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Abstract
Purpose of Review Continuous cover forestry (CCF) is a sustainable management approach for forestry in which forest stands 
are manipulated to create irregular stand structures with varied species composition. This approach differs greatly from the 
traditional approaches of plantation-based forestry, in which uniform monocultures are maintained, and thus, traditional 
methods of assessment, such as productivity (yield class) calculations, are less applicable. This creates a need to identify 
new methods to succeed the old and be of use in operational forestry and research. By applying remote sensing techniques 
to CCF, it may be possible to identify novel solutions to the challenges introduced through the adoption of CCF.
Recent Findings There has been a limited amount of work published on the applications of remote sensing to CCF in the 
last decade. Research can primarily be characterised as explorations of different methods to quantify the target state of CCF 
and monitor indices of stand structural complexity during transformation to CCF, using terrestrial and aerial data collection 
techniques.
Summary We identify a range of challenges associated with CCF and outline the outstanding gaps within the current body 
of research in need of further investigation, including a need for the development of new inventory methods using remote 
sensing techniques. We identify methods, such as individual tree models, that could be applied to CCF from other complex, 
heterogenous forest systems and propose the wider adoption of remote sensing including information for interested parties 
to get started.

Keywords Remote sensing · Continuous cover forestry · Biomass estimation · Individual tree growth models · Forest 
inventory

Introduction

Continuous Cover Forestry and Its Challenges

As concern for the environment has grown in the past 
decades, the role of forest management in mitigating the 
impacts of climate change and biodiversity losses has 

garnered greater importance. The landmark resolutions for 
a coordinated international move towards sustainable forest 
management in the 1990s, the Rio Forest principles [1] and 
the Helsinki Process [2], promoted a resurgence in interest 
in ‘close-to-nature’ forestry and continuous cover forestry 
(CCF), having initially gained popularity in the early years 
of the twentieth century with concepts such as the ‘Dau-
erwald’ [3–5]. These sustainable silvicultural practices are 
based around a set of five defining principles: partial har-
vesting rather than clear-felling; preferential use of natu-
ral regeneration rather than planting; developing structural 
diversity and spatial variability within forests; and foster-
ing mixed species stands and avoidance of intensive site 
management practices such as soil cultivation, herbicide 
application, and fertiliser input [6–9]. There is a level of 
contention over the use of close-to-nature as a term within 
these practices as the level of human interference within 
these silvicultural systems can be considered far from natural 
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[10–12]. The specific silvicultural systems that fall within 
the definition of CCF include irregular shelterwoods and 
group and single stem selection (terminology follows Mat-
thews 1989). [7, 13, 14].

The driving forces behind the adoption of CCF are the 
many environmental advantages CCF presents over clear 
cutting in traditional uniform even-aged forest monocultures. 
CCF is recommended by the European Union (EU) Biodi-
versity Strategy as a beneficial form of forest management 
for biodiversity [15]. Where transformation to CCF accom-
panies a transition away from monocultures, the increased 
tree species diversity provides additional habitats, as tree 
species richness strongly influences the diversity of forest 
inhabiting species [16]. Increased diversity of tree species 
and genetics are important contributing factors to increased 
resilience, resistance, and capacity for adaptation with 
respect to climate change [17], pathogens, and pests [18].

The persistence of stands between harvests, characteris-
tic of CCF, has been found to improve multi-functionality 
of production forests in Fennoscandia and specifically to 
improve diversity of ectomycorrhizal fungi and herbivo-
rous larvae [19]. CCF also has better retention of late suc-
cessional forest species—especially shade-tolerant under-
story plants and bird species assemblages—than traditional 
clear cutting [20–23]. CCF is thought to be second only to 
retention forestry with respect to habitat preservation [24], 
where retention forestry is itself a form of CCF in which 
dead wood, habitat trees, and trees with larger contribu-
tions to diversity are retained during harvesting [24, 25]. 
The risk and impact of soil erosion, particularly on slopes, 
are also reduced dramatically by the continued presence of 
vegetation, and thus, CCF provides greater soil stability and 
reduces soil losses relative to clear cutting [26]. Addition-
ally, continuous cover reduces the creation of brown edges, 
which are newly exposed edges in neighbouring stands when 
a site is clear-felled, that are less resilient to windthrow and 
particularly susceptible to storms [27]. CCF shows greater 
windthrow stability and resistance to storms than clear-cut 
sites [28, 29], and the increased structural complexity of 
the stands also appears to have a positive impact on wind 
resilience [29].

In addition to the environmental benefits of CCF, there 
are also economic considerations surrounding CCF uptake. 
It can be a smaller financial burden to manage and thin natu-
rally regenerating forest than to establish and tend restocking 
sites after clear cutting [30, 31], though the regular respac-
ing of some prolific species such as Sitka spruce can itself 
incur large costs. Natural regeneration also mitigates much 
of the impact of pests such as the pine weevil [32] which 
can devastate restocked sites owing to the vulnerable and 
attractive nature of the seedlings. The products of CCF can 
also be larger and more valuable than equivalent volumes 
of even-aged forest. For example, a study by Hanewinkel 

[33] found that CCF stands produced many more high-value 
large-sized logs which commanded high timber prices and 
thus increased the profitability of CCF almost twofold over 
even-aged stands. However, it should be noted that to pro-
duce more valuable timber yields, CCF stands require appro-
priate management, which is specialist knowledge that many 
foresters lack and for which there continues to be a signifi-
cant lack of adequate guidance [7••].

Challenges and Knowledge Gaps in CCF

Whether CCF adoption presents an economic advantage 
over clear cutting and even-aged forestry is unclear and 
debated and this is one of many challenges facing the adop-
tion of CCF [7, 31, 34]. From a management perspective, 
CCF can be a considerably more complex procedure than 
traditional clear cutting in even-aged stands and this requires 
specialist knowledge and training for forest managers and 
harvest workers [7••]. Selective harvesting can limit the use 
of mechanised felling and extraction machinery which can 
subsequently drive up costs for labour to manually fell the 
desired trees and extract the timber without significantly dis-
turbing the stand. Additionally, yields for each harvest are 
smaller owing to the very nature of selective harvests; thus, 
it takes a longer time or a greater area to produce yields of 
equivalent volume to clear felling which can disincentivise 
investment and adoption.

The timber industries in the majority of the European 
countries where CCF uptake is increasing are set up to 
receive near-uniform logs from even-aged monocultures 
with little variability within their dimensions and properties. 
However, CCF produces logs of a wider range of diameters 
and potentially different species with each harvest and thin-
ning [7, 35] and this introduces a need for investment into 
new equipment and tools which is only justifiable if the sup-
ply of these forest products is both predictable and reliable.

Estimating standing stocks and future harvest volumes 
in CCF is considerably more difficult than in clear-cutting 
systems as the forest manager must be able to estimate 
the whole volume of the stand in addition to the volume 
of exclusively either the harvested or retained stems. For-
est managers must map which stems are to be harvested, 
to subsequently estimate harvest yield and retained stock. 
This challenge is being addressed by the advent of precision 
forestry—providing greater volumes of detailed informa-
tion facilitating targeted interventions aimed at maximising 
yields of more valuable products—which is inextricably 
linked to developments in remote sensing.

CCF often requires multiple interventions throughout its 
growth to maintain the desired forest structures while, in 
contrast, clear cutting typically requires less active manage-
ment. Typically, in a clear-cutting system, a monoculture 
stand of even age will be planted on a previously cleared 



492 Current Forestry Reports (2023) 9:490–501

1 3

site, maintained during its growth, and harvested upon 
reaching the desired size or age. By contrast, CCF is a multi-
stage cycle of harvests, regeneration, and growth with no 
clear demarcation between the end of one cycle and the 
start of the next. Due to the selective nature of the harvests 
and varied approaches to CCF, harvests can vary in scale 
from large group fellings to individual stems as required. 
To direct harvesting, forest managers may rely upon target 
diameters (maximum diameters) for a species in each stand 
to inform when a harvest is due. Alternatively, there is also 
the reverse-J distribution (J-curve model) for stem diameters 
which is considered an easily identifiable and achievable 
distribution within CCF. This method can be used as an indi-
cator of when to harvest and where to concentrate harvests 
in accordance with which diameter classes are found to be 
in surplus to maintain the desired forest structure [36, 37].

The constant regeneration, management, and recruit-
ment of understory trees provide a challenge for mapping 
inventory as there is a need to record the locations and spe-
cies of trees as well as their development over time. Cur-
rently, inventory protocols for CCF are based on relatively 
labour-intensive manual data collection methodologies [36]. 
Monitoring regeneration is of particular importance as many 
forest managers overestimate the likelihood of regeneration 
at their sites or find the success of regeneration to be less 
predictable than that of planting [37].

Future yield forecasting and growth modelling are cur-
rently significantly under-developed areas of research for 
CCF and for mixed species stands in general. In the UK, 
there are currently no models for CCF forecasting [7••] and 
approaches used in traditional methods of even-aged forestry 
are inapplicable to CCF, e.g. yield class which is an index of 
the potential productivity of even-aged stands of trees [7••].

Remote Sensing and CCF

Existing Research

There is currently a dearth of research exploring the applica-
tion of remote sensing to CCF, despite the general growth 
of interest in both fields separately in recent years. Searches 
for literature to include in this review were conducted using 
Google Scholar and Scopus with search queries compris-
ing keywords used for CCF, the Boolean operator ‘AND’, 
and keywords for remote sensing. The keywords used were 
‘CCF’, ‘Shelterwood’, ‘sustainable forestry’, ‘Dauerwald’, 
or ‘close-to-nature’ plus ‘remote sensing’, ‘LiDAR’, ‘earth 
observation’, ‘laser scanning’, or ‘photogrammetry’. Once 
completed, the returned titles and abstracts of highlighted 
papers were assessed for relevance, and the few relevant 
studies were subsequently reviewed.

There is an obvious need for more work specific to the 
overlap of these subjects to further encourage the adop-
tion of CCF [38–44]. There are a range of remote sensing 
data sources which could be applied to monitoring CCF; 
however, they do not all describe the specific forest stand 
traits. As such, each data source is best suited to monitoring 
specific traits, ALS for height and canopy cover, TLS for 
stem structure, and spectral data to monitor photosynthetic 
capacity.

A selection of key forest metrics and traits and that can 
be measured operationally by different remote sensing data 
sources are explored below, in Table 1. The listed traits and 
remote sensing methods are themselves grouped into catego-
ries with shared characteristics. The ‘inventory data’ traits—
tree location, tree height, and diameter at breast height—are 
all forest traits which are commonly recorded and measured 
as part of forest inventory activities. ‘Structural metrics’ 
describes all measurements of horizontal complexity, such 
as gap fraction, leaf area index, and percentage cover; as 
well as vertical complexity, such as foliage height diversity, 
Gini coefficient of heights, and standard deviation of heights. 
The ‘other CCF traits’ are a catch-all category for remaining 
observable traits of specific interest in CCF. Stem volume is 
included owing to its potential for yield measurement and 
forecasting in uneven-aged stands where traditional mod-
els are not applicable. Similarly, regeneration is included 
as it is a defining characteristic of CCF and the capacity to 
monitor regeneration also has implications for yield meas-
urement and forecasting. Tree species is of interest as CCF 
can include species mixtures, and so remote identification 
of species is necessary for stock mapping and monitoring 
successional development of the forest.

The remote sensing methods, presented in Table 1, are 
separated by whether they generate 3-dimensional point 
cloud or 2-dimensional image data. Within the 3-dimen-
sional point cloud generating methods, there are three laser 
scanning methods and two photogrammetric methods. Pho-
togrammetric data typically also captures optical data owing 
to the use of optical (camera) sensors for data collection, 
and it is possible to generate photogrammetric point clouds 
with images from outside the visible spectrum; however, 
it is uncommon. The ‘optical’ 2-dimensional image–based 
remote sensing method includes a range of methods such as 
multi-spectral and hyperspectral imaging in addition to spe-
cialist imaging methods such as hemispherical photography 
used in canopy cover measurement [45].

Relevant remote sensing research on CCF, Dauerwald, 
and shelterwood systems has shown that it may be possible 
to both monitor the transformation of a traditional stand to 
CCF and monitor the progression of growth and the associ-
ated changes in forest structural type that can be applied 
to describe CCF stands. At the individual tree level, Ben-
net et al. [46] describe a novel method of using aerial data 
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from photogrammetry and ALS to detect individual trees 
with improved detection rates among smaller diameter trees 
than previous methods, which makes the model applicable 
to monitoring transformation to CCF. This model relies 
upon a Bayesian optimisation approach to the parameteri-
sation of the tree detection algorithm; by utilising external 
datasets they eliminate the requirement for site specific 
allometric models derived from field data which can also 
reduce required fieldwork [46]. At the stand level, Stiers 
et al. [5] used TLS to measure structural complexity within 
forest and proposed a novel index of structural complex-
ity. This index quantifies stands by their structural type and 
serves as an indicator of how close a stand is to the CCF 
‘target structure’. This work has strong similarities to the 
work of Valbuena et al. who instead used ALS to classify 
the forest structural types of a stand [49]. Their classification 
was based upon two more widely used measures of forest 
structure: Lorenz asymmetry, where greater asymmetry is 
associated with the idealised ‘target structure’ (characterised 
by the reverse-J shape), and the Gini coefficient, a measure 
of inequality in size (DBH). By integrating these classifica-
tions into forest structural types as a guideline, forest man-
agers could make informed decisions about when to harvest 
within large regions of forest without the need for extensive 

fieldwork. Annually updated maps of structural types could 
be used to monitor important processes within CCF systems 
and inform managers of where regeneration and recruitment 
are occurring.

Remote Sensing for CCF Inventory Measurement 
and Stock Mapping

Inventory protocols for CCF currently rely upon labour- and 
time-intensive fieldwork for data collection with three varia-
tions of commonly used protocols across a handful of plots 
(radii varying from 8 to 15 m depending on protocol) taking 
one operator a whole working day and complete enumera-
tion of plots taking a day for two operators [90]. By con-
trast, remote sensing can be used to completely enumerate a 
plot [91] and collect all protocol relevant data with greater 
efficiency resulting in faster, more cost-effective data col-
lection [58]. Studies have shown that using terrestrial laser 
scanning (TLS) and mobile laser scanning (MLS), it is pos-
sible to detect and segment up to 100% of the trees within 
a plot [53] and 97% within 20-m radius of a TLS scanning 
position, although this falls to 75% at a 40-m radius due to 
occlusions and decreasing point density [90, 92]. Combining 
data from TLS multi-scans or using MLS from less than 20 

Table 1   Remote sensing data sources and the types of information they can be used to observe operationally in CCF

Inventory Data Structural Metrics Other CCF Traits

Tree 
loca�on

Tree 
height

Diameter 
at breast 

height

Ver�cal 
structural 

complexity

Horizontal 
structural 

complexity

Stem 
Volume

Regenera�on
Tree 

Species

3-Dimensional 
Point Cloud
Data

Aerial Laser 
Scanning (ALS)

✔ [46-48] ✔ [49-53] X ✔ [44,49,50,54] ✔ [47,54-56] ✔ [51] ✔ [50,57] # [58]

Terrestrial Laser 
Scanning (TLS)

✔ [59-61] ~ [53,61] ✔ [53,59-
62]

✔ [61,63-65] ✔ [63,66,67]
✔ [59,
68, 69]

✔ [59,81] # [70,71]

Mobile Laser 
Scanning (MLS)

✔ [53,60, 
72-74]

~ [53,73-
75]

✔ [53,60, 
72-76]

✔ [77] ✔ [77]
✔ [72, 

73]
✔ [72] # [78]

Aerial 
Photogrammetry

✔ [47]
✔ [47, 
79,80]

X X ✔ [47,48]
✔

[79,80]
~ [81] [82]

Below-canopy 
photogrammetry 

✔ [83,84] X ✔ [83-85] ~ [83,84] X X ✔ [83,84] X

2-Dimensional 
Image Data

Op�cal (RGB, 
mul�spectral, 
hyperspectral)

✔ [57,86,
87]

X X ✔ [88] ✔ [48] X X

✔
[51,52,57,
82,86,87,

89]

✔ represents information that can be reliably and directly extracted using this remote sensing data source, ~ represents information which may be 
extracted using the stated data source but can be subject to complications such as occlusion which may impact or reduce reliability, # represents 
information which has only been derived from the outputs of the stated data source using machine learning methods, and X indicates that we did 
not find references that showed this information could be directly and reliably extracted with the stated data source.
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m can mitigate occlusion-based inaccuracy. Consequently, 
MLS data from within the plots collected with a handheld 
or backpack-mounted platform would be expected to suffer 
from less occlusion–based error than data from a vehicle 
mounted platform on a forest track, such as in Bienert et al. 
[60].

There is consensus in the literature that both TLS and 
MLS can be used for the accurate collection of inventory 
data such as DBH and height. Donager et al. found that TLS 
had an RMSE of 7.2% for DBH and 2.7% for height, and 
in the same study, MLS was found to have an RMSE of 
8.1% for DBH and 1.6% for height [53]. Hartley et al. simi-
larly found that for MLS-derived DBH and height measure-
ments, they achieved RMSE values of 5.4% and 3.0%, with 
R2 values of 0.99 and 0.94 respectively [74]. The accuracies 
achieved in these studies are very high and for the height 
measurements are more accurate than those obtainable from 
the ground with traditional field methods [93]. It can thus be 
argued that even if there is a potential decrease in accuracy 
relative to fieldwork, it is likely to be extremely small and 
can be offset against the speed and efficiency with which 
data can be collected. It is worth noting that ground-based 
LiDAR systems can cost tens of thousands of dollars and, 
while this can be offset against the reduced costs for the 
labour brought about by greater data collection efficiency, it 
may not always be financially beneficial.

In addition to improving the efficiency of data collec-
tions in existing inventory protocols, there is the potential 
for the development of novel remote sensing–specific pro-
tocols. With remote sensing, it is possible to calculate volu-
metric measurements of stands or individual trees directly 
from point clouds [68, 69]. Direct measurement of volumes 
may allow for estimates with higher accuracies and lower 
uncertainties. Lowering uncertainty in volume estimates can 
directly improve sales prices and profits, where the law of 
conservativeness is used in pricing, as is particularly com-
mon in forest products sold for pulp or fuel and the sale of 
logging rights.

Tree identification and diameter measurement can be 
approached with remote sensing from either above or below 
the canopy. Aerial datasets can be used to map trees quite 
accurately within the overstory as there are many publicly 
available solutions with tools for tree identification and 
crown delineation that make use of optical and LiDAR data 
[46–48]. Tree identification within the understory is also 
possible from high point density aerial LiDAR datasets. 
However, in the context of CCF, and owing to occlusion, 
the precision drops off with smaller trees such as those 
from regeneration [50]. Below-canopy remote sensing 
techniques—such as TLS, MLS, and photogrammetry—are 
better suited to the accurate mapping of regeneration [59, 
72, 82–84], and it has been shown in irregular tropical for-
ests that MLS can identify small-diameter understory trees 

with far greater geospatial positioning accuracy, 6 cm, than 
methods using aerial data, which had 6-m positioning error 
[91]. The development of tree detection algorithms for use 
with below-canopy point clouds is happening rapidly, and 
there now are several solutions available which can accu-
rately locate, identify, and measure trees and saplings from 
point cloud data [95–98]. In addition to tree identification, 
it is also possible to measure metrics such as the straight-
ness of trees and even the calculation of lengths and sizes of 
logs that can be harvested from below-canopy point clouds 
[98–100]. Trunk straightness and merchantable log estima-
tion from the integration of remote sensing technology into 
CCF inventory protocols could potentially allow forest man-
agers to tailor harvests to meet market demands or to list 
their stocks for sale in advance more accurately.

There continue to be challenges in remotely identifying 
tree species, as LiDAR data alone appears to be insufficient 
for species delineation. Current literature suggests that it is 
possible with the use of deep learning and tree species clas-
sification systems and optical remote sensing techniques, 
and there is evidence that channels in these algorithms can 
be substituted with LiDAR metrics [101]. These methods 
could be applied to CCF stands for stock mapping, mapping 
of inventory with species distributions and abundance [57, 
86, 87, 89, 94]; however, for aerial data, occlusion below 
dense canopy would limit reliability and for terrestrial data, 
the extent would be limited. Modern ALS methods with 
laser scanning at angles close to nadir can improve canopy 
penetration though dense canopy continues to obscure the 
understory and the close to nadir angled pulses are less likely 
to reflect off the vertical stem surfaces.

Remote Sensing for CCF Yield Modelling 
and Forecasting

Beyond improving data collection for existing inventory 
protocols, remote sensing could be used for the develop-
ment of new models estimating current biomass yields. 
Biomass estimation is typically performed with single 
variable models, such as the model by Asner and Mascaro 
[102] which uses top of canopy height to predict biomass 
in each area. However, the variables used in these mod-
els cannot describe the irregular horizontal and vertical 
structure of CCF, as such there is a need for models with 
variables that better describe the structure of CCF. Remote 
sensing–informed multivariate models are already being 
applied to similarly complex irregular forest systems, such 
as selectively logged tropical forests, and thus, it may be 
prudent to apply similar approaches to CCF. Various 
approaches have been proposed that involve other non-
height morphological traits of forest ecosystems [43•]—
often one of either cover or vertical structural complexi-
ties—to make a biomass prediction that would be better 
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applicable to CCF systems [44, 103–106]. One example 
of note is the ‘ecosystem morphological trait’ (EMT) 
framework proposed by Valbuena et al. which is intended 
to be applicable across a range of diverse and complex 
ecosystems and across multiple sources of 3D data [43•]. 
The proposed EMT framework posits that all forest can be 
fully characterised through use of measures for all three 
morphological traits of height, horizontal structural com-
plexity, and vertical structural complexity.

In addition to estimating current biomass, there is also 
the need to predict future biomass yields which requires 
that biomass estimations be combined with growth models 
to provide estimates of future biomass. Observed trends of 
growth are an effective way to create estimates of future 
growth by simply projecting past patterns of growth for-
ward. The location specificity of observed trends makes 
them particularly appealing tools for growth forecasting; 
however, such trends are limited by their specificity to 
current and historical climatic conditions. Multi-tempo-
ral data for tree heights and diameters can be modelled 
to find trends, and these can be projected forward using 
individual tree growth models, at both the tree and stand 
levels. Such multi-temporal data can be used to train indi-
vidual tree growth models which can be used to simulate 
growth of individual trees within a stand. Individual tree 
growth models have historically been successfully applied 
to traditional uniform age monocultures to model and 
identify dominant and subdominant trees and responses 
to management activities such as thinning [107, 108]. The 
most recent form of the Canadian tree and stand simula-
tor (TASSIII) can model complex systems with multiple 
species (a limited number for now but including several 
key timber species) and spatial heterogeneity and thus 
could be suitable for use in CCF [108]. An earlier itera-
tion of TASS was applied to CCF in the UK by Suarez 
and found to be useful for modelling the growth of trees 
in CCF stands [109] and thus with the improvements made 
in the newer TASSIII could render it a valuable tool for 
CCF forecasting.

There are other individual tree models that could also 
be applied to CCF using data from remote sensing sources, 
such as CAPSIS which is already used to assess the sus-
tainability of harvests by predicting the impacts of har-
vests on the future growth of trees in the stands [110]. 
Such insights within CCF could allow forest managers to 
predict the impacts of management and harvests on a CCF 
stand. Further development of these predictive tools could 
inform harvesting approaches and potentially allow man-
agers to influence the future forest products as desired, 
prioritising the retention of slow growing, high-density 
timber or alternatively prioritising harvests which cre-
ate conditions which favour faster growing, high-volume 
wood for fuel or pulp.

Practicalities of Remote Sensing

To further develop remote sensing tools for CCF, there is 
a need for a greater appreciation of the potential benefits 
of remote sensing among foresters, with greater adoption 
and development of remote sensing techniques for inventory 
assessment and monitoring. Promoting adoption of remote 
sensing will require opening communication between exist-
ing remote sensing practitioners and interested parties, par-
ticularly forest managers, and thus, the intent of this section 
is to introduce the practicalities of remote sensing.

Getting started with remote sensing can seem technically 
daunting; however, it does not need to be a challenge; there 
are multiple ways to approach data collection and process-
ing, varying in their required investment of time and money 
and from relatively accessible to requiring programming 
skills.

Below is a list of data acquisition approaches in an order 
indicative of typical associated costs per unit area, informed 
by the combined experience of the authors, and descending 
from most to least expensive.

1. Inventory fieldwork requires operators to travel to the 
plots and collect data manually which is a relatively slow 
and inefficient method with low spatial coverage.

2. MLS and TLS require a relatively expensive, specialist 
equipment and an operator to attend each of the plots 
and collect the data. However, this method is consider-
ably faster than conventional inventory fieldwork allow-
ing for greater spatial coverage in a day [58, 90, 91].

3. Unmanned aerial vehicle (UAV)–mounted ALS requires 
an unmanned craft to be flown over a forest at a rela-
tively low altitude collecting high point density data. 
UAV-mountable laser scanners vary in price but tend to 
be relatively expensive; however, they are often com-
mercially available. Additional costs are the UAV, which 
are becoming relatively affordable for the required pay-
load capacities and an operator. Spatial coverage and 
data collection speed are generally greater than those of 
ground-based techniques and can vary greatly between 
quadcopters and fixed-wing UAVs, the latter being capa-
ble of larger-scale data collections owing to longer flight 
times.

4. UAV-mounted photogrammetry has many of the same 
requirements as UAV-mounted ALS; however, the costs 
for the UAV and sensors are typically lower. Photogram-
metry coverage can be similar to ALS; however, canopy 
penetration is often greatly reduced.

5. Manned aerial vehicle–mounted ALS requires a plane to 
be flown over a forest and tends to be performed by third 
parties that survey areas of interest with contractually 
stipulated minimum point densities. These companies 
either perform surveys of their own and sell access to 
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data they have already collected or may also be commis-
sioned to survey specific areas. This method can be used 
to collect data over a whole forest in a single survey and 
thus can be extremely cost-effective when a large spatial 
coverage is required.

6. Publicly available ALS datasets are provided by some 
government agencies or bodies at no or low cost. A sig-
nificant disadvantage of using public datasets is that 
there is no control of spatial and temporal coverage, 
there may be limited data for some areas, and the period 
between surveys may be several years These datasets 
also tend to have low point densities due to the high 
altitudes; these ALS datasets are collected from which 
can be particularly limiting for CCF due to the vertical 
complexity below the canopy.

Examples include the UK (data.gov.uk), Finland (maan-
mittauslaitos.fi), Denmark (download.kortforsyningen.dk), 
Spain (centrodedescargas.cnig.es), and the Netherlands 
(lists.osgeo.org).

Most of the discussed methods of remote sensing data 
acquisition produce point clouds which can be processed 
directly to extract inventory information; photogrammetry 
first requires conversion of photographs into a point cloud. 
Point clouds yielded from photogrammetry are not directly 
equivalent to point clouds yielded from laser scanning pri-
marily due to lower vegetation penetration, and this can 
restrict their utility, as outlined in Table 1. Solutions for 
photogrammetric point cloud generation are available within 
suites of commercially available tools for data acquisition, 
such as the Pix4D suite, as standalone commercial packages 
for point cloud generation, like Agisoft Metashape, and even 
as open-source solutions which are freely available to install, 
such as WebODM.

Processing point clouds to extract inventory informa-
tion can be performed in multiple programming languages. 
However, some of the most comprehensive packages 
appear in R where lidR [111] is the first choice of many for 
processing aerial data. For terrestrial data, there are a range 
of packages with different utilities, such as TreeLS [97], 
rTLS [112], and FORTLS [113]; some such as ITSMme 
[98] and aRchi [114] even include tools to produce quan-
titative structure models of trees. Additionally, there is 
soon to be a public database of publicly available terres-
trial point cloud processing solutions for forestry including 
information on their function and guidance on their use. It 
is to be an output of the 3DForEcoTech COST action and 
was publicised at the Silvilaser conference in 2023 [115, 
116]. For those not wishing to use programming, there are 
standalone software solutions available such as LiDAR360, 
a commercial solution produced by GreenValley Interna-
tional, which has aerial and terrestrial point cloud–specific 
forestry packages available; LAStools, a licensable library 

of executables specific to various processing functions; 
CloudCompare, an open-source solution with forestry-
specific tools available and for which public users and 
researchers often develop add-ons; and FUSION/LDV, a 
freely available software for point cloud data analysis and 
visualisation produced by the United States Department of 
Agriculture (USDA) Forest Service.

Conclusion

As we have explored, it is evident that there are a host of 
ways in which remote sensing could be used to address the 
challenges CCF faces for monitoring and management. It 
is our belief that there needs to be a concerted effort to 
further research the ways remote sensing can be applied 
to CCF. Remote sensing can monitor several parameters 
relevant to CCF, as shown in Table 1, and thus, it is simply 
a matter of identifying how monitoring these parameters 
can inform our management and understanding of CCF 
that is required. As forests are increasingly being trans-
formed from even-aged stands to irregular CCF systems, 
there is increasing opportunity to make use of remote 
sensing in the monitoring and management of the changes 
in stand structure that characterise the transformation to 
CCF. Methods such as those already presented by Bennet 
et al., Stiers et al., and Valbuena et al. [5, 46, 49] will be 
important contributors to the success of these efforts. Mod-
els, such as TASIII and CAPSIS, will similarly become 
more important over time with the increased availability 
of multi-temporal CCF datasets allowing the impacts of 
management and environmental conditions to be seen; 
providing the data required to inform more accurate yield 
forecasting models.

The accuracy and precision of remote sensing methods 
have dramatically improved in the years since CCF began 
to gain widespread traction and adoption; thus, where CCF 
historically represented a challenging and complex system 
to study, it is now well within the capabilities of the technol-
ogy and the limitation has now become the lack of research 
into applications of remote sensing for CCF. We invite fur-
ther research into the topics listed below exploring how the 
application of remote sensing can improve the management 
of CCF so that it might become a more easily adopted and 
managed silvicultural approach.

Topics for further research:

•Development of remote sensing supplemented inventory 
protocols for improved CCF management
•Stem volume estimation from below-canopy point 
clouds to improve estimates of standing stocks
•Stem segmentation and marketable timber estimation 
from below-canopy point clouds
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•Application of individual tree growth modelling 
approaches to CCF yield estimation and forecasting
•Use of multi-temporal remote sensing datasets to 
develop methods to produce spatially localised growth 
trends and yield forecasts for CCF
•Improving regeneration prescriptions from localised 
information about canopy gaps and competition

Author Contributions J.St. wrote the main body of the manuscript. 
J.St., J.Su. and R.V. contributed to the table. W.M. contributed to the 
introduction. All authors reviewed the manuscript.

Funding Mr Stoddart received funding from the Knowledge Economy 
Skills Scholarships. Knowledge Economy Skills Scholarships (KESS 
2) is a pan-Wales higher level skills initiative led by Bangor University 
on behalf of the HE sector in Wales. It is part funded by the Welsh 
Government’s European Social Fund (ESF) convergence programme 
for West Wales and the Valleys.

Declarations 

Conflict of Interest The authors declare that they have no competing 
interests.

Competing Interests The authors declare no competing interests.

Human and Animal Rights and Informed Consent This article does not 
contain any studies with human or animal subjects performed by any 
of the authors.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Papers of particular interest, published recently, have 
been highlighted as:  
• Of importance  
•• Of major importance

 1. United Nations. United Nations convention on biological diver-
sity. New York, USA. 1992a [also available at https:// www. cbd. 
int/ doc/ legal/ cbd- en. pdf]

 2. MCPFE. Ministerial conference on the protection of forests 
in Europe, 16–17 June 1993 in Helsinki Documents; Ministry 

of Agriculture and Forestry: Helsinki, Finland, 1993; ISBN 
951–47–8283–6.

 3. Helliwell, R. Dauerwald. Forestry, 1997 70 https:// doi. org/ 10. 
1093/ fores try/ 70.4. 375.

 4. Pommerening, A.; Murphy, S.T. A review of the history, defi-
nitions and methods of continuous cover forestry with special 
attention to afforestation and restocking. Forestry: An Interna-
tional Journal of Forest Research, 2004 77(1).

 5. Stiers M, Annighofer P, Seidel D, Willim K, Neudam L, Ammer 
C. Quantifying the target state of forest stands managed with the 
continuous cover approach – revisiting Moller’s “Dauerwald” 
concept after 100 years. Trees For People. 2020;1: 100004. 
https:// doi. org/ 10. 1016/j. tfp. 2020. 100004.

 6. Puettmann KJ, Wilson SM, Baker SC, et al. Silvicultural alterna-
tives to conventional even-aged forest management - what limits 
global adoption? For Ecosyst. 2015;2:8. https:// doi. org/ 10. 1186/ 
s40663- 015- 0031-x.

 7. ••Mason, W.L.; Diaci, J.; Carvalho, J.; Valkonen, S. Con-
tinuous cover forestry in Europe: usage and the knowledge 
gaps and challenges to wider adoption. Forestry: An Interna-
tional Journal of Forest Research, 2022 95(1) https:// doi. org/ 
10. 1093/ fores try/ cpab0 38 A comprehensive review of CCF; 
important both for highlighting challenges and illustrating 
the lack of remote sensing application in this area through 
the absence of inclusion.

 8. Pommerening, A.; Grabarnik, P. Individual-based methods in 
forest ecology and management. Springer Nature, Switzerland 
2019.

 9. Krumm F, Lachat T, Schuck A, Bütler R, Kraus D. Martelo-
scopes as training tools for the retention and conservation of 
habitat trees in forests. Schweiz Z Forstwes. 2019;170:86–93.

 10. Çolak A, Rotherham I, Çalikoglu M. Combining ‘natural-
ness concepts’ with close-to-nature silviculture. Forstwissen-
schaftliches Centralblatt. 2003;122:421–31.

 11. Morgan, P. The case for continuous cover forestry. The For-
estry & Timber News Journal, 2015 p. 19–20.

 12. O’Hara KL. What is close-to-nature silviculture in a changing 
world? Forestry. 2016;89:1–6.

 13. Schütz, J.P.; Pukkala, T.; Donoso, P.J.; von Gadow, K. Histori-
cal emergence and current application of CCF. In Continuous 
cover forestry. T., Pukkala, K., von Gadow (eds.). Springer 
Science, 2012. pp. 1–28.

 14. Brang P, Spathelf P, Larsen JB, Bauhus J, Boncina A, Chauvin 
C, et al. Suitability of close-to-nature silviculture for adapt-
ing temperate European forests to climate change. Forestry. 
2014;87:492–503.

 15. European Commission. EU biodiversity strategy for 2030: 
bringing nature back into our lives. 2020 https:// ec. europa. 
eu/ envir onment/ strat egy/ biodi versi ty- strat egy- 2030_ en. 
Accessed: 03/11/2022.

 16. Ampoorter, E.; Barbaro, L.; Jactel, H.; Baeten, L.; Boberg, 
J.; Carnol, M.; Castagneyrol, B.; Charbonnier, Y.; Dawud, 
S.M.; Deconchat, M.; Smedt, P.D.; Wandeler, H.D.; Guyot, 
V.; Hättenschwiler, S.; Joly, F.-X.; Koricheva, J.; Milligan, H.; 
Muys, B.; Nguyen, D.; Ratcliffe, S.; Raulund-Rasmussen, K.; 
Scherer-Lorenzen, M.; van der Plas, F.; Keer, J.V.; Verheyen, 
K.; Vesterdal, L.; Allan, E. Tree diversity 2020.

 17. Jönsson AM, Lagergren F, Smith B. Forest management facing 
climate change - an ecosystem model analysis of adaptation 
strategies. Mitig Adapt Strateg Glob Change. 2015;20:201–20. 
https:// doi. org/ 10. 1007/ s11027- 013- 9487-6.

 18. Thompson, I.; Mackey, B.; McNulty, S.; Mosseler, A. Forest 
resilience, biodiversity, and climate change. A synthesis of the 
biodiversity/resilience/stability relationship in forest ecosys-
tems. Secretariat of the Convention on Biological Diversity, 
Montreal. Technical Series 2009 no. 43, 67 pages.

http://creativecommons.org/licenses/by/4.0/
https://www.cbd.int/doc/legal/cbd-en.pdf
https://www.cbd.int/doc/legal/cbd-en.pdf
https://doi.org/10.1093/forestry/70.4.375.
https://doi.org/10.1093/forestry/70.4.375.
https://doi.org/10.1016/j.tfp.2020.100004
https://doi.org/10.1186/s40663-015-0031-x
https://doi.org/10.1186/s40663-015-0031-x
https://doi.org/10.1093/forestry/cpab038
https://doi.org/10.1093/forestry/cpab038
https://ec.europa.eu/environment/strategy/biodiversity-strategy-2030_en
https://ec.europa.eu/environment/strategy/biodiversity-strategy-2030_en
https://doi.org/10.1007/s11027-013-9487-6


498 Current Forestry Reports (2023) 9:490–501

1 3

 19. Peura M, Burgas D, Eyvindson K, Repo A, Mönkkönen M. 
Continuous cover forestry is a cost-efficient tool to increase 
multifunctionality of boreal production forests in Fennoscan-
dia. Biol Conserv. 2018;217:104–12. https:// doi. org/ 10. 1016/j. 
biocon. 2017. 10. 018.

 20. Kuuluvainen T, Tahvonen O, Aakala T. Even-aged and une-
ven-aged forest management in boreal Fennoscandia: a review. 
Ambio. 2012;41(7):720–37.

 21. Calladine J, Bray J, Broome A, Fuller RJ. Comparison of 
breeding bird assemblages in conifer plantations managed by 
continuous cover forestry and clearfelling. For Ecol Manage. 
2015;344:20–9. https:// doi. org/ 10. 1016/j. foreco. 2015. 02. 017.

 22. Alder DC, Fuller RJ, Marsden SJ. Implications of transforma-
tion to irregular silviculture for woodland birds: a stand wise 
comparison in an English broadleaf woodland. For Ecol Man-
age. 2018;422:69–78. https:// doi. org/ 10. 1016/j. foreco. 2018. 
04. 004.

 23. Alder, DC.; Edwards, B.; Poore, A.; Norrey, J.; Marsden, SJ. 
Irregular silviculture and stand structural effects on the plant 
community in an ancient semi-natural woodland. Forest Ecology 
and Management 2023 527. [https:// doi. org/ 10. 1016/j. foreco. 
2022. 120622] (10. 1016/j. fore

 24. Gustafsson L, Bauhus J, Asbeck T, et al. Retention as an inte-
grated biodiversity conservation approach for continuous-cover 
forestry in Europe. Ambio. 2020;49:85–97. https:// doi. org/ 10. 
1007/ s13280- 019- 01190-1.

 25. Bauhus, J.; Puettmann, K.; Kuehne, C. Close-to-nature forest 
management in Europe: does it support complexity and adapt-
ability of forest ecosystems? In Managing forests as complex 
adaptive systems: Building resilience to the challenge of global 
change, ed. K. Puettmann, C. Messier, and K.D. Coates, 2013. 
p. 187–213.

 26. Guerra CA, Maes J, Geijzendorffer I, Metzger MJ. An assess-
ment of soil erosion prevention by vegetation in Mediterranean 
Europe: current trends of ecosystem service provision. Ecol Ind. 
2016;60:213–22. https:// doi. org/ 10. 1016/j. ecoli nd. 2015. 06. 043.

 27. Dhubháin, Á. N.; Farrelly, N. “Understanding and managing 
windthrow.” COFORD Connects, Silviculture/Management No. 
23. Department of Agriculture, Food and the Marine, Dublin 2018.

 28. Hahn T, Eggers J, Subramanian N, Caicoya AT, Uhl E, Snäll 
T. Specified resilience value of alternative forest management 
adaptations to storms. Scand J For Res. 2021;36(7–8):585–97. 
https:// doi. org/ 10. 1080/ 02827 581. 2021. 19881 40.

 29. Pukkala T, Laiho O, Lähde E. Continuous cover management 
reduces wind damage. For Ecol Manage. 2016;372:120–7. 
https:// doi. org/ 10. 1016/j. foreco. 2016. 04. 014.

 30. Hale, S.E. Managing light to enable natural regeneration in Brit-
ish conifer forests (PDF-100K). Information Note 63. Forestry 
Commission, Edinburgh. 2004 pp. 6.

 31. Knoke, T. The economics of continuous cover forestry. In: Puk-
kala, Timo, and Klaus von Gadow (Eds.). Continuous cover 
forestry. 2nd ed. Dordrecht: Springer. 2011 pp. 167–193.

 32. Willoughby, I.; Moore, R.; Nisbet, T. Interim guidance on the 
integrated management of Hylobius abietis in UK forestry 2017.

 33. Hanewinkel M. Financial results of selection forest enterprises 
with high proportions of valuable timber – results of an empiri-
cal study and their application. Schweiz Z Forstwes (Swiss For-
estry Journal). 2001;152(8):343–9.

 34. Tahvonen O, Rämö J. Optimality of continuous cover vs. 
clear-cut regimes in managing forest resources. Can J For Res. 
2016;46:891–901.

 35. Hertog, I.M.; Brogaard, S.; Krause, T. Barriers to expanding 
continuous cover forestry in Sweden for delivering multiple eco-
system services. Ecosystem Services 2022 53. https:// doi. org/ 10. 
1016/j. ecoser. 2021. 101392

 36. Kerr, G.; Mason, B.; Boswell, R.; Pommerening, A. Monitoring 
the transformation of even-aged stands to continuous cover man-
agement. Forestry Commission Information Note 45. Forestry 
Commission, Edinburgh 2002.

 37. Kerr G, Stokes V, Peace A, Wylder B. Prediction of conifer 
natural regeneration in a “data-poor” environment. Scott For. 
2011;65:28–36.

 38. Zawila-Niedzwiecki, T.; Wisniewska, E. Continuous cover for-
estry: new challenges for remote sensing. In: von Gadow, K., 
Nagel, J., Saborowski, J. (Eds.). Continuous cover forestry. Man-
aging forest ecosystems, vol 4. Springer, Dordrecht. 2002 https:// 
doi. org/ 10. 1007/ 978- 94- 015- 9886-6_3

 39. •Larsen, J.B.; Angelstam, P.; Bauhus, J.; Carvalho, J.F.; Diaci, 
J.; Dobrowolska, D.; Gazda, A.; Gustafsson, L.; Krumm, F.; 
Knoke, T.; Konczal, A.; Kuuluvainen, T.; Mason, B.; Motta, 
R.; Pötzelsberger, E.; Rigling, A.; Schuck, A. Closer-to-nature 
forest management. From Science to Policy 12. European For-
est Institute. 2022 https:// doi. org/ 10. 36333/ fs12 A compre-
hensive report of the current state of CCF in Europe with 
a strong evaluation of the barriers to the implementation 
of CCF.

 40. Coops NC, et al. A forest structure habitat index based on air-
borne laser scanning data. Ecol Ind. 2016;67:346–57. https:// doi. 
org/ 10. 1016/j. ecoli nd. 2016. 02. 057.

 41. Schneider FD, Morsdorf F, Schmid B, Petchey OL, Hueni A, 
Schimel DS, Schaepman ME. Mapping functional diversity 
from remotely sensed morphological and physiological for-
est traits. Nat Commun. 2017;8:1441. https:// doi. org/ 10. 1038/ 
s41467- 017- 01530-3.

 42. Fahey RT, Atkins JW, Gough CM, Hardiman BS, Nave LE, Tal-
lant JM, Nadehoffer KJ, Vogel C, Scheuermann CM, Stuart-
Haëntjens E, Haber LT, Fotis AT, Ricart R, Curtis PS. Defining 
a spectrum of integrative trait-based vegetation canopy structural 
types. Ecol Lett. 2019;22:2049–59. https:// doi. org/ 10. 1111/ ele. 
13388.

 43. •Valbuena R, O’Connor B, Zellweger F, Simonson W, 
Vihervaara P, Maltamo M, Silva CA, Almeida DRA, Danks F, 
Morsdorf F, Chirici G, Lucas R, Coomes DA, Coops NC. Stand-
ardizing ecosystem morphological traits from 3D information 
sources. Trends Ecol Evol. 2020;35(8):656–67. https:// doi. org/ 
10. 1016/j. tree. 2020. 03. 006. A proposed approach to model-
ling ecosystems with remote sensing–derived traits across a 
range of complex environments.

 44. Stoddart J, de Almeida DRA, Silva CA, Görgens EB, Keller M, 
Valbuena R. A conceptual model for detecting small-scale forest 
disturbances based on ecosystem morphological traits. Remote 
Sens. 2022;14:933. https:// doi. org/ 10. 3390/ rs140 40933.

 45. Díaz GM. Optimizing forest canopy structure retrieval from 
smartphone-based hemispherical photography. Methods Ecol 
Evol. 2023;14:875–84. https:// doi. org/ 10. 1111/ 2041- 210X. 
14059.

 46. Bennett G, Hardy A, Bunting P, Morgan P, Fricker A. A trans-
ferable and effective method for monitoring continuous cover 
forestry at the individual tree level using UAVs. Remote Sensing. 
2020;12(13):2115. https:// doi. org/ 10. 3390/ rs121 32115.

 47. Yancho JMM, Coops NC, Tompalski P, Goodbody TRH, Plow-
right A. Fine-scale spatial and spectral clustering of UAV-
acquired digital aerial photogrammetric (DAP) point clouds 
for individual tree crown detection and segmentation. IEEE 
Journal of Selected Topics in Applied Earth Observations and 
Remote Sensing. 2019;12(10):4131–48. https:// doi. org/ 10. 1109/ 
JSTARS. 2019. 29428 11.

 48. Li L, Chen J, Mu X, Li W, Yan G, Xie D, Zhang W. Quan-
tifying understory and overstory vegetation cover using UAV-
based RGB imagery in forest plantation. Remote Sensing. 
2020;12(2):298. https:// doi. org/ 10. 3390/ rs120 20298.

https://doi.org/10.1016/j.biocon.2017.10.018
https://doi.org/10.1016/j.biocon.2017.10.018
https://doi.org/10.1016/j.foreco.2015.02.017
https://doi.org/10.1016/j.foreco.2018.04.004
https://doi.org/10.1016/j.foreco.2018.04.004
https://doi.org/10.1016/j.foreco.2022.120622](10.1016/j.fore
https://doi.org/10.1016/j.foreco.2022.120622](10.1016/j.fore
https://doi.org/10.1007/s13280-019-01190-1
https://doi.org/10.1007/s13280-019-01190-1
https://doi.org/10.1016/j.ecolind.2015.06.043
https://doi.org/10.1080/02827581.2021.1988140
https://doi.org/10.1016/j.foreco.2016.04.014
https://doi.org/10.1016/j.ecoser.2021.101392
https://doi.org/10.1016/j.ecoser.2021.101392
https://doi.org/10.1007/978-94-015-9886-6_3
https://doi.org/10.1007/978-94-015-9886-6_3
https://doi.org/10.36333/fs12
https://doi.org/10.1016/j.ecolind.2016.02.057
https://doi.org/10.1016/j.ecolind.2016.02.057
https://doi.org/10.1038/s41467-017-01530-3
https://doi.org/10.1038/s41467-017-01530-3
https://doi.org/10.1111/ele.13388
https://doi.org/10.1111/ele.13388
https://doi.org/10.1016/j.tree.2020.03.006
https://doi.org/10.1016/j.tree.2020.03.006
https://doi.org/10.3390/rs14040933
https://doi.org/10.1111/2041-210X.14059
https://doi.org/10.1111/2041-210X.14059
https://doi.org/10.3390/rs12132115
https://doi.org/10.1109/JSTARS.2019.2942811
https://doi.org/10.1109/JSTARS.2019.2942811
https://doi.org/10.3390/rs12020298


499Current Forestry Reports (2023) 9:490–501 

1 3

 49. Valbuena R, Packalén P, Mehtätalo L, García-Abril A, Mal-
tamo M. Characterizing forest structural types and Shelterwood 
dynamics from Lorenz-based indicators predicted by airborne 
laser scanning. Can J Forest Res. 2013;43(11):1063–74.

 50. Hamraz H, Contreras MA, Zhang J. Forest understory trees can 
be segmented accurately within sufficiently dense airborne laser 
scanning point clouds. Sci Rep. 2017;7:6770. https:// doi. org/ 10. 
1038/ s41598- 017- 07200-0.

 51. Kukkonen M, Maltamo M, Korhonen L, Packalen P. Comparison 
of multispectral airborne laser scanning and stereo matching of 
aerial images as a single sensor solution to forest inventories by 
tree species. Remote Sens Environ. 2019;231: 111208. https:// 
doi. org/ 10. 1016/j. rse. 2019. 05. 027.

 52. Sačkov I, Sedliak M, Kulla L, Bucha T. Inventory of close-to-
nature forests based on the combination of airborne LiDAR data 
and aerial multispectral images using a single-tree approach. 
Forests. 2017;8:467. https:// doi. org/ 10. 3390/ f8120 467.

 53. Donager JJ, Sánchez Meador AJ, Blackburn RC. Adjudicating 
perspectives on forest structure: how do airborne, terrestrial, 
and mobile lidar-derived estimates compare? Remote Sens. 
2021;13:2297. https:// doi. org/ 10. 3390/ rs131 22297.

 54. •Whelan AW, Cannon JB, Bigelow SW, Rutledge BT, 
Sánchez Meador AJ. Improving generalized models of for-
est structure in complex forest types using area- and voxel-
based approaches from lidar. Remote Sensing of Environment. 
2023;284:113362. https:// doi. org/ 10. 1016/j. rse. 2022. 113362. 
Addresses the use of remote sensing in complex forest types 
which is of interest for CCF, very recent.

 55. Gaulton R, Malthus TJ. LiDAR mapping of canopy gaps 
in continuous cover forests: a comparison of canopy height 
model and point cloud based techniques. Int J Remote Sens. 
2010;31(5):1193–211. https:// doi. org/ 10. 1080/ 01431 16090 
33805 65.

 56. Magnussen, S.; Wulder, M.; Seemann, D. Stand canopy clo-
sure estimated by line sampling with airborne Lidar. Continu-
ous cover forestry, Kluwer Academic Publishers, Dordrecht, 
Netherlands, 2002 1–12. https:// doi. org/ 10. 1007/ 978- 94- 015- 
9886-6_ 1.

 57. Amiri N, Yao W, Heurich M, Krzystek P, Skidmore AK. Esti-
mation of regeneration coverage in a temperate forest by 3D 
segmentation using airborne laser scanning data. Int J Appl 
Earth Obs Geoinf. 2016;52:252–62. https:// doi. org/ 10. 1016/j. 
jag. 2016. 06. 022.

 58. Mäyrä J, Keski-Saari S, Kivinen S, Tanhuanpää T, Hurskainen 
P, Kullberg P, Poikolainen L, Viinikka A, Tuominen S, Kum-
pula T, Vihervaara P. Tree species classification from airborne 
hyperspectral and LiDAR data using 3D convolutional neural 
networks. Remote Sens Environ. 2021;256: 112322. https:// 
doi. org/ 10. 1016/j. rse. 2021. 112322.

 59. Liang X, Hyyppä J, Kaartinen H, Lehtomäki M, Pyörälä J, 
Pfeifer N, Holopainen M, Brolly G, Francesco P, Hackenberg 
J, Huang H. International benchmarking of terrestrial laser 
scanning approaches for forest inventories. ISPRS J Photo-
gramm Remote Sens. 2018;144:137–79.

 60. Bienert A, Georgi L, Kunz M, von Oheimb G, Maas HG. 
Automatic extraction and measurement of individual trees 
from mobile laser scanning point clouds of forests. Ann Bot. 
2021;128(6):787–804. https:// doi. org/ 10. 1093/ aob/ mcab0 87.

 61. ••Calders K, Adams J, Armston J, Bartholomeus H, Bauw-
ens S, Bentley LP, Chave J, Danson FM, Demol M, Disney 
M, Gaulton R, Krishna Moorthy SM, Levick SR, Saarinen N, 
Schaaf C, Stovall A, Terryn L, Wilkes P, Verbeeck H. Terres-
trial laser scanning in forest ecology: expanding the horizon. 
Remote Sens Environ. 2020;251:112102. https:// doi. org/ 10. 
1016/J. RSE. 2020. 112102. A key review on the uses of TLS 
in forestry.

 62. Forsman M, Börlin N, Olofsson K, Reese H, Holmgren J. Bias 
of cylinder diameter estimation from ground-based laser scan-
ners with different beam widths: a simulation study. ISPRS J 
Photogramm Remote Sens. 2018;135:84–92.

 63. Atkins JW, Bohrer G, Fahey RT, et al. Quantifying vegetation 
and canopy structural complexity from terrestrial LiDAR data 
using the ‘forestr’ R package. Methods Ecol Evol. 2018;9:2057–
66. https:// doi. org/ 10. 1111/ 2041- 210X. 13061.

 64. Batchelor JL, Wilson TM, Olsen MJ, Ripple WJ. New structural 
complexity metrics for forests from single terrestrial Lidar scans. 
Remote Sens. 2023;15:145. https:// doi. org/ 10. 3390/ rs150 10145.

 65. Nguyen VT, Fournier RA, Côté JF, Pimont F. Estimation of 
vertical plant area density from single return terrestrial laser 
scanning point clouds acquired in forest environments. Remote 
Sens Environ. 2022;279: 113115.

 66. Ramirez FA, Armitage RP, Danson FM. Testing the applica-
tion of terrestrial laser scanning to measure forest canopy gap 
fraction. Remote Sens. 2013;5:3037–56. https:// doi. org/ 10. 3390/ 
rs506 3037.

 67. Woodgate W, Jones SD, Suarez L, et al. Understanding the vari-
ability in ground-based methods for retrieving canopy openness, 
gap fraction, and leaf area index in diverse forest systems. Agric 
For Meteorol. 2015;205:83–95.

 68. Calders K, Newnham G, Burt A, et al. Nondestructive estimates 
of above-ground biomass using terrestrial laser scanning. Meth-
ods Ecol Evol. 2015;6:198–208.

 69. Chianucci F, Puletti N, Grotti M, et al. Nondestructive tree stem 
and crown volume allometry in hybrid poplar plantations derived 
from terrestrial laser scanning. Forest Science. 2020;66(6):737–
46. https:// doi. org/ 10. 1093/ forsci/ fxaa0 21.

 70. Terryn L, Calders K, Disney M, Origo N, Malhi Y, Newnham 
G, Raumonen P, Åkerblom M, Verbeeck H. Tree species clas-
sification using structural features derived from terrestrial laser 
scanning. ISPRS J Photogram Rem Sens. 2020;168:170–81.

 71. Xi Z, Hopkinson C, Rood SB, Peddle DR. See the forest and the 
trees: Effective machine and deep learning algorithms for wood 
filtering and tree species classification from terrestrial laser scan-
ning. ISPRS J Photogramm Remote Sens. 2020;168:1–16.

 72. Qian C, Liu H, Tang J, et al. An integrated GNSS/INS/LiDAR-
SLAM positioning method for highly accurate forest stem map-
ping. Remote Sens. 2017;9:3. https:// doi. org/ 10. 3390/ rs901 0003.

 73. ••Qi Y, Coops NC, Daniels LD, Butson CR. Comparing tree 
attributes derived from quantitative structure models based on 
drone and mobile laser scanning point clouds across varying 
canopy cover conditions. ISPRS J Photogramm Remote Sens. 
2022;192:49–65. https:// doi. org/ 10. 1016/j. isprs jprs. 2022. 07. 021. 
A key paper looking at comparisons between remote sensing 
approaches in varied canopy conditions making it ideal for 
application to CCF.

 74. Hartley RJL, et al. Assessing the potential of backpack-mounted 
mobile laser scanning systems for tree phenotyping. Remote 
Sensing. 2022;14:3344.

 75. Pelak JR. Evaluation of mobile Lidar scanning and associated 
workflows for estimating structural attributes in mixed-conifer 
forests. Diss: Northern Arizona University; 2022.

 76. Forsman M, Olofsson K, Holmgren J. Tree stem diameter esti-
mation from mobile laser scanning using line-wise intensity-
based clustering. Forests. 2016;7(9):206.

 77. Neudam L, Annighöfer P, Seidel D. Exploring the potential of 
mobile laser scanning to quantify forest structural complexity. 
Frontiers in Remote Sensing. 2022. https:// doi. org/ 10. 3389/ 
frsen. 2022. 861337.

 78. Liu B, Chen S, Huang H, Tian X. Tree species classification of 
backpack laser scanning data using the PointNet++ point cloud 
deep learning method. Remote Sens. 2022;14:3809. https:// doi. 
org/ 10. 3390/ rs141 53809.

https://doi.org/10.1038/s41598-017-07200-0
https://doi.org/10.1038/s41598-017-07200-0
https://doi.org/10.1016/j.rse.2019.05.027
https://doi.org/10.1016/j.rse.2019.05.027
https://doi.org/10.3390/f8120467
https://doi.org/10.3390/rs13122297
https://doi.org/10.1016/j.rse.2022.113362
https://doi.org/10.1080/01431160903380565
https://doi.org/10.1080/01431160903380565
https://doi.org/10.1007/978-94-015-9886-6_1.
https://doi.org/10.1007/978-94-015-9886-6_1.
https://doi.org/10.1016/j.jag.2016.06.022
https://doi.org/10.1016/j.jag.2016.06.022
https://doi.org/10.1016/j.rse.2021.112322
https://doi.org/10.1016/j.rse.2021.112322
https://doi.org/10.1093/aob/mcab087
https://doi.org/10.1016/J.RSE.2020.112102
https://doi.org/10.1016/J.RSE.2020.112102
https://doi.org/10.1111/2041-210X.13061
https://doi.org/10.3390/rs15010145
https://doi.org/10.3390/rs5063037
https://doi.org/10.3390/rs5063037
https://doi.org/10.1093/forsci/fxaa021
https://doi.org/10.3390/rs9010003
https://doi.org/10.1016/j.isprsjprs.2022.07.021
https://doi.org/10.3389/frsen.2022.861337
https://doi.org/10.3389/frsen.2022.861337
https://doi.org/10.3390/rs14153809
https://doi.org/10.3390/rs14153809


500 Current Forestry Reports (2023) 9:490–501

1 3

 79. Bohlin, J.; Wallerman, J.; Fransson, J. Forest variable estima-
tion using photogrammetric matching of digital aerial images in 
combination with a high-resolution DEM. Scandinavian Journal 
of Forest Research 2012 27. https:// doi. org/ 10. 1080/ 02827 581. 
2012. 686625.

 80. Bohlin, J.; Bohlin, I.; Jonzén, J.; Nilsson, M. Mapping for-
est attributes using data from stereophotogrammetry of aerial 
images and field data from the national forest inventory. Silva 
Fennica 2017 51. https:// doi. org/ 10. 14214/ sf. 2021.

 81. Fromm M, Schubert M, Castilla G, Linke J, McDermid G. Auto-
mated detection of conifer seedlings in drone imagery using con-
volutional neural networks. Remote Sensing. 2019;11(21):2585. 
https:// doi. org/ 10. 3390/ rs112 12585.

 82. Bohlin J, Wallerman J, Fransson J. Extraction of spectral infor-
mation from airborne 3D data for assessment of tree species 
proportions. Remote Sensing. 2021;13:720. https:// doi. org/ 10. 
3390/ rs130 40720.

 83. Krisanski S, Taskhiri MS, Turner P. Enhancing methods for 
under-canopy unmanned aircraft system based photogramme-
try in complex forests for tree diameter measurement. Remote 
Sensing. 2020;12(10):1652. https:// doi. org/ 10. 3390/ rs121 01652.

 84. Chisholm RA, Rodríguez-Ronderos ME, Lin F. Estimating 
tree diameters from an autonomous below-canopy UAV with 
mounted LiDAR. Remote Sensing. 2021;13(13):2576. https:// 
doi. org/ 10. 3390/ rs131 32576.

 85. Forsman M, Börlin N, Holmgren J. Estimation of tree stem 
attributes using terrestrial photogrammetry with a camera rig. 
Forests. 2016;7(3):61.

 86. Schiefer F, Kattenborn T, Frick A, Frey J, Schall P, Koch B, 
Schmidtlein S. Mapping forest tree species in high resolution 
UAV-based RGB-imagery by means of convolutional neural net-
works. ISPRS J Photogramm Remote Sens. 2020;170:205–15. 
https:// doi. org/ 10. 1016/j. isprs jprs. 2020. 10. 015.

 87. Natesan S, Armenakis C, Vepakomma U. Individual tree species 
identification using dense convolutional network (DenseNet) on 
multitemporal RGB images from UAV. Journal of Unmanned 
Vehicle Systems. 2020;8(4):310–33. https:// doi. org/ 10. 1139/ 
juvs- 2020- 0014.

 88. Ozdemir I, Donoghue DNM. Modelling tree size diversity from 
airborne laser scanning using canopy height models with image 
texture measures. For Ecol Manage. 2013;295:28–37. https:// 
doi. org/ 10. 1016/j. foreco. 2012. 12. 044.

 89. Miyoshi GT, Arruda MdS, Osco LP, Junior Marcato J, Gon-
çalves DN, Imai NN, Tommaselli AMG, Honkavaara E, Gon-
çalves WN. A novel deep learning method to identify single tree 
species in UAV-based hyperspectral images. Remote Sensing. 
2020;12(8):1294. https:// doi. org/ 10. 3390/ rs120 81294.

 90. Tao S, Labrière N, Calders K, et al. Mapping tropical forest 
trees across large areas with lightweight cost-effective terrestrial 
laser scanning. Ann For Sci. 2021;78:103. https:// doi. org/ 10. 
1007/ s13595- 021- 01113-9.

 91. Spazzi J, Tuama PO, Wilson E, Short I. Comparison of three 
inventory protocols for use in privately-owned plantations under 
transformation to Continuous Cover Forestry. Irish Forestry. 
2019;76(1&2):8–28.

 92. Wilkes P, Lau A, Disney M, Calders K, Burt A, de Tanago JG, 
Bartholomeus H, Brede B, Herold M. Data acquisition consid-
erations for terrestrial laser scanning of forest plots. Remote Sens 
Environ. 2017;196:140–53.

 93. Wang Y, Lehtomäki M, Liang X, et al. Is field-measured tree 
height as reliable as believed – a comparison study of tree height 
estimates from field measurement, airborne laser scanning and 
terrestrial laser scanning in a boreal forest. ISPRS J Photogramm 
Remote Sens. 2019;147:132–45.

 94. Kuželka K, Marušák R, Surový P. Inventory of close-to-nature 
forest stands using terrestrial mobile laser scanning. Int J Appl 

Earth Obs Geoinf. 2022;115: 103104. https:// doi. org/ 10. 1016/j. 
jag. 2022. 103104.

 95. Čerňava J, Tuček J, Koreň M, Mokroš M. Estimation of diameter 
at breast height from mobile laser scanning data collected under 
a heavy forest canopy. Journal of Forest Science. 2017;63:433–
41. https:// doi. org/ 10. 17221/ 28/ 2017- JFS.

 96. Trochta, J.; Krucek, M.; Vrška, T.; Král, K. 3D Forest: an appli-
cation for descriptions of three-dimensional forest structures 
using terrestrial LiDAR. PLoS ONE 2017 12. https:// doi. org/ 
10. 1371/ journ al. pone. 01768 71.

 97. de Conto T, Olofsson K, Görgens EB, Rodriguez LCE, Almeida 
G. Performance of stem denoising and stem modelling algo-
rithms on single tree point clouds from terrestrial laser scanning. 
Comput Electron Agric. 2017;143:165–76. https:// doi. org/ 10. 
1016/j. compag. 2017. 10. 019.

 98. Terryn L, Calders K, Åkerblom M, Bartholomeus H, Disney M, 
Levick S, Origo N, Raumonen P, Verbeeck H. Analysing indi-
vidual 3D tree structure using the R package ITSMe. Methods 
Ecol Evol. 2022;00:1–11. https:// doi. org/ 10. 1111/ 2041- 210X. 
14026.

 99. Panagiotidis D, Abdollahnejad A. Reliable estimates of mer-
chantable timber volume from terrestrial laser scanning. Remote 
Sensing. 2021;13:3610. https:// doi. org/ 10. 3390/ rs131 83610.

 100. Puletti N, Grotti M, Ferrara C, Scalercio S. Traditional and TLS-
based forest inventories of beech and pine forests located in Sila 
National Park: a dataset. Data Brief. 2020;34: 106617. https:// 
doi. org/ 10. 1016/j. dib. 2020. 106617.

 101. Windrim L, Bryson M. Detection, segmentation, and model fit-
ting of individual tree stems from airborne laser scanning of 
forests using deep learning. Remote Sensing. 2020;12(9):1469.

 102. Asner, G.P.; Mascaro, J. Mapping tropical forest carbon: calibrat-
ing plot estimates to a simple LiDAR metric. Remote Sensing of 
Environment 2014 140. https:// doi. org/ 10. 1016/j. rse. 2013. 09. 023

 103. Bouvier M, Durrieu S, Fournier RA, Renaud JP. Generalizing 
predictive models of forest inventory attributes using an area-
based approach with airborne LiDAR data. Remote Sens Envi-
ron. 2015;156:322–34.

 104. Fahey RT, Atkins JW, Gough CM, Hardiman BS, Nave LE, Tal-
lant JM, Nadehoffer KJ, Vogel C, Scheuermann CM, Stuart-
Haëntjens E, Haber LT, Fotis AT, Ricart R, Curtis PS. Defining 
a spectrum of integrative trait-based vegetation canopy structural 
types. Ecol Lett. 2019;22:2049–59. https:// doi. org/ 10. 1111/ ele. 
13388.

 105. Kane VR, McGaughey RJ, Bakker JD, Gersonde RF, Lutz 
JA, Franklin JF. Comparisons between field- and LiDAR-
based measures of stand structural complexity. Can J For Res. 
2010;40(4):761–73. https:// doi. org/ 10. 1139/ X10- 024.

 106. Zellweger F, Baltensweiler A, Ginzler C, Roth T, Braunisch V, 
Bugmann H, Bollmann K. Environmental predictors of species 
richness in forest landscapes: abiotic factors versus vegetation 
structure. J Biogeogr. 2016;43:1080–90. https:// doi. org/ 10. 1111/ 
jbi. 12696.

 107. Di Lucca, C.M. TASS/SYLVER/TIPSY: systems for predicting 
the impact of silvicultural practices on yield, lumber value, eco-
nomic return and other benefits. In: Stand density management 
conference: using the planning tools. November 23–24, 1998, 
Colin R. Bamsey [Ed.] Clear Lake Ltd., Edmonton, AB 1999.

 108. Di Lucca, C.M. Using the Tree and Stand Simulator (TASS) 
model to predict the effect of stand management on quantity and 
value of carbon and biomass in British Columbia, Canada. Poster 
prepared for IUFRO 2019, Curitiba, Brazil. Sept. 29 – October 
5, 2019.

 109. Suarez JC. An analysis of the consequences of stand variability 
in Sitka spruce plantations in Britain using a combination of 
airborne LiDAR analysis and models. Diss.: University of Shef-
field; 2010.

https://doi.org/10.1080/02827581.2012.686625
https://doi.org/10.1080/02827581.2012.686625
https://doi.org/10.14214/sf.2021
https://doi.org/10.3390/rs11212585
https://doi.org/10.3390/rs13040720
https://doi.org/10.3390/rs13040720
https://doi.org/10.3390/rs12101652
https://doi.org/10.3390/rs13132576
https://doi.org/10.3390/rs13132576
https://doi.org/10.1016/j.isprsjprs.2020.10.015
https://doi.org/10.1139/juvs-2020-0014
https://doi.org/10.1139/juvs-2020-0014
https://doi.org/10.1016/j.foreco.2012.12.044
https://doi.org/10.1016/j.foreco.2012.12.044
https://doi.org/10.3390/rs12081294
https://doi.org/10.1007/s13595-021-01113-9
https://doi.org/10.1007/s13595-021-01113-9
https://doi.org/10.1016/j.jag.2022.103104
https://doi.org/10.1016/j.jag.2022.103104
https://doi.org/10.17221/28/2017-JFS
https://doi.org/10.1371/journal.pone.0176871.
https://doi.org/10.1371/journal.pone.0176871.
https://doi.org/10.1016/j.compag.2017.10.019
https://doi.org/10.1016/j.compag.2017.10.019
https://doi.org/10.1111/2041-210X.14026
https://doi.org/10.1111/2041-210X.14026
https://doi.org/10.3390/rs13183610
https://doi.org/10.1016/j.dib.2020.106617
https://doi.org/10.1016/j.dib.2020.106617
https://doi.org/10.1016/j.rse.2013.09.023
https://doi.org/10.1111/ele.13388
https://doi.org/10.1111/ele.13388
https://doi.org/10.1139/X10-024
https://doi.org/10.1111/jbi.12696
https://doi.org/10.1111/jbi.12696


501Current Forestry Reports (2023) 9:490–501 

1 3

 110. Fortin M, Sattler D, Schneider R. An alternative simulation 
framework to evaluate the sustainability of annual harvest on 
large forest estates. Can J For Res. 2021;52(5):704–15. https:// 
doi. org/ 10. 1139/ cjfr- 2021- 0255.

 111. Roussel, J.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, 
T.R.; Meador, A.S.; Bourdon, J.; de Boissieu, F.; Achim, A. 
lidR: an R package for analysis of airborne laser scanning (ALS) 
data. Remote Sensing of Environment 2020 251, 112061. ISSN 
0034–4257, doi:10.1016/j.

 112. Q JAG; Hernandez, R.; Sanchez-Azofeifa, A. rTLS: tools to process 
point clouds derived from terrestrial laser scanning. R package ver-
sion 2021 0.2.5, https:// CRAN.R- proje ct. org/ packa ge= rTLS.

 113. Molina-Valero JA, Martínez-Calvo A, Ginzo Villamayor MJ, Novo 
Pérez MA, Álvarez González JG, Montes F, Pérez-Cruzado C. 
Operationalizing the use of TLS in forest inventories: the R pack-
age FORTLS. Environ Model Softw. 2022;150: 105337.

 114. Martin-Ducup, O.; Lecigne, B. R package ‘aRchi’. Quantitative 
structural model (‘QSM’) treatment for tree architecture version 
2.1.0. 2022.

 115. Cabo, C.; Mokros, M.; Murtiyoso, A.; Singh, A.; Pereira, D.; 
Stoddart, J. Software solutions for close-range forest point 
clouds: What is out there? [Conference presentation] Silvila-
ser Conference, London, UK 2023 September 6–8 https:// www. 
conft ool. org/ silvi laser 2023/ index. php? page= brows eSess ions& 
form_ sessi on= 11.

 116. Mokros, M.; Rehush, N.; Murtiyoso, A.; Cabo, C.; Singh, A.; 
Cherlet, W.; Beloiu, M. A web platform for forest point cloud 
processing algorithms. [Conference presentation]. Silvilaser 
Conference, London, UK 2023, September 6–8 https:// www. 
conft ool. org/ silvi laser 2023/ index. php? page= brows eSess ions& 
form_ sessi on= 11.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1139/cjfr-2021-0255
https://doi.org/10.1139/cjfr-2021-0255
https://CRAN.R-project.org/package=rTLS
https://www.conftool.org/silvilaser2023/index.php?page=browseSessions&form_session=11.
https://www.conftool.org/silvilaser2023/index.php?page=browseSessions&form_session=11.
https://www.conftool.org/silvilaser2023/index.php?page=browseSessions&form_session=11.
https://www.conftool.org/silvilaser2023/index.php?page=browseSessions&form_session=11.
https://www.conftool.org/silvilaser2023/index.php?page=browseSessions&form_session=11.
https://www.conftool.org/silvilaser2023/index.php?page=browseSessions&form_session=11.

	Continuous Cover Forestry and Remote Sensing: A Review of Knowledge Gaps, Challenges, and Potential Directions
	Abstract
	Purpose of Review 
	Recent Findings 
	Summary 

	Introduction
	Continuous Cover Forestry and Its Challenges
	Challenges and Knowledge Gaps in CCF

	Remote Sensing and CCF
	Existing Research
	Remote Sensing for CCF Inventory Measurement and Stock Mapping
	Remote Sensing for CCF Yield Modelling and Forecasting
	Practicalities of Remote Sensing

	Conclusion
	References


