000

0.9000.9250.9500.9751.000

1−1/T

M
ax

im
um

 fl
ow

 (m
3

s)

Distribution

GEV

LN3

WAK

Station nr 5

3000

3300

3600

3900

0.9000.9250.9500.9751.000

1−1/T

M
ax

im
um

 fl
ow

 (m
3

s)

Distribution

GEV

LN3

WAK

Station nr 6

400

450

500

550

0.9000.9250.9500.9751.000

1−1/T

M
ax

im
um

 fl
ow

 (m
3

s)

Distribution

GEV

LN3

WAK

Station nr 7

1800

2000

2200

2400

0.9000.9250.9500.9751.000

1−1/T

M
ax

im
um

 fl
ow

 (m
3

s)

Distribution

GEV

LN3

WAK

Station nr 8

250

300

350

400

450

0.9000.9250.9500.9751.000

1−1/T

M
ax

im
um

 fl
ow

 (m
3

s)

Distribution

GEV

LN3

WAK

Station nr 9

1300

1500

1700

0.9000.9250.9500.9751.000

1−1/T

M
ax

im
um

 fl
ow

 (m
3

s)

Distribution

GEV

LN3

WAK

Station nr 10

400

500

600

700

800

0.9000.9250.9500.9751.000

1−1/T

M
ax

im
um

 fl
ow

 (m
3

s)

Distribution

GEV

LN3

WAK

Station nr 11

Figure 6: Return levels, based on station data. Abscissa: 1−1/T , where T
is the return period, starting from T = 10, final value T = 1000.
The ordinate shows the related estimated return level.

Figure 6: Return levels, based on station data. Abscissa: 1− 1/T , where T is the return period,
starting from T = 10, final value T = 1000. The ordinate shows the related estimated
return level.
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We studied here the quantity of extreme floods, like in the vintage paper on Wakeby
distribution [16]. In the literature, the Wakeby distribution has also been employed to model
rainfall, [21] (although these authors did not motivate the choice of Wakeby distribution,
compared to other alternatives). Further studies could be performed to investigate extreme
rainfall. Moreover, concerning extreme daily rainfall, Papalexiou and Koutsoyiannis found
by fitting GEV distributions to records worldwide that the record length strongly affects the
estimate of the GEV shape [20]. Furthermore, the influence on the shape parameter was
analysed. Further studies in this direction, employing a Bayesian approach are found in [24].
To conclude, the longer the observation series, the more likely the GEV distribution might
be attained. Further studies on extreme floods with different observation lengths would be
interesting.

Several options for analysis of minimum distance are available; for a review, see [8].
A version of the Anderson–Darling test statistic for analysis of tail deviation at the upper tail
was suggested in [26]. The author experimented with that measure, but overall conclusions
in the simulation studies were as for the measures presented in this paper: the Wakeby
distribution gives the better fit.

To end this paragraph, and indeed the paper, we cite Haktanir and Horlacher [11]:

“Because of the ample availability of computers nowadays, a single-site flood
frequency analysis should be done with the inclusion of many standard probability
distributions, and a final decision should be made combining experience with
engineering judgement.”

Even more today, some decades later, computers and related software are important tools.
In a strategy for estimation for a certain region, one could still agree that several potential
distributions are possible. Methodology for selection of candidates is of interest to further
analyse.
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APPENDIX

Let X be a real-valued random variable with distribution function F (x) and quantile
function x(F ). Moreover, denote by X1:n ≤ X2:n ≤ Xn:n the order statistics for a random
sample of size n. The L-moments are defined in [13] as the quantities

λr =
1
r

r−1∑
k=0

(−1)k

(
r − 1

k

)
E[Xr−k:r], r = 1, 2, ... .

The first four L-moments can be shown to be

λ1 = E[X] =
∫ 1

0
x(F ) dF,

λ2 = E[X2:2 −X1:2] =
∫ 1

0
x(F )(2F − 1) dF,

λ3 =
1
3
E[X3:3 − 2X2:3 + X1:3] =

∫ 1

0
x(F )(6F 2 − 6F + 1) dF,

λ4 =
1
4
E[X4:4 − 3X3:4 + 3X2:4 − x1:4] =

∫ 1

0
x(F )(20F 3 − 30F 2 + 12F − 1) dF.

In practice, L-moments must be estimated from samples. The rth sample L-moment `r,
estimated as a U-statistic, can be computed by

`r =
1
n

r−1∑
k=0

n∑
i=1

(−1)r−1−k

(
r − 1

k

)(
r − 1 + k

k

)
(i− 1)(i− 2)···(i− k)

(n− 1)(n− 2)···(n− k)
xi:n.

Note, for instance, that `1 = x̄ = n−1
∑

i xi.

L-moment ratios are L-moments that are standardized:

τr =
λr

λ2
, r = 3, 4, ... .

Values of τ3 and τ4 are often plotted against each other, resulting in an L-moment diagram.

Hosking presents in [13], Table 1, the L-moment ratios for some common distributions.
For instance, with relevance for this article, the Gumbel distribution has

τ3 = ln(9/8)/ ln 2 .= 0.17,

τ4 = (16 ln 2− 10 ln 3)/ ln 2 .= 0.15.

For a GEV distribution with shape parameter ξ,

τ3 = 2(1− 3)−ξ/(1− 2−ξ)− 3,

τ4 =
[
5(1− 4−ξ)− 10(1− 3−ξ) + 6(1− 2−ξ)

]
/(1− 2−ξ)

(the formula for τ4 is here given following the report [12]; there seems to be a misprint in
[13]).
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[27] Šimková, T. and Picek, J. (2017). A comparison of L-, LQ-, TL-moment and maximum
likelihood high quantile estimates of the GPD and GEV distribution, Communications in
Statistics – Simulation and Computation, 46(8), 5991–6010.

[28] Wilks, D.S. (1993). Comparison of three-parameter probability distributions for representing
annual extreme and partial duration precipitation series, Water Resources Research, 29, 3543–
3549.


	"Tales of the Wakeby Tail and Alternatives when Modelling Extreme Floods"
	1 INTRODUCTION
	2 BACKGROUND
	2.1 The Wakeby distribution with applications
	2.2 Estimation of parameters
	2.2.1 Introduction to L-moments
	2.2.2 Remarks on estimation methodologies

	2.3 Evaluating candidate distributions
	2.3.1 Distance measures
	2.3.2 Comparison of quantiles


	3 SIMULATION STUDY: DIFFERENCES AMONG DISTRIBUTIONS
	3.1 Algorithm of simulation study
	3.2 L-moment ratio diagram
	3.3 Case 1. Simulation from GEV distribution
	3.4 Case 2. Simulation from log-normal distribution (LN3)

	4 CASE STUDY: FLOOD FLOWS IN SWEDEN
	4.1 Estimated quantities
	4.2 Return levels

	5 CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	REFERENCES

