
R E V I EW A R T I C L E

A Meta-analysis of the effects of ground-based extraction
technologies on fine roots in forest soils

Francesco Latterini1 | Marcin K. Dyderski1 | Paweł Horodecki1 |

Mateusz Rawlik2 | Walter Stefanoni3 | Lars Högbom4,5 |

Rachele Venanzi6 | Rodolfo Picchio6 | Andrzej M. Jagodzi�nski1

1Institute of Dendrology, Polish Academy of Sciences, K�ornik, Poland

2Department of Plant Ecology and Environmental Protection, Adam Mickiewicz University in Pozna�n, Pozna�n, Poland

3Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Monterotondo, Italy

4Skogforsk, The Forestry Research Institute of Sweden, Uppsala, Sweden

5Swedish University of Agricultural Sciences, Umea, Sweden

6Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy

Correspondence

Francesco Latterini, Institute of Dendrology,

Polish Academy of Sciences, Parkowa

5, 62-035 K�ornik, Poland.

Email: latterini@man.poznan.pl

Funding information

Horizon 2020 Framework Programme,

Grant/Award Number: 847639

Abstract

Fine roots are an important component of forest soil as they play a key role in funda-

mental processes like plant nutrition and water supply. As with all the features of for-

est soil, the compaction related to the forest operations and, in particular, to the

wood extraction via ground-based technologies could lead to a significant impact on

the presence of fine roots in the soil affected by the passage of the machines. Consid-

ering the lack of a review, we used a meta-analytic approach to synthesise effect

sizes of ground-based extraction technologies affecting the presence of fine roots in

the soil, using a multivariate mixed-effects meta-analytic model. The obtained results

revealed that the presence of fine roots in the soil affected by the passage of the

machines was significantly reduced by both skidding (g = �1.23, 95%CI -1.87, �0.60)

and forwarding (g = �1.37, 95%CI -2.01, �0.74). Due to the higher soil compaction

caused by forwarding, this method had a marginally but statistically significant greater

impact than skidding. We further confirmed the hypothesis that soil compaction and

the presence of fine roots were strongly correlated, with the latter being greatly

reduced in compacted soils characterised by higher bulk density. What is more, even

more than 20 years after a harvesting intervention, the presence of fine roots was

significantly lower in both strip roads (forwarding) and skid trails (skidding) as com-

pared to areas which were not impacted by the machine passage. This shows that

fine roots are particularly vulnerable to forest operations. On the other hand, the

majority of the trails in the database used for the meta-analysis were created in coun-

tries that favour the creation of a small number of widely used trails. Therefore, it

would be scientifically valuable to do a comparative evaluation in various forestry
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contexts, such as in the Mediterranean area, where the development of the forest

trails network is oriented on creating a large number of trails with low traffic volumes.

Because machinery-induced soil compaction is the major driver of the decrease in

fine roots in skid trails and strip roads, both the application of best management prac-

tices as well as of a smarter planning of the trail network to limit soil compaction are

strongly recommended. Both applications are highly recommended to be used in the

planning phase and in the practical implementation of logging activities.

K E YWORD S

forwarding, reduced-impact logging, skidding, soil compaction, sustainable forest management,
sustainable forest operations

1 | INTRODUCTION

Fine roots (diameter less than 2 mm) are fundamental elements in

each forest soil ecosystem (Freschet et al., 2021; Lorenc et al., 2018;

Weemstra et al., 2020). The main role of fine roots is related to tree

nutrition, as these have the function to uptake water and nutrients

from the surrounding soil (Huang et al., 2022; Jagodzi�nski &

Kałucka, 2011; Matulewski et al., 2022). Fine root production

accounts for about 33% of the global annual net primary production,

although fine root biomass generally represents less than 10% of the

total forest biomass (Cao et al., 2020; Jagodzi�nski et al., 2014; Karki

et al., 2022). Furthermore, fine roots contribute to about one-third of

the overall litter input, therefore they are also a fundamental compo-

nent of the carbon and nutrient cycling among trees and forest soil

(Clemmensen et al., 2013; Ding et al., 2019). In particular, it has been

found that carbon and nutrients returned to the soil after fine root

decomposition can be even higher than from leaves, as a consequence

of the very rapid turnover of fine roots (Eldhuset et al., 2017; Freschet

et al., 2013; Głuszek et al., 2015).

As it happens for any component of the forest soil (Karami

et al., 2023; Latterini, Venanzi, et al., 2023; Mohieddinne et al., 2022),

the features and presence of fine roots can also be considerably

affected by forest management activities and particularly by ground-

based forest operations, mostly as a consequence of machinery-

induced soil compaction (Högberg & Wester, 1998; Jourgholami,

Feghhi, Tavankar, et al., 2021; Malo & Messier, 2011; Proto

et al., 2016). Rooting is indeed ensured only in soils where a constant

supply of water, nutrients and gas exchange is maintained (Flores Fer-

nández, Rubin, et al., 2019; Schäffer et al., 2009) and previous

research highlighted how the compacted soil after the passage of

heavy machinery limits rooting capacity (Mariotti et al., 2020) and

alters gas fluxes (Vantellingen et al., 2022).

Several studies highlighted that the presence of fine roots in the

soil affected by the passage of the heavy machinery typically applied

in forest operations is substantially decreased in comparison to the

undisturbed soil (DeArmond et al., 2022; Malo & Messier, 2011;

Schäffer, 2022). On the other hand, some research showed a no sig-

nificant difference in fine root density between the skid trails and

the soil not affected by the passage of the machinery (Stutz

et al., 2017). Furthermore, scientific literature in the topic reports

high variability concerning the issue of the recovery time needed

after the harvesting intervention. Indeed, Schäffer (2022) reported

that a recovery trend was observed after 10 years in the major part

of the investigated research sites, while DeArmond et al. (2022) indi-

cated that even after 27 years, the fine roots presence in the com-

pacted soil is still much lower than in the undisturbed one,

confirming the findings from Warlo et al. (2022) which detected a

statistically significant lower presence of fine roots in the skid trails

10 years after the harvesting operations.

Given the abovementioned variability reported in the previous

studies and the important role of fine roots within the forest soil sys-

tem, it is imperative that more information is collected for a deeper

understanding in the effects of disturbance (Meyer et al., 2014; Sugai

et al., 2020; Watson & Kelsey, 2006). It is also worthy of acknowledg-

ing that few studies deal with this topic in comparison to the amount

of studies conducted on other forest soil features (Schäffer, 2022).

What is more, there is no review on this topic in the current literature.

It is expected that soil compaction can lead to a decrease in the

presence of fine roots, therefore a quantification of the effects of

machinery-induced compaction and a clear identification of the main

driver of this process will be valuable. Thus, a systematic literature

review may fail to deepen our knowledge in such topic and therefore

we decided to apply a meta-analytic approach to investigate the

effects of ground-based harvesting technologies on the presence of

fine roots in the soil. Meta-analysis is a statistical technique that is

used to develop a literature review summarising the results of several

studies dealing with the same topic quantitatively (Gatica et al., 2022;

Ghorbani et al., 2023; Gong et al., 2021; Meaza et al., 2022). The main

benefit of using meta-analysis is that the results from several studies

with comparable experimental designs are statistically analysed to

produce overall conclusions that would not have been evident from a

single trial (Hedges et al., 1999; Lajeunesse, 2011). Furthermore,

meta-analysis gives the possibility of obtaining a quantitative and

objective evaluation for topics in which the literature reports substan-

tial variability and lack of a clear trend. Therefore, this technique

results in highly suitable for the investigation of the influence of

ground-based forest operations on the presence of fine roots in the

forest soil.
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In particular, we applied a meta-analytic approach to investigate

the effects of different ground-based approaches to extraction opera-

tions on fine roots. Specific objectives were to analyse the relation-

ship between soil compaction (increase in soil bulk density) and the

presence of fine roots; to assess the recovery process after forest har-

vesting and the effectiveness of amelioration interventions, for

instance, mulching and planting fast-growing trees and to recover the

ecological functions of forest soils resulting from the presence of fine

roots.

2 | MATERIALS AND METHODS

2.1 | Literature search, studies inclusion criteria
and database building

We conducted a systematic search of the literature references

indexed within the databases of Google Scholar, Scopus and Web of

Science. We used the following keywords: fine roots, skid trail, strip

road, forest operations, skidder, forwarder, tractor, harvesting system,

logging; adding the Boolean operators AND or OR (Figure 1).

We further used the snowball technique consisting of using a ref-

erence list of recent papers to find other appropriate references to

gather additional literature sources. We used the snowball method

beginning with the reference list of the papers published in 2021 and

2022. In this way, we identified four further papers. We found

87 papers that were potentially eligible after searching the scientific

repositories for relevant material. Initially, we eliminated duplicate

studies, then we excluded papers whose titles and abstracts did not

fit with the topic. Finally, we examined the 30 remaining studies

applying the following inclusion criteria: i) the study must provide a

control treatment which consists of soil not affected by machine pas-

sage located close to the analysed skid trail/strip road; ii) the experi-

ment must be set up in a forest stand, nursery studies are also

included but they have to be clearly related to a forest context.

With these criteria, 19 papers (DeArmond et al., 2022; Ebeling

et al., 2017; Flores Fernández, Hartmann, & von Wilpert, 2019; Flo-

res Fernández, Rubin, et al., 2019; Högberg & Wester, 1998; Jour-

gholami, Feghhi, Picchio, et al., 2021; Jourgholami, Feghhi,

Tavankar, et al., 2021; Jourgholami, Ghassemi, & Labelle, 2019;

Jourgholami, Ramineh, et al., 2019; Malo & Messier, 2011; Meyer

et al., 2014; Rygiewicz et al., 2004; Schäffer, 2022; Schäffer

et al., 2009; Stutz et al., 2017; Sugai et al., 2020; Warlo et al., 2019,

2022; Watson & Kelsey, 2006) that generated 217 couple compari-

sons were finally included in the database for the meta-analysis

(Figure 1).

As a quantitative measurement of the fine roots, we used the

number of fine roots or biomass per unit soil area or volume, as differ-

ent studies based on various methodological approaches. In the first

version of analyses, we accounted for such a difference including

measure type (number or mass of fine roots) as a random effect in the

models, however, it was colinear with study ID and resulted in zero

variance, therefore we excluded it from the analyses. For non-

numerical values in the main text or tables but only in a graphical

form, we used the WebplotDigitizer software to retrieve the numeri-

cal information. For 58 of 217 couple comparisons in the database,

we did not obtain data about the dispersion measure. Thus, we

assessed the relationship between the standard deviation and the

average values presented in our database to fulfil this gap (Latterini,

Dyderski, et al., 2023; Pigott, 1994; Wiebe et al., 2006). Due to non-

linearity, we used a power model (Equation 1), after a log-

transformation to better handle a wide range of values in our dataset

(Equation 2):

SD¼ a �Mb, ð1Þ

log SDð Þ¼ aþb � log Mð Þ, ð2Þ

where SD—standard deviation, M—mean, a and b—model parameters.

We fit models using the stats::lm() function (Table S2; Figure S1 in the

Appendix).

2.2 | Meta-analysis implementation

We developed multivariate mixed-effects metanalytic linear models

for the whole dataset with complete data points to investigate the

effects of various categorical (sub-group meta-analysis) and continu-

ous moderators (meta-regression) on the magnitude of fine roots

alteration (Table 1).F IGURE 1 Meta-analysis chart for this study.
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To estimate the effect size we used Hedges' g, representing an

unbiased standardised mean difference (Hedges, 1981) (Equation 3):

g¼ J � Xt�Xc
� �

σpooled

" #

ð3Þ

here Xt and Xc represent, respectively, the average values of fine root

quantity in the experimental treatment and in the control, σpooled is the

estimate of the pooled standard deviation (Rosnow &

Rosenthal, 1996) and J represents a correction factor for small sample

size (Hedges & Olkin, 2014). Positive Hedges' g values indicate an

increase while negative indicate a decrease in fine root quantity as a

consequence of the experimental treatment.

As the majority of the studies in our database contributed with

more than one comparison (Cheung, 2019), we decided to account for

within-study dependence using random effects in mixed-effects, cover-

ing the spatiotemporal autocorrelation and similar methodological

approaches (Cheung, 2014). Thus, we used multivariate mixed-effects

metanalytical linear models implemented in the metafor::rma.mv() func-

tion (Viechtbauer, 2010). We also accounted for soil depth using ran-

dom effects, to obtain effect size estimates not biased by the vertical

distribution of fine roots. In particular, we distinguished three depths,

as the majority of fine roots is located in the upper 30 cm of soil and

differences between 0–15 cm and 16–30 cm have been reported

(Freschet et al., 2021; Jagodzinski et al., 2016; Varik et al., 2013). First,

we checked differences in effect sizes between forwarding and skid-

ding, as these extraction techniques can lead to different magnitudes

and patterns of disturbances to forest soil, as a consequence of the dif-

ferent distribution of the loads during wood extraction (Marra

et al., 2022; Spinelli et al., 2016). We checked it with the model with a

single moderator. It is important to underline that this was a preliminary

analysis carried out not considering any other influential variable (like

for instance the time after harvesting), that we performed to under-

stand if the two extraction techniques should be treated separately in

the subsequent more detailed analyses.

Then, for skidding and forwarding, we separately assessed the

effects of all moderators (Table 1). We checked the fitness of models

using Akaike's information criterion (AIC), selecting models with the

lowest AIC. We assessed possible publication bias and the variability

of data using funnel plots, visualising the relationship between effect

size and standard error. We used orchard plots for categorical moder-

ators and bubble plots for continuous moderators, implemented in the

orchard package (Nakagawa et al., 2021) to visualise the model

outcomes.

To ensure robustness of our results, we also replicated analyses

using a subset excluding studies with unclear information about sam-

ple size, to check correctness of results. In detail, we identified three

studies (Flores Fernández, Hartmann, & von Wilpert, 2019; Flores

Fernández, Rubin, et al., 2019; Schäffer, 2022) which were charac-

terised by a very high sample size, as a consequence of the particular

methodology applied which were based on counting fine roots rather

than sampling them and weighting. In these studies, it was trouble-

some to clearly identify the sample size, and therefore we decided to

perform the robustness analysis by repeating all the analyses by

excluding these three papers from the database. The graphical results

of the robustness analysis are reported in the supplementary material

of the manuscript. It is worth to point out that, due to complex struc-

ture of our dataset, including multilevel heterogeneity structures, typi-

cal pathway for meta-analysis robustness assessment with ‘leave one

out’ approach was impossible to be applied, therefore we decided to

compare the results of whole and reduced datasets. Reporting results

we provided three metrics of heterogeneity—QE, QM and I2. Q is a

test statistic for residuals heterogeneity, while QM—of heterogene-

ity explained by moderators (Viechtbauer, 2007), and is formally

tested in the metafor::rma.mv() function (Viechtbauer, 2010). I2 pro-

vides information about heterogeneity between studies in a dataset

(Higgins & Thompson, 2002). We calculated I2 for between-clusters

and within-clusters heterogeneity, to assess how much of heteroge-

neity is attributed to differences between studies and how much—

within studies (Konstantopoulos, 2011). All statistical analyses were

TABLE 1 Moderators applied in the sub-group meta-analysis and meta-regression.

Moderator Type

Levels (n, for categorical

moderators)

Mean ± SE, range (for

continuous moderators) Notes

Extraction method Categorical Forwarding (157), skidding

(60)

Skidding implies dragging the log/tree on

the ground, while forwarding consists of

carrying the log/tree on a loading deck

Amelioration Categorical Yes (76), No (141) Whether any amelioration treatment has

been applied (mulching, planting, liming)

Years post-

harvesting

Continuous 9.7 ± 0.6, 1–42 Years

Soil depth Categorical 0–15 cm (102), 16–30 cm

(61), >31 cm (54)

21.5 ± 1.3, 0–80 Discretised into three levels to account for

as random effect

Change in bulk

density values

Continuous 30.0 ± 1.8, �15.8–78.1 %, available only for 57.1% of the couple

comparisons. Decrease in bulk density

in the skid trails or strip roads is

associated only with those which

experienced amelioration treatments

12 LATTERINI ET AL.
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performed using the software R version 4.2.2 (R Development Core

Team, 2022).

3 | RESULTS

3.1 | Spatial distribution of the studies

The majority of analysed studies came from the temperate zone in

Central Europe (Figure 2). However, each continent except for Africa,

was represented at least by one study location. The topic has been

profoundly investigated in Germany as well as in Iran. It is, however,

evident that tropical and sub-tropical forests are underrepresented

and there was also a complete lack of trials in the Mediterranean con-

text. Furthermore, there are no evaluations of forwarding impacts on

fine roots in boreal Europe.

3.2 | Effects of forest operations on fine roots

Standardised mean differences differed from �8.70 to 1.60, with an

interquartile range of �1.88 to �0.32, and with an average of �1.35

± 0.11. Meta-analysis revealed that the overall effect size was �1.31

± 0.32 (95% CI: �1.93, �0.69), with study-related random effect

SD = 1.63 and heterogeneity measure Q(df = 216) of 8252.5

(p < 0.001), I2 of between-cluster heterogeneity of 0.957, within-

cluster heterogeneity I2 of 0.0243 and AIC of 4939.1. Subgroup

analysis (AIC = 4928.3) revealed statistically significant effect sizes

for both skidding (g = �1.23 ± 0.32) and forwarding (g = �1.37

± 0.32), and a statistically significant difference between these two

types. The heterogeneity measure for residuals QE(df = 215) was

7120.2 (p < 0.001), QM(df = 1) = 13.7 (p < 0.001), I2 of between-

cluster heterogeneity of 0.959, and within-cluster heterogeneity I2 of

0.0228 (Figure 3 and Table S2). The very high between-cluster het-

erogeneity is explainable considering that this first analysis was a pre-

liminary test, carried out just to investigate the overall differences

between skidding and forwarding effects in order to decide if carrying

out the following, more detailed, analyses in a separated way for the

two extraction methods.

3.3 | Drivers of skidding effects on fine roots

A multivariate meta-analysis of skidding effect sizes revealed that all

hypothesised factors were included in the final model (AIC = 131.4,

AIC0 = 228.7). In the final model, the study-related random effect

was SD = 0.96, soil depth-related random effect was SD <0.01, and

heterogeneity measure was QE(df = 13) = 113.1 (p < 0.001),

QM(df = 3) = 100.4 (p < 0.001), I2 of between-cluster heterogeneity

of 0.850, and within-cluster heterogeneity I2 of <0.001 (Table S3).

Analysis revealed the highest importance of bulk density increment.

Hedges' g decreased from �1.25 at 10% to �6.25 at 45% bulk density

increment (Figure 4). We also found a statistically significant negative

impact of time since harvesting. Hedges' g decreased from �2.5 at

F IGURE 2 Locations of the studies included in the meta-analysis. Number of circles in the figure does not correspond to the number of
studies in the database considering that some of them investigated multiple study sites. [Colour figure can be viewed at wileyonlinelibrary.com]

LATTERINI ET AL. 13
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3 years to �4 at 27 years since harvesting. Amelioration provided a

statistically significant and biologically relevant decrease in effect size.

3.4 | Drivers of forwarding effects on fine roots

A multivariate meta-analysis of forwarding effect sizes revealed that

all hypothesised factors were included in the final model

(AIC = 2404.1, AIC0 = 2891.4). In the final model, study-related ran-

dom effect was SD = 1.10, soil depth-related random effect was

SD = 0.54, and heterogeneity measure was QE(df = 103) = 3062.3

(p < 0.001), QM(df = 3) = 491.6 (p < 0.001), I2 of between-cluster

heterogeneity of 0.785, and within-cluster heterogeneity I2 of 0.191

(Table S4). Analysis revealed the highest importance of bulk density

increment. Hedges' g decreased from �0.3 at �15% to �1.5 at 70%

bulk density increment (Figure 5). We also found a low and statisti-

cally insignificant negative impact of time since harvesting. It

decreased from �0.3 at 2 years to �1.6 at 18 years since harvesting.

Amelioration provided a statistically significant and biologically rele-

vant increase in effect size.

F IGURE 3 Orchard plot of
standardised mean differences (Hedges' g)
of studies assessing effects of forest
operations on fine roots (bubbles), with
effect sizes (black dots) and 95%
confidence intervals (lines) estimated
using multivariate meta-analysis
(Table S2). K denotes the number of
effect sizes per estimate with the number

of related studies in brackets. [Colour
figure can be viewed at
wileyonlinelibrary.com]

F IGURE 4 Effects of moderators
driving effect sizes of skidding on fine
roots: increment in bulk density (a), time
since harvesting (b) and amelioration (c).
Orchard plot of standardised mean
differences (Hedges' g) shows differences
between the two amelioration treatments
in effect sizes (bubbles), with effect sizes
(black dots) and 95% confidence intervals
(lines) estimated using multivariate meta-
analysis (Table S3). Bubble plots show the
predicted response of effect size to
continuous moderators, with 95%
confidence intervals. [Colour figure can be
viewed at wileyonlinelibrary.com]
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3.5 | Robustness of analyses

After excluding three papers with unclear sample size description

from dataset, we repeated all analyses and we obtained similar distri-

bution of effect sizes and standard errors of particular observations

than as in case of testing the whole dataset (Figure 6). In both cases,

funnel plots revealed prevailing negative effects over positive effects

and high clustering of similar standard error values.

In the alternative analysis, standardised mean differences differed

from �8.70 to 1.34, with an interquartile range of �1.68 to �0.32,

and with an average of �1.53 ± 0.20. Meta-analysis revealed that the

overall effect size was �1.35 ± 0.37 (95% CI: �2.08, �0.62), with

study-related random effect SD = 1.37 and heterogeneity measure

Q(df = 87) of 933.5 (p < 0.001), I2 of between-cluster heterogeneity

of 0.899, within-cluster heterogeneity I2 of <0.001, and AIC of 416.9.

Subgroup analysis (AIC = 410.5) revealed statistically significant

effect sizes for skidding (g = �2.08 ± 0.46) and a significant differ-

ence between skidding and forwarding (g = �0.62 ± 0.45). The het-

erogeneity measure for residuals QE(df = 86) was 736.9 (p < 0.001)

and QM(df = 1) was 5.16 (p = 0.023), I2 of between-cluster heteroge-

neity of 0.867, and within-cluster heterogeneity I2 of <0.001

(Figure S2 and Table S5). The results were consistent with the whole

dataset analysis.

An alternative multivariate meta-analysis of skidding effect sizes

revealed that all hypothesised factors were included in the final model

(AIC = 131.4, AIC0 = 228.7). In the final model, the study-related ran-

dom effect was SD = 0.93, soil depth-related random effect was SD

<0.01, and heterogeneity measure was QE(df = 13) = 113.1

(p < 0.001), QM(df = 3) = 100.4 (p < 0.001), I2 of between-cluster

heterogeneity of 0.850, within-cluster heterogeneity I2 of <0.001

(Table S6). Analysis revealed the highest importance of bulk density

increment. Hedges' g decreased from �1.04 at 10% to �5.98 at 45%

bulk density increment (Figure S3). We also found a statistically signif-

icant negative impact of time since harvesting. Hedges' g decreased

from �2.1 at 3 years to �4.3 at 27 years since harvesting. Ameliora-

tion provided a statistically significant and biologically relevant

decrease in effect size. The results were consistent with the whole

dataset analysis.

An alternative multivariate meta-analysis of forwarding effect

sizes revealed that all hypothesised factors were included in the final

model (AIC = 132.2, AIC0 = 153.3). In the final model, study-related

random effect was SD = 0.88, soil depth-related random effect was

SD < 0.01, and heterogeneity measure was QE(df = 39) = 142.0

(p < 0.001), QM(df = 3) = 22.7 (p < 0.001), I2 of between-cluster het-

erogeneity of 0.772, and within-cluster heterogeneity I2 of <0.001

(Table S7). Analysis revealed no importance of bulk density increment

(Figure S4). We also found a low and statistically insignificant negative

impact of time since harvesting. It decreased from �0.11 at 2 years to

�1.52 at 18 years since harvesting. Amelioration provided a statisti-

cally significant and biologically relevant increase in effect size. The

results were similar to the whole dataset analysis, differing only in

the statistical significance of bulk density increment, while effect sizes

were similar.

4 | DISCUSSION

We observed a statistically significant reduction of fine root quantity

for both skid trails (skidding) and strip roads (forwarding) in compari-

son to the forest soil not affected by the machine passage. Further-

more, a multivariate meta-analysis revealed the presence of

statistically significant differences between the two extraction

methods; forwarding resulted in a larger impact than skidding

(Figure 3). This can be related to the higher soil compaction produced

F IGURE 5 Effects of moderators
driving effect sizes of forwarding on fine
roots: increment in bulk density (a), time
since harvesting (b), and amelioration (c).
Orchard plot of standardised mean
differences (Hedges' g) shows differences
between amelioration treatments in effect
sizes (bubbles), with effect sizes (black
dots) and 95% confidence intervals (lines)

estimated using multivariate meta-
analysis (Table S4). Bubble plots show the
predicted response of effect size to
continuous moderators, with 95%
confidence intervals. [Colour figure can be
viewed at wileyonlinelibrary.com]
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by forwarding (Marra et al., 2022). Within our database, the average

bulk density increase was +31.3 ± 20.6% for forwarding and +22.5

± 10.8% for skidding. However, both extraction approaches revealed

a substantial decrease in the presence of fine roots, thus highlighting

how mechanised ground-based forest operations can have a signifi-

cant impact on this important component of the soil ecosystem.

The results of the meta-regression showed a strong relationship

between machinery-induced soil compaction and decreased presence

of fine roots (Figures 4 and 5). This confirms that the major alteration

to the forest soil caused by forest logging activities is directly related

to the passage of the machine and the consequent alteration of soil

physical features (Grigorev et al., 2022; Lepilin et al., 2022; Tavankar

et al., 2021). Therefore, the implementation of best management prac-

tices and smarter planning of the skid trail/strip road patterns, to

reduce machinery-induced soil compaction, was confirmed to be a

fundamental aspect in the implementation of proper sustainable for-

est operations (SFO) (Jourgholami, Ramineh, et al., 2019; Jourgholami,

Feghhi, Picchio, et al., 2021; Labelle et al., 2022). Such technical

adjustments deal with the proper planning of the viability pattern

(Kazama et al., 2021); some direct modifications of the machine, that

is, high flotation tires, use of an extra bogie axle, lower inflation pres-

sure, use of steel flexible tracks (Cudzik et al., 2018; Haas et al., 2016;

Labelle & Jaeger, 2019); and amendments to mitigate soil disturbance

such as placing brash mats on the machine trail (Labelle &

Jaeger, 2012; Solgi et al., 2018).

A very interesting and somehow unexpected finding of this meta-

analysis was the lack of any recovery trend of fine root presence with

increasing time after harvesting (Figures 4 and 5). The presence of fine

roots in skid trails and strip roads remains steadily lower than in the

soil which was not affected by machinery passage even more than

20 years after the harvesting activities. In contrast, for different

parameters of the forest soil ecosystem, for instance, sediment yield,

the morphology of the seedlings and biodiversity of microarthropods,

a clear recovery trend was shown sometimes even for a short time

after the intervention (Karami et al., 2023; Tavankar et al., 2022;

Venanzi et al., 2019). There are various reasons for the lack of a

recovery trend for fine roots. First, it is important to take into consid-

eration that not all machine trails are similar. A recent review on the

F IGURE 6 Funnel plots reveal
relationships between effect sizes and
standard errors in the whole dataset (a,
n = 217) and reduced dataset (b, n = 88).
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topic of skid trail recovery stated that the recovery process of differ-

ent features can be complete and fast on secondary or tertiary skid

trails, characterised by a low number of machine passages and subse-

quent lower soil compaction (DeArmond et al., 2021). In contrast, pri-

mary skid trails in which there was a high number of machine

passages and stronger compaction generally show only partial and

slow recovery (DeArmond et al., 2021). This applies also to fine roots.

In the present database, the major part of the studies were conducted

in Germany and Iran, where the approach to forest infrastructure net-

work planning is based on the concept of implementing a few heavily

used skid trails (Ebeling et al., 2017; Lotfalian et al., 2016). These trails

are often used for the passage of mechanical means for other reasons,

as tourism or wildfire management (Picchio et al., 2018). The effects

of these types of uses on soil compaction are hard to be identified

and evaluated. Therefore, it can be expected that in such studies the

investigated machine trails with a high number of machine passages

will show a considerable and long-lasting alteration of the fine roots.

It would therefore be interesting to implement similar studies in the

context of Mediterranean forests, where the machine trail pattern is

generally based on implementing many dispersed lightly used trails

(Picchio et al., 2020). This will allow for the different ecological con-

texts to be accounted for, and for the investigation of the effects of

machinery-induced soil compaction on trails characterised by a lower

number of machine passages. It is also possible that fine roots could

be a component of the forest soils which is particularly sensitive to

ground-based forest operations. It is indeed important to highlight

that each trail represents the portion of the cutting block in which the

disturbance to the forest ecosystem is given by the sum of the effects

of the machine passage and of the applied silvicultural treatment,

while in the rest of the cutting block, there are only the effects of the

silvicultural treatment (Latterini, Venanzi, et al., 2023). In the context

of continuous-cover forestry, it is typical that the magnitude of the

intervention in terms of percentage of biomass removal, for instance,

a thinning, is higher around the machine trails to favour their estab-

lishment. Summing the effects of a higher number of trees removed

surrounding the trails and the compaction caused by the machines, it

is possible to imagine that fine roots can be particularly impacted by

ground-based harvesting methods. Another interesting future

research project could also be to perform a comparison of the effects

of forest operations carried out in the same areas, both in the frame-

work of rotation and continuous-cover forestry. Although different

recent studies highlighted how a major canopy opening led to a higher

decrease in the presence of fine roots (Yang, Qin, et al., 2022; Yang,

Wang, et al., 2022), it is also true that in final felling interventions by

clear-cut there is a larger availability of logging woody residues. These

can be easily applied along the skid trails or strip roads to reduce soil

compaction (Ilintsev et al., 2021; Ring et al., 2021) and lower the level

of disturbance to fine roots in the soil directly affected by the passage

of the machinery (Figure 7).

The number of studies on the effects of amelioration interven-

tions on the presence of fine roots in skid trails were not enough to

give data supporting the type of intervention which is most effective.

Conclusions can be drawn that show the effectiveness of the amelio-

ration interventions to enhance the recovery of fine roots in the strip

roads used for forwarding. No positive effects were observed on the

skid trails used for skidding (Figures 4 and 5). The only amelioration

intervention applied to skid trails was mulching (Jourgholami, Ghas-

semi, & Labelle, 2019; Jourgholami, Feghhi, Picchio, et al., 2021), while

for forwarding data are mostly on alder (Alnus glutinosa (L.) Gaertn)

planting on the trails (Flores Fernández, Hartmann, & von

Wilpert, 2019; Flores Fernández, Rubin, et al., 2019). Although, as

stated above, it was not possible to compare the effects of the alter-

native amelioration interventions due to the low number of trials, it

can be expected that planting trees is more effective than mere

mulching with straw or forest litter to favour the recovery of fine

roots. This would explain the contrasting results of the meta-analysis

F IGURE 7 Fine roots in the skid trails
can be substantially reduced (a). However,
the application of logging residues and
brash mats on the trails can reduce soil
compaction, thus lowering the negative
effects of ground-based extraction on fine
roots (b). [Colour figure can be viewed at
wileyonlinelibrary.com]
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between the effectiveness of amelioration interventions in strip roads

and skid trails.

Assessment of meta-analysis robustness revealed that even after

excluding a significant part of data trends and distribution of effects

sizes and precision were similar (Figures S2–S4; Tables S5–S7). We

decided to exclude three studies, where methodology did not allowed

for precise estimation of effective sample size, based on root-counting.

These studies provided valuable insights into forest operation effects

on fine roots, and wide range of moderator values. However, even

exclusion of such large database did not change high heterogeneity of

data, resulting from including large variability of study conditions, indi-

cating that our results are robust. The only difference was a slightly

lower effect size of bulk density increment regarding forwarding, which

in the whole dataset was statistically significant, while in reduced was

insignificant. However, this difference results from smaller sample size,

affecting p-values (Wasserstein & Lazar, 2016).

5 | CONCLUSION AND FUTURE RESEARCH
SUGGESTIONS

Bearing in mind the goal of reviewing the effects that ground-based

forest harvesting methods can have on the presence of fine roots in

the soil, we applied a meta-analytic approach for developing a quanti-

tative synthesis of the effect sizes presented by the different studies

on the topic. We applied a multivariate mixed-effects meta-analytic

model to account for the correlation among trials implemented by the

same authors and at the same soil depth. We further investigated

the effects of the two main options for ground-based extraction

methods, which are skidding and forwarding, the relationships

between the presence of fine roots and soil compaction, and the

related recovery process with increasing post-harvesting time.

Obtained findings revealed that skidding and forwarding signifi-

cantly decreased the presence of fine roots in the soil affected by the

passage of the machines. Forwarding was slightly, but statistically sig-

nificant, more impactful than skidding, as a consequence of the higher

soil compaction triggered by this extraction approach. There is indeed

a strong correlation between soil compaction measured as bulk den-

sity increase, and the presence of fine roots. The analysis of the

recovery process revealed that even after more than 20 years from

the harvesting intervention fine roots in both strip roads and skid

trails were significantly lower than in the soil not affected by the

machine passage. We suggest that future research should be directed

towards making a similar evaluation in different forestry contexts,

such as the Mediterranean area, where the planning of the forest trails

network is based on developing many trails, but with lower traffic

intensity. Furthermore, it is strongly recommended to always accom-

pany data on fine root presence with a measure of soil compaction,

that is bulk density or total porosity, since this is the main driver of

alterations to fine roots. Soil compaction is also a direct consequence

of ground-based harvesting methods.

Finally, it would be very important to analyse the effects of

machinery-induced soil compaction on some other root traits, such

as diameter, length, area and volume. It can be hypothesised that

fine roots growing in compacted soils can also experience some

changes in their morphology (for instance lower diameter and

length), however, this hypothesis should be specifically tested with

dedicated research.
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