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Abstract
Concentration-discharge relationships in water chemical time series can provide important insights into sources, mobiliza-
tion, and delivery of solutes and particulates into stream networks. The observed relationships are often complex, including 
nonlinear and hysteretic patterns reflecting seasonal, climatic, and land management changes in biogeochemical release and 
hydrological transport of solutes and particulates to streams. Using standard single concentration-discharge (c-q) slopes can 
obscure this wealth of information. In this study, we suggest a new approach using generalized additive models for evaluation 
of complex c-q patterns in low-frequency water quality data (only monthly or biweekly observations). We used these models 
to estimate c-q slopes together with their uncertainty, to provide evidence of changes in c-q behaviors and their controls. We 
estimated c-q slopes for a selection of Swedish streams and evaluated their nonlinear, seasonal, and temporal structure as 
indicators of changing hydrological or biochemical drivers.

Keywords Concentration-discharge relationship · Generalized additive models · Time-varying relationships · Nonlinearity · 
Water quality

1 Introduction

Concentration-discharge (c-q) relationships evaluated on a 
storm-event, seasonal, and multi-annual basis provide valuable 
information on the functioning of individual streams, but also 
entire stream networks and their catchments [1–3]. They can be 
used to identify dominant sources, mobilization, and delivery 
pathways for a wide range of solutes and particulates [4], which 
in turn can help to adjust water quality monitoring frequencies 
[5] and plan and evaluate the effectiveness of catchment man-
agement interventions [6]. The slope (b) of a c-q relationship 
on the logarithmic scale is typically used to identify dominant 
sources and delivery pathways and is often categorized into 
three dominant patterns: chemostatic (b approx. 0), chemody-
namic leading to dilution (b < 0), or to concentration (b > 0) [7, 
8]. This information is used to link estimated slopes with stream 
and catchment properties in order to identify the sources and 
behavior of solutes and particulates [3, 6–8].

Early work on c-q relationships [7, 9, 10] focused mainly 
on understanding spatial differences between catchments and 
solutes, based on single and constant c-q slopes calculated 
from readily available low-frequency (seasonally to weekly) 
water quality data. More recently, the widespread availability 
of longer time series, often obtained at higher monitoring 
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frequencies (sub-daily), has allowed for better and more 
detailed evaluation of c-q relationships and their slopes, 
and a greater focus on their temporal dynamics. Accounting 
for temporal dynamics in c-q relationships provides a bet-
ter understanding of underlying drivers, including changes 
in the relative proportions of different sources of solutes/
particulates (e.g., point vs. diffuse sources) and processes 
(e.g., hydrological vs. biogeochemical) [11], and seasonally 
variable weather conditions and management practices.

Due to greater c-q data availability, several approaches for 
improved estimation of non-constant c-q slopes have been 
suggested [2, 3]. For example, separate slope estimates can 
be determined for individual sub-datasets where the data 
are split according to discharge, using (1) the baseflow 
recursive filter method [3], (2) the inflection point in the 
c-q relationship method [6], or (3) the median of discharge 
threshold levels [12]. More advanced approaches include, 
e.g., piecewise linear regression to determine the c-q slope 
below and above a flow discharge threshold that is deter-
mined by iterative maximum likelihood fitting [4, 13], or a 
combined model for baseflow and quick flow using a two-
component mixing equation [14]. Recently, nonlinear c-q 
relationships have been investigated using smoother splines 
[15] to determine if the underlying c-q relationship is linear, 
convex, or concave, in order to link this behavior with in-
stream uptake processes. To evaluate changes in c-q rela-
tionships over time, data series are often divided into two or 
several non-overlapping sub-series, for which the c-q slope 
is determined separately. For example, Bieroza et al. [6] split 
series in half when studying the effect of a trend and Fork 
et al. [16] calculated c-q slopes for each calendar year to 
illustrate changes over time and linked them to catchment 
properties. For most of the approaches mentioned above, 
uncertainties, e.g., standard error or confidence band for c-q 
slopes, are not provided or even discussed.

Existing techniques fail to address several important issues 
that could be improved when estimating c-q relationships. One 
approach that accounts for a number of features, i.e., tempo-
ral trends, nonlinear relationships, and time-varying relation-
ships, is weighted regressions on time, season, and discharge 
(WRTDS) [17–19]. Hirsch et al. [20] developed a bootstrap 
approach for determining the uncertainty of trend estimation for 
the WRTDS model and that approach was adapted by Zhang 
et al. [21] to present uncertainties for c-q slopes. A disadvan-
tage with the WRTDS method is that it relies on daily data and 
cannot be used directly for low-frequency data. Time-varying 
and nonlinear relationships were addressed by Zimmer et al. 
[22] and Fazekas et al. [23] using a moving window approach, 
which also applied to high-frequency data. Generalized addi-
tive models (GAMs) [24, 25] are a commonly used tool to 
estimate complex relationships between a response and one 
or several explanatory variables. The form of the relation-
ship is completely determined by the available data and thus 

does not require any prespecified functional form, e.g., linear 
or exponential, as parametric regression models do. The most 
common use of GAMs is to model temporal trends in concen-
tration time series [26–28]. Beyond flexible nonlinear relation-
ships, GAMs can also estimate relationships that vary in time, 
using so-called time-varying coefficient models [29] and are 
sometimes used to study relationships between water quality 
concentrations and influencing variables [30, 31]. However, 
the method has so far not been explicitly applied to study or 
quantify c-q relationships.

In this study, we examined how GAMs can improve esti-
mation and evaluation of complex c-q relationships compared 
with the standard single c-q slope approach. As an example, 
we used low-frequency (monthly or biweekly) data from sev-
eral Swedish agricultural streams exhibiting nonlinear and/
or time-varying c-q slopes. We examined whether explicit 
inclusion of temporal trends in concentration was necessary 
to obtain reliable estimates of c-q slopes and whether changes 
in flow needed to be addressed in interpretation. Estimates 
of c-q slopes for nitrate-nitrogen and total phosphorus were 
plotted in informative diagrams, together with the corre-
sponding uncertainties. These diagrams can be a useful tool 
to support interpretation of solute and particulate behavior in 
response to climatic and management drivers.

2  Methods

2.1  Estimation of Constant c‑q Slopes Using 
Regression Models

Power-law relationships, of the form C = A ⋅ Qb
⋅ E , are typi-

cally assumed between concentration and discharge (see, 
e.g., [8]), where C is concentration, Q is discharge, and E is 
the model’s random error term. The concentration-discharge 
slope is denoted b. For estimation of c-q slopes, this relation-
ship is log-transformed to:

Substituting c, a, q, and ε for log (C), log (A), log (Q), and 
log (E), respectively, gives the following model  (LMconstant):

The c-q slope, b, can be estimated by a linear regression 
model and is then assumed constant. It describes the change 
in c when q increases by one unit. The intercept, a, indicates 
the level of c when q is equal to 0. The standard error of b, 
i.e., the uncertainty of the c-q slope, is computed as:

(1)log(C) = log(A) + b ⋅ log(Q) + log(E)

(2)c = a + b ⋅ q + �

(3)SEb =

�

�

�

�
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�

∑

i
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where s2
�
 denotes the residual variance (i.e., the variance of the 

error term � in the regression model), qi are the individual obser-
vations of q, and q is the overall mean of q. These standard errors 
can be used to determine confidence intervals for b or to test if 
the true value of c-q slope is significantly different from zero.

The dataset used to estimate the c-q slope is usually a 
time series, which means that using a conventional regres-
sion model to determine the slope b and its uncertainty is not 
optimal, as the available observations are not independent. 
Instead, the model must be extended to include a time series 
structure in the error term, e.g.:

where � ∼ N(0,Λ) denotes the distribution of the error 
term, which is assumed to be normal with mean 0 and a 
variance–covariance matrix Λ . The typical choice for this 
variance–covariance matrix is to assume that correlations 
between two different observations in time are a function 
of the time difference. This is also called an autoregressive 
process of lag 1. The correlations can be estimated in the 
modeling process using a mixed model or generalized least 
squares estimates. Inclusion of correlations in time (auto-
correlation or serial correlation) in the model improves the 
estimate for the uncertainty in c-q slope coefficients (see, 
e.g., [32]).

2.2  Generalized Additive Models

Generalized additive mixed models facilitate modeling of 
environmental time series without prior definition of the 
shape between the response variable, c, and any available 
explanatory variable, e.g., q or time [24, 25]. Relationships 
of a concentration variable to time or to explanatory vari-
ables are assumed to be smooth, and cross-validation is used 
to determine the best fit. All GAMs are fitted using the pack-
age mgcv [33, 34] in R software [35]. Derivatives of smooth 
functions are computed using the package gratia [36].

2.3  Estimation of Constant c‑q Slopes While 
Accounting for a Trend in Concentration

A trend in concentration data can often be observed in addi-
tion to a relationship between concentration and discharge. 
Ignoring such trends could influence the accuracy of esti-
mation of c-q slope and therefore it is advisable to include 
it in all models when estimating the c-q relationship. In the 
basic model, a trend is added, while assuming that the c-q 
slope is constant, using the following generalized additive 
model  (GAMconstant):

(4)c = a + b ⋅ q + � � ∼ N(0,Λ)

(5)c = a + f1(time) + b ⋅ q + � � ∼ N(0,Λ)

where the trend component f1(time) is a smooth function in 
time. The smooth function can be modeled as a thin plate 
spline or cubic regression spline. As a trend in concentration 
will not always be present, we chose a thin plate spline with 
a smoothing penalty (bs = “ts”), a so-called shrinkage fac-
tor, which allows the model to remove the trend component 
when not necessary. The slope estimate b was fitted and 
interpreted as in conventional regression models. An auto-
correlation estimate was incorporated in the same way as 
before, which is necessary to estimate the uncertainty of the 
slope appropriately and to avoid too much wiggliness, i.e., 
too much variation, in estimated trends, which would make 
them more difficult to interpret [37]. Uncertainty estimates 
of the c-q slope b can be extracted from the model, as usual 
in regression models, and a test for the hypothesis that the 
slope coefficient differs significantly from zero is given as 
the standard model output in R. Confidence intervals for the 
estimate b can be computed from model results.

2.4  Estimation of Nonlinear c‑q Relationships

If the c-q slope cannot be assumed to be constant over 
the range of all observed discharge measurements, GAMs 
allow estimation of a smooth relationship between concen-
tration and discharge. This can be achieved by the model 
 (GAMnonlinear):

where the concentration-discharge relationship is now esti-
mated by the smooth function f2(q). An attractive feature 
of GAMs is that if f2(q) is in fact linear, rather than curved, 
the model will identify it as such and suggest a constant 
c-q slope as the best alternative. As this model only con-
tains smooth terms, the intercept a is replaced by � , which 
represents the overall mean of the concentration variable. 
Other considerations, such as the autoregressive structure 
of the error term, remain as for the models presented earlier 
(Eqs. 4 and 5).

The c-q slope b can be seen as the derivative of the esti-
mated c-q relationship f2(q) , both when the c-q relationship 
is linear and when it is smoothly changing with discharge. 
First derivatives can be computed by finite differencing, and 
their uncertainties can be deduced from the variance–covari-
ance matrix of the original smooth function, e.g., see docu-
mentation for the predict.gam function in the mgcv pack-
age in R [33, 38]. Based on such uncertainty computations, 
confidence bands can be obtained for the derived c-q slope 
and can be used to determine whether the slope indicates a 
chemostatic or chemodynamic relationship at different levels 
of discharge. For individual values of observed discharge, it 
is possible to check, e.g., if the entire confidence band of the 
derivative lies below zero (chemodynamic, dilution pattern), 

(6)c = � + f1(time) + f2(q) + � � ∼ N(0,Λ)
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lies above zero (chemodynamic, concentration pattern), or is 
not significantly different from zero (chemostatic).

Nonlinear c-q relationships may show different behavior 
during different seasons, due to, e.g., differences in tem-
perature, leading to varying nutrient cycling efficiency or 
agricultural practices. For low-frequency data, a way to 
investigate this is to define a few distinct sub-datasets, e.g., 
for the four seasons, and then estimate c-q slopes separately 
for each season. For this, model  GAMnonlinear is extended 
by a categorical variable indicating season, here denoted 
seascat , and its interaction to discharge, giving the model 
 GAMnonlinear and seasonal:

This leads to separate nonlinear c-q slopes for each of 
the seasons. Derivatives and their uncertainties are again 
computed to determine the slope estimate and its confidence 
bands.

Another possibility is to let the nonlinear c-q relation-
ships vary smoothly with month and with discharge, leading 
to a two-dimensional smooth function. This approach is not 
discussed further here, because extraction of the slope coef-
ficients from such a model is more cumbersome as it relies 
on partial derivatives. In addition, the approach requires 
more data and is probably not a feasible choice with low-
frequency datasets.

2.5  Estimation of Time‑Varying c‑q Relationships

Time-varying coefficient models allow relationships 
between two variables to change with time [29]. This can 
be relevant if the c-q relationship changes over time due to, 
for example, a change in relation between point and non-
point sources. To estimate a time-varying c-q slope, we can 
use the following model  (GAMtime-varying):

where f1(time) represents the trend in concentration, b(time) 
indicates that the c-q slope (b) varies smoothly with time, 
while at each specific point in time it is assumed that the 
relationship between concentration and discharge is linear. 
Autocorrelation for the error term is included in the same 
way as before. Uncertainties for the c-q slope and for the 
trend estimate can be extracted directly from the fitted model 
for any given time point.

Seasonality can be included in the model by defining a 
two-dimensional smooth function  (GAMtime-varying and seasonal) 
using both year and month as indicator of time:

(7)
c = � + f1(time) + seascat + f2(q) ⋅ seascat + � � ∼ N(0,Λ)

(8)c = a + f 1(time) + b(time) ⋅ q + � � ∼ N(0,Λ)

(9)
c = a + f1(year,month) + b(year,month) ⋅ q + � � ∼ N(0,Λ)

i.e., the c-q slope varies smoothly over time (years) and over 
seasons (month). For the monthly component, it is com-
mon to use a circular smooth function, e.g., a circular cubic 
regression spline, to guarantee that December and January 
values are connected without a shift. It is recommended that 
the two-dimensional smooth functions are tensor products 
[25, 39], in order to allow different amounts of smoothing 
in the two directions (year and month). However, this type 
of model is rather complex and relies on sufficient data to 
produce stable estimates, so it is advisable to use it on series 
with more than one observation per month and year. Auto-
correlation for the error term is included in the same way as 
in other models.

2.6  Mean‑Centering of Discharge

An appealing feature of the nonlinear models  GAMnonlinear 
and  GAMnonlinear and seasonal is that they present the overall 
(log-transformed) concentration mean as model output. The 
other models present the mean at levels when the log-trans-
formed discharge is equal to 0, i.e., when discharge is equal 
to 1. Mean-centering of q can be used to adjust these models 
to estimate the overall mean � , e.g., for the  GAMtime-varying 
model:

Model estimates, i.e., time-varying slope and the trend 
component, are not affected by this change, other than that 
the optimization routine can produce slightly altered values 
as q is rescaled. We used mean-centering of q for estimation 
of time-varying c-q slopes.

2.7  Hydrochemical Data

We applied the proposed models to examine c-q relation-
ships in water quality (total phosphorus (TP), nitrate-
nitrogen  (NO3-N)), using flow discharge data from the 
Swedish Environmental Monitoring Programme on larger 
rivers (https:// miljo data. slu. se/ MVM/) and small agricultural 
catchments (http:// jordb ruksv atten. slu. se) (Table 1).

The three catchments included in this study vary in size, 
agricultural land use, and catchment properties (Table 2). 
The Fyrisån catchment is the recipient of treated sewage 
water from the city of Uppsala (~200,000 inhabitants). At 
the city’s sewage treatment plant, improvements in phospho-
rus removal were made in 1972 and in nitrogen removal in 
1999 [40]. Water quality measurements in Fyrisån are made 
on a monthly basis and daily modeled water flow adjusted 
for local measurements is downloaded from SMHI (https:// 
vatte nwebb. smhi. se/ nadia/). For the other two catchments, 
O14 and H29, with a high proportion of agricultural land, 

(10)c = � + f 1(time) + b(time) ⋅
(

q − q
)

+ � � ∼ N(0,Λ)

https://miljodata.slu.se/MVM/
http://jordbruksvatten.slu.se
https://vattenwebb.smhi.se/nadia/
https://vattenwebb.smhi.se/nadia/
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samples are taken at least biweekly as grab samples and 
water flow is measured every quarter hour and averaged to 
daily values [41]. For these catchments, both concentrations 
and discharge were collected within the environmental mon-
itoring program on small agricultural catchments.

The discharge and concentration data were both trans-
formed using a base 10 logarithm before analysis. The data-
sets and all R code used for models and figures are available 
online [42].

2.8  Simulation Study

To illustrate the effect of a prevailing trend in concentration 
on estimation and variation of modeled c-q relationships, 
we performed a simulation study. For this, we generated 
a discharge variable (q) assuming a normal distribution 
with mean 0 and variance 1, and obtained the value of the 
response variable from the model c = � ⋅ q + r , where r is 
a random error term that is also normally distributed, with 
mean 0 and variance 1. We set the value of � to 0.3 and 
simulated 1000 time series for three distinct scenarios: (i) 
no trend in concentration or discharge; (ii) a trend in concen-
tration; and (iii) a trend in discharge. Any trend simulated 
was linear, with an increase of 0.1 units per time point. We 
then fitted each of the simulated series by an  LMconstant and 
a  GAMconstant model, to evaluate how well the true c-q slope 
could be estimated in the three scenarios.

In the absence of a trend in either concentration or dis-
charge (scenario i), the model that did not include any trend 
estimate  (LMconstant) and the model that allowed explicit 
estimation of a trend in concentration  (GAMconstant) both 

gave very similar results (Fig. 1, left). In fact, in 86% of 
the simulations the two models provided exactly the same 
estimate, while in the remaining cases the difference was at 
most 0.05 units. When a trend in concentration was simu-
lated (scenario ii) but ignored in estimation of the c-q slope 
 (LMconstant), the variation in estimates increased substantially 
(Fig. 1, center). In this case,  GAMconstant can be considered 
the correct model and  LMconstant provided identical estimates 
in 50% of all simulated series, while the remaining estimates 
differed by up to one unit from the target value. When data 
exhibited a trend in discharge (scenario iii), both models 
again gave comparable results and 82% of the simulations 
led to identical values of the c-q slope. In 65% of these cases, 
the  GAMconstant model correctly identified that there was no 
concentration trend present and removed this component in 
the estimation. However, in some simulated datasets, the 
estimated c-q slope deviated from the correct slope for this 
scenario (determined by  LMconstant) by up to 0.3 units. The 
amount of variation observed in the c-q slope generally 
depended on the magnitude of the trend and on the varia-
tion in concentration and discharge (not shown).

3  Results

3.1  Estimation of c‑q Relationships in the Presence 
of a Trend in Concentration Data

Constant c-q slopes for three time series were analyzed with 
the two models  LMconstant and  GAMconstant to illustrate the 
effect of a trend in concentration in actual hydrochemical 

Table 1  Time series used in the study

Catchment Parameter Non-linear Time-varying Seasonal Model/s used Reason

O14 Nitrate-nitrogen  (NO3-N) Yes No Yes GAMnonlinear
GAMnonlinear and seasonal

Multiple N sources resulting in nonlin-
ear relationship with discharge

Fyrisån Total phosphorus (TP) No Yes No GAMtime-varying Removal of point sources could change 
the c-q relationship over time

H29 Nitrate-nitrogen  (NO3-N) No Yes Yes GAMtime-varying and seasonal Changes in agricultural management 
over time

Table 2  Geographical, land use, physical, and chemical characteristics of the three selected catchments

a Mean values computed for 1995–2020
b Mean value computed for 1965–2020

Catchment Area 
 (km2)

Location Soil texture Agricultural 
land (%)

Water discharge 
(mm)a

Nitrogen 
(mg  L−1)a

Phosphorus 
(mg  L−1)a

Water quality 
monitoring 
period

Sampling 
frequency

O14 10.1 West Sweden Silt loam 72 299 4.7 0.17 1993–2020 Biweekly
Fyrisån 2006 East Sweden Clay 25 232  (230b) 2.7  (3b) 0.07 (0.12b) 1965–2020 Monthly
H29 7.0 East Sweden Sandy loam 73 124 9.1 0.15 1995–2020 Biweekly
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data. One of the series, TP concentration in Fyrisån, showed 
distinct trends in concentration (Fig. S1 in SI) and when this 
trend was not accounted for the estimation of the c-q slope 
was slightly lower (0.012 vs. 0.016) (Table 3). While the 
difference was not large, the R2 values indicated a substan-
tially better fit when the trend was included in the model. 
Catchment O14 did not show any clear temporal trend in 
 NO3-N, and nor did catchment H29, but in the latter catch-
ment discharge decreased over time (Table S1, Fig. S2). The 
c-q slope estimated with the two models was very similar in 
these catchments.

Based on the single slope c-q relationships, catchments 
O14 and H29 showed chemodynamic concentration patterns, 
while the c-q relationship in Fyrisån was chemostatic. How-
ever, as we will show in the following sections, these relation-
ships were more complex than implied by constant c-q slope.

3.2  Estimation of Nonlinear c‑q Relationships

On visualizing the relationship between log-transformed dis-
charge and  NO3-N in catchment O14 using the  GAMnonlinear 
model, we found that the estimated c-q relationship was 
not completely linear, with flattening at high-flow condi-
tions (Fig. 2, left). This was better illustrated by plotting 

the estimate of the c-q slope (b) as function of discharge 
(Fig. 2, right). The estimated relationship was chemody-
namic (concentration) for low-flow conditions, with an esti-
mated c-q slope of almost 0.8 for the lowest discharge, but 
chemostatic at high flow (above log-transformed discharge 
of 2). The uncertainty of the estimated slope coefficient was 
quite large, especially for very low values of discharge as 
a consequence of lower data availability. The adjusted R2 
value for the model (0.46) was slightly improved compared 
with the linear model (R2 = 0.38). There was some indica-
tion of residuals having higher values during autumn and 
lower during spring and summer, meaning that there was 
some seasonality in the data that could not be captured in 
this model. In catchment O14, discharge did not show any 
temporal trend (Table S1, Fig. S2 in SI).

To study variation in c-q slopes due to seasonal effect, 
we calculated separate nonlinear c-q relationships for dif-
ferent seasons (spring: March–May, summer: June–August, 
autumn: September–November, and winter: December–Feb-
ruary) using the  GAMnonlinear and seasonal model. There was 
some difference in the c-q slopes identified for spring com-
pared with other seasons during low- and high-flow con-
ditions (Fig. 3, left). During spring, the c-q slope at low 
discharge was quite high (~ 2.5), but with little data sup-
port and broad uncertainty bands at discharge levels below 

Fig. 1  Estimated c-q slope (b) 
in 1000 simulations for three 
scenarios fitted by two models: 
 LMconstant and  GAMconstant. The 
true c-q slope is 0.3. (Left) No 
simulated trend in concentra-
tion or discharge (scenario 
i); (center) simulated trend in 
concentration (scenario ii); 
and (right) simulated trend in 
discharge (scenario iii)

Table 3  Constant c-q slope (b) and its standard error estimated from models without and with inclusion of a concentration trend  (LMconstant and 
 GAMconstant), respectively

Site Variable Trend estimate not included in the model 
 (LMconstant)

Trend estimate included in the model 
 (GAMconstant)

Slope b Standard error 
of b

Model R2 (adj) Slope b Standard error 
of b

Model R2 (adj)

O14 Nitrate-nitrogen  (NO3-N) 0.34 0.019 0.33 0.35 0.018 0.38
Fyrisån Total phosphorus (TP) 0.012 0.025 0 0.016 0.016 0.58
H29 Nitrate-nitrogen  (NO3-N) 0.78 0.028 0.56 0.82 0.029 0.60
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log-transformed discharge of 0. The c-q relationship for 
spring remained chemodynamic for almost all flow con-
ditions. In contrast, the estimated pattern for summer and 
autumn indicated smaller c-q slopes for low-flow conditions 
and chemostatic patterns for high flow (Fig. 3, center and 
right). The estimated c-q slope for winter was constant, with 
a value of 0.08 (standard error: 0.03). As the seasonal curves 
were based on fewer observations compared with whole 
dataset, the uncertainty around the estimated c-q slope was 
broader than in the non-seasonal model (Fig. 3, lower row).

Overall, the  GAMnonlinear and seasonal model gave more 
consistent predictions than the constant slope model 
 (GAMconstant) (Fig.  S4), as the latter did not repro-
duce very low or high concentrations accurately. The 
 GAMnonlinear and seasonal model also had a higher adjusted R2 
value (0.55), but showed increased variation for low con-
centration values, which usually occur in low-flow condi-
tions that are not observed often. As the seasonal model 
was considerably more complex, the risk of overfitting must 
be taken into account. For example, there were only three 
observations above a log-transformed discharge of 3 during 
summer months and the modeled curve adapted to these by 
bending downwards (Fig. 3, upper row, center). It cannot be 
assumed that the model fit would be the same if there were 
more observations available within this discharge range.

3.3  Estimation of Time‑Varying c‑q Relationships

Point sources of TP to the Fyrisån catchment were signifi-
cantly reduced in the 1970s leading to a clear downward 
trend in concentrations (see Fig. S1). c-q relationships were 
plotted for five separate sub-periods (Fig. 4, left), confirm-
ing that also the c-q relationship changed over time. It was 
negative during the 1960s and 1970s, while it turned posi-
tive during later years. To model this time-varying c-q rela-
tionship explicitly, we used  GAMtime-varying. The c-q slope 
estimates obtained exhibited large changes, from approxi-
mately − 0.5 in early 1970 to almost 0.2 in 2009 (Fig. 4, 
right). A minor decrease in the c-q slope was observed for 
the most recent decade. We used the uncertainty of the esti-
mates to determine whether the slope parameter b was sig-
nificantly different from zero at different time points, i.e., 
whether the entire confidence band lay below or above zero. 
Using that approach, we found that Fyrisån showed a clear 
dilution pattern between the start of the series and the late 
1970s, while a concentration pattern prevailed after about 
1990.

Comparison of observed and predicted concentrations 
(Fig. S4) indicated that  GAMtime-varying provided more con-
sistent results, and thus more reliable estimates of the c-
q slope than the model with constant slope  (GAMconstant), 

Fig. 2  (Left) Log-transformed nitrate-nitrogen  (NO3-N) concentration as a function of log-transformed discharge from catchment O14 based on 
a smooth, nonlinear c-q relationship and (right) estimate of the c-q slope as a function of log-transformed discharge
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even though discharge exhibited a slight downward trend 
over time (Fig. S2, Table S2). The adjusted R2 value of the 
 GAMtime-varying model was higher (0.64) and Akaike infor-
mation criterion (AIC) was lower (− 326) than for the con-
stant slope model (R2 = 0.59, AIC = −295).

For catchment H29, which was monitored with at 
least two observations per month, we estimated the c-q 
relationships using a two-dimensional smooth function 
 (GAMtime-varying and seasonal), i.e., allowing the c-q slope to 
vary smoothly over years, but also over months. We found 
that the highest estimates for the c-q slope lay around 1 dur-
ing late summer months in the 1990s (Fig. 5, left, in yellow) 
and then decreased steadily over the years for all seasons, 
with the most pronounced changes in early autumn and early 
spring.

To analyze this further, c-q slopes and their uncertainty 
estimates were extracted for two specific times in the year 
and presented as changes over years together with confi-
dence bands (Fig. 5, right). The estimates and confidence 
bands for mid-February and mid-August suggested that 
the relationship was chemodynamic, with a concentration 

pattern for both months and all years. The c-q slopes dur-
ing August were generally of much higher magnitude, but 
decreased strongly after 2005 and reached similar c-q slope 
values as in February towards the end of the series. The c-q 
slope for February was estimated to be rather stable over the 
years, but with a dip around 2010. The uncertainty estimates 
for the slopes revealed a clear significant difference between 
estimated c-q slope magnitude for the two selected months 
except during the last years. Residuals were normally dis-
tributed, but showed two outliers during November 2015, 
when unusually low  NO3-N concentrations were recorded. 
The modeled trend component also showed strong season-
ality, as well as a decrease in  NO3-N levels (Fig. S3 in SI).

Discharge in catchment H29 exhibited a clear trend over 
the years (Fig. S2, Table S1), with low values during sum-
mer and autumn in the end of the series. This could have 
affected the efficiency of the estimated slope and uncer-
tainty parameters. Within the applied model, we allowed 
the trend component to decline to zero if no trend in con-
centration was present and the c-q slope to reduce to linear 
if that represented the best fit. A clear trend component was 

Fig. 3  (Upper row) Log transformed nitrate-nitrogen  (NO3-N) con-
centration as a function of log-transformed discharge from catchment 
O14 in (left) spring, (center) summer, and (right) autumn, based on a 

nonlinear c-q relationship and (lower row) nonlinear c-q slope esti-
mates as a function of log-transformed discharge for the same three 
seasons
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still identified (effective degrees of freedom 9.5) and the 
c-q slope was also determined to not be linear (effective 
degrees of freedom 10.5). To further determine the differ-
ence between a constant c-q slope model and the current 

model,  GAMtime-varying and seasonal was compared with a 
modified  GAMconstant model that allowed a trend compo-
nent to vary smoothly with both month and year, while the 
c-q slope was held constant. The  GAMtime-varying and seasonal 

Fig. 4  Concentration-discharge relationships for the Fyrisån catch-
ment, 1965–2021. (Left) Log-transformed total phosphorus concen-
tration as a function of log-transformed discharge with darker colors 

indicating observations in the beginning of the observed series and 
lighter colors indicating observations towards the end. (Right) Esti-
mated c-q slope changing smoothly over the years

Fig. 5  (Left) Variation in concentration-discharge relationships for 
nitrate-nitrogen  (NO3-N) in catchment H29 over year and month, 
where colors indicate the value of the c-q slope. (Right) Examples of 

estimated c-q slopes for mid-August (red, dashed) and mid-February 
(blue, solid), and associated confidence bands (shaded)
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had an adjusted R2 value of 0.76 and AIC = 239, while the 
modified  GAMconstant model had an adjusted R2 value of 0.73 
and AIC = 280. All parametric parameters and smooth func-
tions in the two models were highly significant. On com-
paring the predictions for the log-transformed concentra-
tions of  NO3-N, we observed that the constant slope model 
slightly overestimated concentrations at high flow, while it 
underestimated concentrations at medium flow (Fig. S4). 
 GAMtime-varying and seasonal generally performed better, but 
both models had difficulties in reproducing concentrations 
at low flow.

4  Discussion

To quantify c-q relationships from hydrochemical data, standard 
linear regression models are often used [7, 12]. They assume a 
constant slope in time and over the range of different flow condi-
tions, which can be relevant if data are limited, e.g., cover a short 
monitoring period. However, in many cases low-frequency data 
contain a greater wealth of information about complex c-q rela-
tionships, which can be extracted using adequate statistical tools.

4.1  Complex c‑q Relationships Estimated Based 
on Low‑Frequency Data

In the examples in this study, we showed that non-stationary 
and nonlinear c-q relationships can be investigated using data-
sets with low monitoring frequencies. Generalized additive 
models allow smooth nonlinear and time-varying c-q relation-
ships to be computed, which can improve the ability to identify 
and interpret the c-q patterns. The models used here are gener-
ally well-documented and easily available in the free software 
R [33, 35]. The c-q slopes calculated with GAM are simple 
to extract and are by default accompanied by uncertainty esti-
mates, which is important when c-q slopes are used in deci-
sion-making. The uncertainty values might underestimate 
the total uncertainty, since they do not include uncertainty 
connected to selecting the model smoothness [43], but this is 
still an improvement compared with conventional approaches 
where c-q slope uncertainty is usually simply ignored.

Using GAM models, we can model c-q slopes that vary 
smoothly over time or nonlinearly with the level of flow dis-
charge. Thus, these methods do not suffer from any shift by 
division into subsets, e.g., based on flow discharge thresh-
olds, which is often performed [6, 12, 16]. This makes it 
easier to compare results from different studies and reveal 
some general hydrochemical patterns valid for catchments 
differing in size, climate, soils, and land use. Another advan-
tage of the smoothly varying c-q slopes is that they simplify 
analysis when the effects of mitigation measure on water 
quality are delayed due to, e.g., increased hydrological 
residence time, pollutant retardation, or ecosystem linkages 

[44]. For conventional constant c-q slopes, it is often neces-
sary to define a time period when these delayed effects are 
expected to be observable, while with the suggested time-
varying c-q slopes any change will be visible when it arises.

The proposed methods can be used on hydrochemical time 
series that have low monitoring frequency, but special care 
needs to be taken to avoid overfitting. Overfitting occurs when 
too complex a model is fitted on too small a dataset, e.g., if no 
or only few observations within a range of flows are available, 
which is often the case with manual water quality sampling [5]. 
As a result, the model might fit the available observations well, 
but would not be able to generalize to new data. For example, 
in this study we observed signs of overfitting in models that 
included strong seasonality patterns in addition to nonlinear c-q 
relationships. In catchment O14, where only three observations 
were available for high flows during summer, these observations 
determined the behavior of the c-q slope under high-flow condi-
tions. Additional measurements at high flows, e.g., using high-
frequency water quality analyzers and sensors [45], can fill this 
gap. The uncertainty bands for c-q slopes give some indication 
about the reliability of the estimates produced, but ultimately it 
is up to the user to identify potential overfitting issues. Study-
ing the visualizations of c-q relationships side-by-side with the 
available data is important as a model validation tool.

Untangling time-dependent structures is always a com-
plex task for single time series, and complex models fitted 
on low-frequency data can lead to a risk of creating artifacts, 
e.g., by overfitting. With GAMs, it is possible to include a 
component describing trends in concentrations that can be 
shrunk to zero if no concentration trend is present in the 
data. Additionally, thin plate splines used in GAMs reduce 
to linear relationships if the modeled c-q slopes are not 
more complex than that. This means that, while the models 
are flexible and can model complex c-q relationships, they 
can be expected to provide simple relationships if these are 
the best fit. For additional model validation, we compared 
the proposed models with simpler models with constant c-
q slopes using adjusted R2, AIC, and visual inspection of 
residuals and predictions. The results confirmed that nonlin-
ear and time-varying c-q slopes led to overall better models 
for our data.

4.2  Trends, Nonlinearities, and Seasonality  
in c‑q Slopes

For many hydrochemical time series, using a single linear 
c-q slope can lead to faulty interpretation of hydrochemical 
behavior. This was evident in the case of TP data for the 
Fyrisån catchment, where a single constant c-q slope missed 
most of the hydrochemical changes that occurred due to sub-
stantial improvement in wastewater treatment over more than 
50 years of monitoring. In other situations, the method could 
be used to evaluate or identify effects of changes that cannot 
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be directly quantified, e.g., due to climate change, agri-envi-
ronmental mitigation measures, or stream channel interven-
tions. Including data covering different seasons is often 
critical for interpretation of c-q patterns, their variation, 
and underlying drivers, and ignoring seasonality has been 
shown to pose a risk of misclassification [23]. For datasets 
with biweekly or more frequent data, we found seasonally 
varying c-q slopes both when analyzing changes over time 
and when evaluating nonlinear concentration-discharge rela-
tionships for  NO3-N in small agricultural catchments (O14, 
H29). Only such detailed analysis allows identification of 
the connection between estimated c-q slopes and season-
ally varying potential drivers, seasonal climatic conditions 
(droughts, storms), or agricultural practices that change over 
the course of the year.

Studying nonlinear c-q slopes makes it possible to deter-
mine whether increased discharge affects loss of nutrients 
differently for low-flow and high-flow conditions. For 
example, in catchment O14 the c-q relationships showed 
nonlinear seasonal behavior, with chemodynamic relation-
ships in high-flow conditions during spring, but chemostatic 
relationships at high-flow conditions in summer, autumn, 
and winter. This may imply that heavy precipitation events 
in the beginning of the crop-growing season, when nitrogen 
uptake is low, increase the risk of losses of nitrogen miner-
alized in the soil and applied as fertilizer. In contrast, even 
intense precipitation would lead to smaller nitrogen losses 
in summer, probably because almost all applied nitrogen had 
already been assimilated by the crop. This type of informa-
tion could be used in practice, e.g., when selecting optimal 
periods for stream channel interventions like dredging or 
vegetation removal and for optimizing the timing of agri-
cultural operations.

Seasonal and time-varying c-q slopes could also be inves-
tigated by other statistical methods that allow more vari-
ability over the year or over a longer period, e.g., a moving 
window approach [22, 23]. However, when only low-fre-
quency data are available, it will not be possible to quantify 
rapid changes caused by, e.g., storm events, and the approach 
involving GAM is then useful as it smooths out short-term 
variation.

4.3  Interpreting c‑q Relationships

We focused our analysis of c-q slopes over time on three 
study catchments, for which we expected the c-q slope to be 
non-constant due to changes in point sources or agricultural 
management over time and due to the presence of multi-
ple nitrogen sources. While the models we tested identified 
the expected changes in c-q slopes and usually gave bet-
ter predictions, and thereby more reliable estimates of c-q 
slopes, interpretation of c-q patterns is a complex task. If 
the underlying processes are not yet known, time-varying 

and nonlinear c-q slopes can be used as support for source 
apportionment [3, 6, 23, 46]. Using the approaches we pre-
sent, it is also possible to separate drivers that influence 
concentration levels from those that influence c-q relation-
ships, as concentration trends are modeled separately. Trends 
in discharge, on the other hand, can increase the variation 
in slope estimates and, in the worst case, lead to flow levels 
that have not been observed earlier, making purely data-
driven interpretation difficult. Therefore, analysis based on 
c-q slopes requires supplementary modeling approaches 
and a better mechanistic understanding of individual and 
combined effects of different drivers on c-q slopes. We rec-
ommend interpreting c-q slopes together with analysis of 
trends in concentration and discharge, and auxiliary meteor-
ological, hydrological, chemical and management data, and 
confirming the findings with high-frequency hydrochemical 
measurements. Together, this information can yield impor-
tant insights into transport and transformations of nutrients, 
sediments, and other water quality constituents for a wide 
range of flow conditions.

4.4  The Future of Complex c‑q Slope Estimation

The time-varying c-q slope models we present assume that 
there is no additional nonlinearity in concentration response 
to increased discharge. To assess intricate effects of a vari-
ety of mitigation measures, there is a need to model not 
only linear but also nonlinear c-q slopes changing over time. 
Mathematically, this is not difficult, e.g., smooth estimates 
of slopes can be produced in three dimensions (year, sea-
son, and flow) and specific c-q slopes can be extracted from 
models by partial derivatives. In practice, this will not be 
possible with low-frequency data, partly because there is not 
enough data to fit such complex models and partly because 
monthly or biweekly monitoring might miss extreme low 
or high flows [5]. Huntington and Wieczorek [18] studied 
c-q relationships using the WRTDS model on data inter-
polated from monthly to daily resolution and linked results 
to changes in the relative importance of pollution sources. 
While this approach allowed fitting of complex models, 
it did not solve the problem of missing observations in 
extreme flow conditions, and thus cannot replace appropri-
ate monitoring frequency. Increased possibilities to collect 
high-frequency hydrochemical data over longer periods will 
enable estimation of complex c-q slopes. Adequate statisti-
cal methods in combination with high-frequency data will 
greatly enhance understanding of concentration-discharge 
relationships for different flow regimes and how they change 
over season, years, and even decades. This will be necessary 
to reliably connect changes in c-q slopes to their causes and 
provide a basis for evaluating the effects of environmental 
change on solute/sediment hydrochemical behavior, which 
are often difficult to quantify directly.
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5  Conclusions

Estimation of c-q slopes can be important in revealing under-
lying stream and catchment hydrological and biogeochemi-
cal processes and can be used to support decisions on land 
and water management. The hydrochemical data underpin-
ning c-q relationships are often collected at low frequency 
over a long period and with both concentration and discharge 
data exhibiting seasonal variation. In such circumstances, 
assuming that the c-q slope is always constant is naïve and 
more comprehensive models are needed for detailed analysis 
of how c-q slopes vary with time, discharge, and other poten-
tial drivers. The GAM-based approaches suggested in this 
study allow modeling of the most common deviations from 
constant slopes, and improve and simplify estimation of c-q 
slopes for low-frequency hydrochemical data. However, to 
improve interpretation of the complex c-q patterns obtained, 
we recommend combining data analysis of c-q slopes with 
GAMs and catchment modeling approaches to yield infor-
mation on different solute and particulate sources and their 
mobilization patterns under different flow conditions.
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