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Abstract
Aim: Climate change challenges temperate forest trees by increasingly irregular pre-
cipitation and rising temperatures. Due to long generation cycles, trees cannot quickly 
adapt genetically. Hence, the persistence of tree populations in the face of ongoing 
climate change depends largely on phenotypic variation, that is the capability of a 
genotype to express variable phenotypes under different environmental conditions, 
known as plasticity. We aimed to quantify phenotypic variation of central Europe's 
naturally dominant forest tree across various intraspecific scales (individuals, mother 
trees (families), populations) to evaluate its potential to respond to changing climatic 
conditions.
Location: Europe.
Time Period: 2016–2019.
Major Taxa Studied: European beech (Fagus sylvatica L.).
Methods: We conducted a fully reciprocal transplantation experiment with more than 
9000 beech seeds from seven populations across a Europe- wide gradient. We com-
pared morphological (Specific Leaf Area), phenological (leaf unfolding) and fitness- 
related (growth, survival) traits across various biological scales: within single mother 
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1  |  INTRODUC TION

Organisms have three fundamental mechanisms to persist under 
changing environmental conditions: phenotypic plasticity or, more 
broadly, phenotypic variation, genetic adaptation and, migration 
(Aitken et al., 2008; Berg et al., 2010; Chevin et al., 2010; Hoffmann 
& Sgrò, 2011; Lenoir & Svenning, 2015). Sessile organisms like trees, 
with long generation times and limited dispersal capacities, de-
pend strongly on phenotypic variation (Benito Garzón et al., 2019). 
Phenotypic variation, the ability of a genotype to express variable 
phenotypes under different environmental conditions (Whitman 
& Agrawal, 2009), buffers against short term environmental vari-
ability. In times of accelerating extinction rates due to climate 
change (Urban, 2015), it is crucial for species persistence (Chevin 
et al., 2010; Ghalambor et al., 2007).

Exploring the sources and limits of phenotypic variation and 
understanding what it entails for evolution, population dynam-
ics and range shifts becomes increasingly urgent for a realistic 
forecast of species persistence under future conditions (Reed 
et al., 2011). Previous research has focused on the adaptive char-
acter of phenotypic plasticity and its buffering function in the face 
of changing environmental conditions (Chevin & Hoffman, 2017; 
Draghi & Whitlock, 2012), its transmission across generations 
(Auge et al., 2017) and its implementation in mechanistic or hy-
brid species distribution models (Benito Garzón et al., 2019; Bush 
et al., 2016). Unfortunately, the foundation of phenotypic variation, 
that is the genotype, is inconsistently addressed across studies 
(Forsman, 2015; Forsman & Wennersten, 2016), ranging from ge-
netically identical clones or (half- ) siblings to populations or even 

whole species. Yet, phenotypic variation may vastly differ among 
these intraspecific levels of organization (Forsman, 2015; Nussey 
et al., 2007; Violle et al., 2012). Understanding these patterns and 
sources of variation is crucial to avoid drawing false conclusions in 
ecological experiments.

Here, we quantified the phenotypic variation in European 
beech (Fagus sylvatica L.), the naturally dominant forest tree spe-
cies in Western and Central Europe (Leuschner & Ellenberg, 2017), 
in a novel way across several levels of intraspecific organization, 
that is within mother trees, populations and the whole species. We 
conducted a fully reciprocal transplantation experiment across a 
range- wide gradient, spanning from the dry and warm (Spain) to 
the moist and cold (Sweden, Poland) distribution edge of the spe-
cies. Seeds were collected from seven sites and transplanted to 
the same seven plus one sites within and, additionally, to three 
sites beyond the current distribution range of the species, using a 
total of >9000 seeds. For the first time, we compared the pheno-
typic variation of key functional and fitness- related traits within 
the progeny of individual mother trees, within populations (i.e. 
among mother trees) and within the species (i.e. among popula-
tions) under the contrasting climates of the transplantation sites. 
Genetic differentiation among populations of European Beech is 
reported but overall weak (Buiteveld et al., 2007; Cuervo- Alarcon 
et al., 2018; Vornam et al., 2004). Genetic diversity within pop-
ulations, however, is high (Cuervo- Alarcon et al., 2018; Vornam 
et al., 2004) and phenotypic plasticity is assumed to play a major 
role in the variation of key functional traits of the species (Gárate- 
Escamilla et al., 2019). Studies comparing the phenotypic varia-
tion across several intraspecific scales, including maternal half- sib 

trees, within populations and across different populations under the contrasting cli-
mates of the translocation sites.
Results: The experiment revealed significant phenotypic variation within the off-
spring of each mother tree, regardless of geographic origin. Initially, seedling height 
growth varied among mother trees and populations, likely due to maternal effects. 
However, the growth performance successively aligned after the first year. In sum-
mary, we observed a consistent growth response in different beech populations to 
diverse environments after initial maternal effects.
Main Conclusions: The study strikingly demonstrates the importance of considering 
intraspecific variation. Given the surprisingly broad spectrum of phenotypes each 
mother tree holds within its juvenile offspring, we conclude that Fagus sylvatica might 
have the potential for medium- term population persistence in face of climate change, 
provided that this pattern persists into later life stages. Hence, we also suggest fur-
ther investigating the inclusion of passive adaptation and natural dynamics in the 
adaptive management of forests.

K E Y W O R D S
European beech, Fagus sylvatica, Forest ecology, intraspecific trait variation, local adaptation, 
phenotypic plasticity, reciprocal transplantation experiment, species persistence
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families, are scarce so far. Understanding the source of pheno-
typic variation, however, is missing so far but crucial for estimating 
population persistence in face of climate change and the need and 
type of management actions.

Specifically, we quantified the phenotypic variation of Europe's 
naturally dominant forest tree in a novel way across various intra-
specific scales in order to draw a broader picture on the species 
capacity to cope with different environmental conditions – among 
and within populations, across a wide geographical and environ-
mental gradient. The observed variation among the seedlings 
could demonstrate the immediate capacity to adjust to changing 
environments. However, successful establishment and juvenile 
growth are also necessary prerequisites for long- term adaptive 
processes.

Based on the high genetic variation within single stands (Vornam 
et al., 2004), we hypothesized a high phenotypic variation already 
within the progeny of each mother tree.

2  |  MATERIAL S AND METHODS

2.1  |  Experimental design

We carried out a reciprocal transplantation experiment (RTE) with 
European beech (Fagus sylvatica L.). RTE's have been developed as a 
method to study local adaptation of different populations as well as 
their phenotypic plasticity (Kawecki & Ebert, 2004; Palacio- López 
et al., 2015). They allow an appropriate comparison of different pop-
ulations and even the detection of local adaptation by placing each 
at all environments of interest.

European beech is the dominant natural tree species in Western 
and Central Europe. This shade- tolerant species can form pure 
stands under a large variety of environments and thus is of high 
ecological and economical importance (Leuschner et al., 2006; 
Leuschner & Ellenberg, 2017).

Our RTE, detailed in Muffler et al. (2021), was conducted along 
a gradient from Spain towards Poland and Sweden (Figure S2), re-
flecting two key factors that affect the species' growth and distri-
bution: winter cold and summer drought (Bolte et al., 2007; Kramer 
et al., 2010; Muffler et al., 2020; Weigel et al., 2018). At eight dif-
ferent forest stands dominated by beech along this gradient, we 
collected beechnuts from four mother trees, respectively, within a 
250 m radius. The beechnuts were collected directly from the tree 
with a sling shot (Bigshot, Sherrill Inc) to ensure the correct mater-
nity. Empty or mould- infested beechnuts were sorted out. Seed col-
lection was carried out in autumn 2016 during a continental- wide 
masting event (Ascoli et al., 2017), which ensured a large quantity of 
seeds expressing the full genetic diversity (Tachiki & Iwasa, 2010) at 
all sites except for Sweden where poor fructification took place. The 
Swedish site within the current species distribution range (VI) was 
still used as a transplantation site, but not as a seed source. To allow 
for natural cold stratification, the beechnuts were planted within 
3 weeks after collection in experimental plots that were established 

at all transplantation sites. In addition to the eight sites that were 
located within the current distribution range of European beech, we 
also installed three sites beyond the natural distribution range. Two 
sites were established further north and east in Sweden and Poland 
(sites MO & NR, Figure S2) and one site further south in Spain (site 
PM, Figure S2). These sites represent areas into which beech is ex-
pected to expand in the future (Sweden and Poland) or dry and warm 
conditions that existing beech populations are expected to face in 
the near future due to climate change (Saltré et al., 2015).

The plots were placed in beech- dominated forests near the 
mother trees of the specific forest stand. It was taken care that all 
sites had a comparable canopy closure of approx. 60%–70%. The 
three sites outside of the natural distribution range were located 
in oak dominated forests in Spain (Quercus pyrenaica WILLD.) and 
Poland (Quercus robur L.) and a mountain ash stand in Sweden 
(Sorbus aucuparia L.). For detailed site information, see Table S1.

The beechnuts were planted in ten cages (true replicates) at each 
transplantation site, each protected by a 5 mm mesh on all sides 
except the bottom, inserted several cm into the ground, to prevent 
seed predation, seed removal and contamination by seeds from 
surrounding trees. All plots were protected by additional fences to 
prevent the intrusion of wild game. Before planting the beechnuts, 
the natural litter layer potentially containing local seeds and seeds 
from the soil surface were removed. Beechnuts do not form any 
soil seed bank and do not survive more than one winter. Each cage 
(110 × 50 cm) contained three seeds per single mother tree, planted 
as nested replicates on a 10 × 10 cm area. In total, this amounts to 
30 seeds per mother tree of all seven populations at each trans-
plantation site. This results in n = 11 sites × 10 replicates × 7 popu-
lations × 4 mother trees × 3 seeds = 9240 seeds. Thus, each installed 
cage contained 84 planted seeds replicated 10 times per site. The 
position of the seeds of the different origins and mother trees was 
systematically interspersed and altered per cage and marked. After 
planting, we covered the seeds with the same standardized, seed- 
free beech litter at all sites. After 1 year, the top covers of the cages 
were removed. In the first year of the experiment, all germinated and 
established seedlings were registered and labelled individually, and 
most non- germinated beechnuts were successfully retrieved. The 
seedlings and seeds were found at the very same location where 
they were planted, and no additional seeds indicating uncontrolled 
input from local seed sources were observed.

2.2  |  Trait measurement

We quantified key functional and fitness- related traits of the trans-
planted beech seedlings over three growing seasons.

Specific leaf area (SLA) is an important functional trait that con-
tributes to the regulation of plant photosynthesis, growth and pro-
ductivity at scales from leaf to ecosystem (Reich et al., 1997). It is 
highly influenced by the availability of light and water and, therefore, 
considered to be very plastic (Ackerly et al., 2002; Ramírez- Valiente 
et al., 2010). To determine SLA, we collected leaf samples (n = 1246) 
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at the end of the first growing season in September. Sampling was 
carried out late in the vegetative period to avoid impairing the pho-
tosynthetic activity of the young trees with their few leaves. The 
samples were immediately pressed for further usage. After pressing, 
we scanned the surface area at 400 dpi with a scanner (Perfection 
V800 Photo, ScanMaker 1000XL Plus, Mikrotek) and measured the 
leaf surface area with the software ImageJ 1.5 2a (Rasband, National 
Institute of Health, USA). Afterwards we dried the leaves for at least 
24 h at 60°C in a drying oven (UF 110, Memmert) and weighed them 
with a fine scale (Entris 124i- 1S, Sartorius ALC- 210.4, Acculab). To 
obtain the SLA, we then divided the leaf area in cm2 by its dry weight 
in g. In total, the SLA of 1246 seedlings was measured.

Spring phenology, expressed here as the day of leaf unfolding, is a 
key functional trait for the plants' fitness (Chuine & Beaubien, 2001) 
and, therefore, subject to natural selection. Earlier leaf- out timing 
allows to explore resources (water, nutrients) before other spe-
cies or individuals, providing a competitive advantage, especially 
in regions with unfavourably dry summer conditions (Robson 
et al., 2013). However, too early leaf- out exposes the leaves to even-
tual late spring frost events and herbivory which can severely affect 
tree growth and competitive abilities, in particular at juvenile ages 
(Gömöry & Paule, 2011; Vitasse et al., 2014). Spring phenology is 
highly sensitive to environmental conditions, especially temperature 
and is, therefore, used as ‘fingerprint of global warming’ (Parmesan 
& Yohe, 2003; Vitasse et al., 2021). We recorded leaf unfolding dates 
of 2 years old seedlings (i.e. at the beginning of the third growing 
season), at the three sites having the highest number of remaining 
seedlings (Site MO, VI & TL; Figure 1) using phenocams (HomeVista, 
SecaCam) positioned at 1 m height above the seedlings that took 
three pictures each day. For each individual (n = 394), leaf unfolding 
was defined as the date at which green leaves became visible on the 
respective picture.

Survival rate and seedling height served as fitness- relevant mea-
sures for the seedlings' performance and, respectively, their seed 
family and source population. Both traits can be proxies for overall 
adaptation or maladaptation in the respective environments. The 
height was measured every year at the end of each growing sea-
son (2017: n = 1528; 2018: n = 656; 2017: n = 570). Survival rate was 
defined as the ratio of living individuals after 3 years in relation to 
established seedlings in the first year. Note that survival and growth 
(of the previous year) were positively correlated in our experiment 
(generalized linear mixed model with transplantation site and time 
as random effects: p < 0.0001; slope = 0.45). Some sites were highly 
impacted by summer droughts in 2018 and 2019 (see Table S2). Site 
NL (Southern Germany) was excluded from statistical analyses due 
to low seedling numbers. Site OM (Spain) was excluded from analysis 
after 2017 due to a thick layer of beech leave litter causing the death 
of all seedlings due to light deprivation. We assume, that it happened 
because of the specific location at a slope, at which leaves of the sur-
rounding trees accumulated and then got trapped inside our fence. 
No comparable problems with leave litter occurred at any other site. 
In GD (Poland) three cages were affected by seed predation and had 
to be excluded.

Here, we deliberately focus on early life stages, with our exper-
imental setup including seed stratification, germination and estab-
lishment at the transplantation sites, which are crucial for successful 
regeneration (Muffler et al., 2021) and potential genetic adaptation 
by strong selection through environmental conditions at this age 
(Donohue et al., 2010; Petit & Hampe, 2006). We consider success-
ful establishment and juvenile growth as crucial prerequisites for 
longer- term natural adaptive processes.

2.3  |  Statistical analysis

We (1) characterized phenotypic variation at different intraspecific 
levels (i.e. within the species among populations, within popula-
tions among mother trees and within the progeny of single mother 
trees) of European beech by displaying the trait values for each 
individual offspring. We then (2) tested for differences in varia-
tion among the intraspecific levels by applying Levene's tests at 
the population and mother tree levels. We (3) analysed the pro-
portion of trait variation contributed by each intraspecific level 
and the environment (represented by the different transplantation 
sites) using linear mixed models following the methods of Albert 
et al. (2010) and Rosas et al. (2019). We set up one model per trait 
with all sources of variation (environments, populations, mother 
trees and residuals – the latter accounting for the variation within 
the progeny of each mother tree) as nested random factors and the 
intercept as the only fixed effect, yielding the explained variance 
per source of variation.

Additionally, we (4) analysed the relative importance of different 
levels of intraspecific organization and the environment on height 
growth over the 3 years of the experiment using a linear model 
with fixed effects ‘population’, ‘mother tree’ and ‘environment’ (the 
different transplantation sites). The height measurements of the 
seedlings were averaged for each cage per site. Finally, we also (5) 
tested for genetic differences in mean trait expression of the pop-
ulations and genotype × environment interactions in linear mixed 
models (SLA, leaf unfolding, height growth) and generalized linear 
mixed models (survival rate). The nesting of the mother trees within 
the population was introduced as random effects to account for 
the nested structure in the experimental design. Homoscedasticity 
and normal distribution of the residuals were checked visually in 
residuals- versus- fitted and qq- plots. For the variance analysis (4) 
leaf unfolding and survival rate did not fulfil the parametric assump-
tions, therefore they were rank- transformed, rendering the analysis 
a non- parametric model. Specific leaf area and plant height did not 
require transformations. For the test of genetic differences among 
populations (5), the traits height growth and leaf unfolding were 
rank- transformed. A significant population x environment interac-
tion would indicate differential responses of specific populations 
in specific environments. The analyses were conducted in R 3.5.3 
(R Core Team, 2019) and the additional packages lmerTest v.3.0 
(Kuznetsova et al., 2017), ggplot2 v.3.3.2 (Wickham, 2009) and car 
v.3.0 (Fox & Weisberg, 2019).
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F I G U R E  1  Phenotypic variation within the offspring of each mother tree. Phenotypic variation of beech seedlings stemming from four 
mother trees per source population and transplanted to eleven sites representing different environmental conditions for the functional traits 
specific leaf area (SLA) (a) and day of leaf unfolding (b) and the fitness traits height (c) and survival rate (d) after three growing seasons. Each 
panel represents one population, organized from the cold Northeast of Europe (left) to the warm Southwest (right). Each panel contains 
four dot plots representing four mother trees, that is half- sib families (a–d), summarized by a boxplot showing the median and quartiles with 
the whiskers extending to 1.5 inter- quartile distance. If the notches of two boxplots do not overlap this is ‘strong evidence’ that the two 
medians differ (Chambers, 2018). Each dot represents one seedling, except for the trait survival rate for which the size of a single dot depicts 
the number of seedlings per mother tree per environment that were still alive after 3 years (min: 1, max: 22). All dots are coloured according 
to the eleven environments the seeds were transplanted to. Blue colours represent transplantation to the cold north- eastern European 
sites, red colours represent the warm south- western European sites. The legend also indicates the transplantation sites outside the current 
species distribution range beyond the cold edge (MO in Central Sweden, NR in Eastern Poland) and the dry edge (PM in Eastern Spain).
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3  |  RESULTS

3.1  |  High phenotypic variation among individuals

The progeny of each single mother tree, regardless of their source 
population, exhibited consistent variation in the functional trait 
specific leaf area (SLA = leaf area/leaf dry weight) across the dif-
ferent environments (Figure 1, Levene's test for homogeneity of 
variances: p = 0.57 among all mother trees and p = 0.51 among all 
populations). This suggests that the full phenotypic variation of 
the whole species (comprising all seven populations and 27 mother 
trees) was already expressed in the progeny of each mother tree. 
The majority of the variance in SLA was attributed to the environ-
ment (63.8%, Figure 2, Table S3), followed by the mother trees prog-
eny (30.2%). Variance within populations (i.e. among the mother 
trees) (4.5%) and among the populations (1.5%) was negligible.

Likewise, variation in leaf phenology across the environmental 
conditions of the transplantation sites showed no significant differ-
ences within populations (i.e. among the mother trees) or among the 
populations (Figure 1; Levene's test for homogeneity of variances: 
p = 0.49 among all mother trees and p = 0.78 among all populations). 
Similar differences in leaf- out dates of 4 weeks between transplan-
tation sites demonstrate the strong and equal phenotypic variation 
within the offspring of each single mother tree to environmental dif-
ferences, irrespective of the populations' origin. The environment 
explained the majority of the variance in leaf unfolding, emphasiz-
ing the presumably high phenotypic plasticity in this trait (80.7%, 
Figure 2, Table S3). Inter- individual variation within the progeny of 
each mother tree contributed 16.1% to the overall variation in leaf 
unfolding. Less than one percent of the variation was found within 

populations, that is among mother trees, or within the species, that 
is among the populations.

Thus, phenotypic variation within the progeny of each mother 
tree was as high as the variation at the mother tree and, even, the 
population level. Considering the large environmental gradient 
covered here (mean annual temperature 4–11°C) and the strong 
phenotypic variation in the studied traits (SLA site averages: 248.2–
447.8 cm2/g; about 4 weeks difference in leaf unfolding), it is remark-
able that the observed range of phenotypic variation was already 
expressed in the progeny of each single mother tree. In summary, 
the offspring of each individual mother tree contains a similar capac-
ity to adjust the observed functional traits to changing environmen-
tal conditions as the whole species.

3.2  |  No signs of genetic differences for any trait – 
Annual growth performance converges over time

Height growth mostly varied among the progeny of each single 
mother tree and strikingly little at higher levels of intraspecific or-
ganization and across environments (Figures 1 and 2). The major-
ity of growth variation in the first growing season was attributed to 
the progeny of the individual mother trees (70.0%) and this share 
increased for the subsequent 2 years of growth (80.2%; 79.4%; 
Figure 2, Table S3). Variation attributed to the population and 
mother tree levels decreased considerably over the 3 years, while 
the importance of environmental conditions (i.e. the effect of the 
transplantation sites) increased over time (Table 1). The initial seed-
ling growth also significantly correlated with the mother trees' av-
erage seed weight (f = 77.2, p < 0.001, marginal r2 = 0.26, Figure S1), 

F I G U R E  2  Partitioning of the variance explained by the three level of genetic organization and the environment. Sources of variation 
in the functional traits specific leaf area (SLA = leaf area/leaf dry weight) and leaf unfolding date, and fitness- related traits according to a 
variance partitioning based on mixed models with only random effects (Albert et al., 2010). The height increment of the first year equals 
the total height of the first year. Survival rate is calculated over the offspring of each mother tree and, hence, results in just one number per 
mother tree and transplantation site. The analysis can, therefore, not differentiate between the variation of mother trees and individuals 
(displayed in stripes of both categories).
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suggesting that maternal seed provisioning influenced the first- year 
fitness of beech seedlings. In summary, the results highlight a re-
markably homogeneous growth response of diverse beech origins to 
various environments after initial and temporary maternal effects.

No significant genotype (population) effect or genotype- 
environment interaction was detected in fitness (growth, survival 
rate) and functional traits (SLA, phenology) (Table 2).

The seedlings were affected by Europe- wide droughts in 2018 
and 2019, leading to high mortality at some experimental sites 
(Figure 1, Table S2). However, the beech populations did not exhibit 
significant differences in their survival rate (Table 2). In fact, only 
6.4% of the total variation in seedling survival was attributed to the 
populations (Figure 2, Table S3).

4  |  DISCUSSION

4.1  |  High phenotypic variation within the progeny 
of each mother tree

Our results reveal a remarkably high phenotypic variation in key 
functional traits of a major forest tree species at the individual 
scale, that is in the offspring of each mother tree, rather than at 

higher intraspecific levels of organization such as populations. 
This phenomenon appears to be independent of the trees geo-
graphic and environmental origin. The prevalence of phenotypic 
plasticity over genetic adaptation as the main source of variation 
in key functional traits of European beech is supported by other 
recent studies (Gárate- Escamilla et al., 2019; Muffler et al., 2021). 
However, local genetic adaptation has been reported for conti-
nental (Aranda et al., 2015; Gárate- Escamilla et al., 2019) and even 
regional scales (Frank et al., 2017) and some provenance trials 
indicate small differences in leaf traits among beech populations 
(e.g. Sánchez- Gómez et al., 2013). Additionally, for other traits, 
such as frost tolerance or hydraulic architecture, small indica-
tions of local differences have been reported (Aranda et al., 2015; 
Hofmann et al., 2015; Kreyling et al., 2014). Yet, many observed 
phenotypic and genetic differences lack consistent geographic or 
environment- related patterns, which indicates that both neutral 
genetic drift in small populations in glacial refugia (de Lafontaine 
et al., 2013) and directed genetic selection towards local adapta-
tion might be drivers of the reported differences among popula-
tions. Moreover, previous studies often focused on phenotypic 
differences by comparing population means. While providing valu-
able insights into large- scale differences, this approach inevitably 
masks inter- individual variation, that is variation at the level where 

Factor

2017 2018 2019

F value p value F value p value F value p value

Populations 40.3 <0.001 4.2 <0.001 1.1 0.350

Mother trees 9.3 <0.001 1.5 0.085 1.3 0.162

Environment 11.4 <0.001 12.9 <0.001 17.4 <0.001

Note: Provided are anova results based on linear models with populations and mother trees 
together with environmental effects as fixed effects. Significant (p < 0.05) values are in bold.

TA B L E  1  Effect of populations and 
mother trees on the seedlings' height 
growth over time.

Trait Factor DF F value p value

Specific leaf area Population 6 0.9 0.499

Environment 9 220.2 <0.001

Population × environment 53 1.3 0.054

Leaf unfolding Population 6 0.3 0.934

Environment 2 410.4 <0.001

Population × environment 10 0.9 0.526

Growth 2019 Population 6 0.7 0.620

Environment 2 30.9 <0.001

Population × environment 12 1.0 0.486

Survival until 2019 Population 6 2.3 0.063

Environment 8 40.3 <0.001

Population × environment 48 0.6 0.066

Note: Provided are anova results based on linear mixed models (SLA, leaf unfolding, growth) and 
generalized linear mixed models (survival) with populations and environment as fixed effects and 
individual mother trees nested within the populations as random effects. Significant (p < 0.05) 
values are in bold.

TA B L E  2  The seedlings did not show 
significant genetic (main population 
effect) or genotype by environment 
interaction (population x environment 
interactions) in the functional traits SLA 
and leaf unfolding as well as in the fitness 
traits survival and growth.
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selective processes are ultimately effective (Forsman, 2015; 
Forsman & Wennersten, 2016; Nussey et al., 2007). A few exist-
ing studies have already considered intra- populational trait varia-
tion in common garden experiments (Aranda et al., 2017; Bresson 
et al., 2011). While these studies do not include all intraspecific 
levels of our study, they do highlight that intra- populational varia-
tion is systematically higher than inter- populational variation. Our 
study even suggests that the lowest intraspecific level, that is the 
variation within offspring of each mother tree is the main source 
of variation in our target species. Ultimately, the high phenotypic 
variation found within the progeny of each mother tree (Figures 1 
and 2) and the absence of significant genetic differences in mean 
trait expression (Table 2) hint at a high capacity for acclimating to 
environmental changes at any given local tree stand, that is to a 
high potential for population persistence.

Yet, it is important to note that the studied traits might not be 
the only ones involved in the response to climate variation. Rooting 
intensity and depth, as well as frost tolerance, for instance, are likely 
crucial for resisting drought and temperature variability, respec-
tively, although they are not often quantified in studies requiring 
large sample sizes. High phenotypic plasticity in functional traits 
is supposed to be beneficial in temporally variable environments 
and is likely to enhance species' persistence under rapidly chang-
ing climatic conditions (Chevin & Hoffman, 2017; Gárate- Escamilla 
et al., 2019). Nevertheless, it is also intensively discussed whether 
high phenotypic plasticity of functional traits might either delay or 
facilitate genetic adaptation by buffering selective processes (Fox 
et al., 2019; Oostra et al., 2018; Reed et al., 2011). Still, it has been 
demonstrated that directional and, for trees, surprisingly quick natu-
ral selection due to warming is also possible in long- lived temperate 
tree species (Jump et al., 2006).

4.2  |  Initial differences in growth diminish 
over time

Overall, the growth performance and survival of the seedlings high-
light a remarkably homogeneous response across different beech 
populations to highly contrasting environments (from Spain to 
Sweden and Poland). This consistency follows the initial and tran-
sient maternal effects due to seed provisioning or other maternal 
environmental effects (e.g. epigenetics, see Donohue, 2009 and 
Rico et al., 2014). In contrast to a few other European beech prov-
enance trials (e.g. Robson et al., 2013; Wang et al., 2021), we found 
no significant differences in growth increment among the popula-
tions after 3 years of experiment and no sign of significant genetic 
differences (all main effects of population and interactions between 
transplantation site and population being non- significant in Table 2). 
This suggests that, when excluding the potential effect of maternal 
effects, these tested populations exhibited equal fitness along our 
extensive environmental gradient and at an early recruiting stage. 
The alignment of growth also contradicts a presence of strong com-
petition effects within our experimental timeframe, as we would 

have otherwise expected increasing differences in height growth. 
However, intraspecific competition may become a concern when ex-
perimental set ups like ours are excessively prolonged.

At some sites, droughts in 2018 and 2019 had a significant im-
pact on the seedlings, leading to high mortality rates. While these 
selective events could have accentuated the fitness advantages of 
seed origins presumably adapted to drought, we did not observe any 
differences in the survival rate among the tested populations (again 
all interactions between transplantation site and population being 
non- significant). This lack of differentiation does not necessarily 
negate the potential existence of drought adaptations and fitness 
advantages in some populations of the species. It is important to 
note, that we did not study populations from the southeast of the 
species' distribution range (Balkan) and only covered the seedling 
stage. Robust estimations of fitness throughout the extensive life 
cycle of trees require long- term provenance trials with known fam-
ily structures of the individual trees. Nonetheless, our experiment 
sheds light on a crucial stage of selection, namely, seedling growth 
and survival, which is relevant for population dynamics (Jackson 
et al., 2009).

4.3  |  Potential implications for species 
persistence and management

In the light of recent droughts in 2018 and 2019 and anticipated 
changes in environmental conditions, there is growing concern 
regarding the future of beech forests in Western and Central 
Europe (Engel et al., 2023; Gessler et al., 2007; Saltré et al., 2015). 
Consequently, the necessity of passive and/or active adaptive forest 
management practices has been a topic of debate (Jandl et al., 2019; 
Lindner et al., 2010). Assisted migration, which involves the organ-
ized transfer of presumably pre- adapted genotypes or species from 
warmer and drier origins to colder and wetter regions with the aim 
of growing trees better adapted to future climatic conditions, has 
been recently advocated in forestry (Bolte et al., 2009; Gömöry 
et al., 2020) and species conservation (Hoegh- Guldberg et al., 2008; 
Peterson & Bode, 2021; Weeks et al., 2011). However, the trans-
fer of allochthonous genetic material may also lead to unintended 
long- term consequences, such as outcrossing depressions (Whitlock 
et al., 2013), the emergence of undesirable genetic properties 
(Benito- Garzón et al., 2013; Weeks et al., 2011) or uncertainty about 
environmental conditions (Pachauri et al., 2014) to select the genetic 
material for.

In light of the extensive phenotypic variation observed within 
the juvenile offspring of individual mother trees in our study, we 
conclude that autochthonous European beech populations might al-
ready possess substantial potential for phenotypic adjustments. This 
potential is apparent even in the face of dramatic climate change, ex-
emplified by our wide climatic gradient of transplantation sites (7°C 
difference in mean annual temperature between the warmest and 
coldest transplantation site). We found consistently high phenotypic 
variation within the juvenile offspring of individual mother trees, 
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while the variance among populations was minimal, as indicated by 
the lack of significant main and interaction effects of population on 
mean trait expression (Table 2). We assume that the observed high 
phenotypic variation, provided that this pattern persists in later life 
stages, might be advantageous for medium- term population per-
sistence under changing climatic conditions. It ensures the presence 
of well- performing individuals in the progeny of every mother tree, 
adjusting to various environmental conditions encountered in our 
transplantation sites.

When assessing species persistence, however, it is also crucial 
to consider shifts in interspecific competition. For example, pheno-
logical studies at the south- western distribution edge of our spe-
cies suggest that climatic changes, such as the advancement of leaf 
flush and prolonged vegetative periods, may favour competitors like 
Quercus petraea over beech (Vitasse et al., 2011).

Phenotypic variation is an obligatory prerequisite but not a di-
rect proof of (genetic) adaptative potential. High phenotypic vari-
ation across all families is a precondition for adaptive and selective 
processes. Further studies with known family structures are needed 
to explore the combined potential of genetic adaptation and pheno-
typic plasticity in our target species and other forest trees through-
out their full life cycle.

Taking into account the substantial number of seeds produced by 
each mature tree during its lifetime and the positive relationship be-
tween growth and survival found in our study, our findings suggest 
potential for phenotypic acclimatization even in the face of signifi-
cant climate change. Therefore, the potential of natural regeneration 
in Adaptive Forest Management (AFM; Jandl et al., 2019) warrants 
further exploration also in mature trees. To derive well- founded 
implications for forest management, we recommend including ad-
ditional key functional and fitness- related traits and focusing on 
longer- term effects beyond the seedling stage. Nevertheless, high 
phenotypic variation during the seedling stage and successful es-
tablishment, as shown in our study, are prerequisites for any natural, 
longer- term adaptive process.
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