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Summary 
Calypso bulbosa is a rare orchid listed in the Habitats Directive’s annex 2 and 4. 
Since the species occupies rather common habitats, mesic and moist forest in the 
true boreal region, a major dark figure of hitherto undetected occurrences of the 
species is probable. These unknown occurrences are important to discover for spe-
cies protection and to get a better estimate of the probable population size and dis-
tribution of the species in Sweden. Therefore, we modelled and mapped the spe-
cies’ potential sites of occurrence at the hectare level, based on presence/ pseudo-
absence of Calypso and in relation to an initial set of 113 environmental and habitat 
variables, including e.g. land cover, land use, forest type, climate, soil moisture, 
soil and bedrock type. We used a forward model selection, using a Bayesian spe-
cies distribution model, which ultimately resulted in 11 explanatory variables that 
best explain the presence/absence of the species and had the highest predictive 
power. Our final model explained typical variation (17%) in the species occurrence 
given these macro scale environmental variables and could very well discriminate 
between presences and absences (AUC = 0.9). The resulting habitat suitability map 
indicates that there may be many undiscovered Calypso sites in spruce forests in 
the far north, especially in the alpine region in the northwest. The probability map 
may be used as a guide for finding undiscovered sites/hot spots. After further sam-
pling the accuracy of the model could be tested as the number of false negative and 
positive would be available. If reliable, the model may also be used to calculate 
dark figures for the distribution and populations size of Calypso bulbosa. 
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Aim 
The aim of this analysis is to provide “hotspots” where the forest-plant species 
Calypso bulbosa could occur. It further describes the opportunities and limitations 
of using opportunistic reporting of species occurrences (Artportalen) and large-
scale GIS based variables in order to predict species occurrences in new areas. 

Background 
All plant species have ecological niches within which they can persist. These 
niches are given by environmental conditions like light availability, microclimate, 
humidity, water availability, pH, or nutrients. In addition, the possible presence of 
the species in a locality is affected by biotic factors like competition or facilitation 
with/by other species. Populations are also not static but constantly change, with 
this change depending e.g. on the proximity to (historical) occurrences of the spe-
cies and the ability to disperse and establish. 

The aim of this report was to develop a species distribution model for Calypso 
bulbosa [norna], a plant species in moist forests that is listed in annex 2 and 4 of 
the Habitats Directive. 

The first objective was to identify variables that are important for predicting the 
occurrences of C. bulbosa. 

The second objective was to build a model that can be used to predict occurrences 
given these environmental variables over new areas allowing the identification of 
areas where new populations could be discovered. 

Methods 
The used approach to identify important variables for predicting the species occur-
rences is explained in detail in this section. This includes intermediate results that 
led to decisions on how to proceed, while the main output of hot spots of occurren-
ces is stored as layers in ArcGIS and in a project in Artportalen. The spatial scale 
of the data output is quadrats of one hectare (100 ×100 m). 
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Preparation of data and first selection of variables 

Species observations 
The presences of C. bulbosa in each quadrat were extracted from Artportalen. In 
case of several observations within the quadrats each quadrat was counted as 
“present”. 

The absences were estimated by using 70 plant species that are frequently associa-
ted with C. bulbosa. A quadrat was recorded as species present if C. bulbosa was 
found within and recorded as absent if any of the 70 associated plants were found 
but not C. bulbosa. Species occurrences of the associated plant species were limi-
ted to northern Sweden, from the provinces of Dalarna and Gästrikland and north-
wards during the period May 15-July 1 (when C. bulbosa is most likely discove-
red). 

Environmental variables 
Available data consisted of the presence of C. bulbosa (norna_presence), the co-
ordinates (point_x, point_y), and 113 variables, with many of them offering very 
sparse information (Fig. 1). The variables were summarized to the used scale (e.g. 
mean, proportion of area). The environmental variables were extracted using 
ArcGIS (provided by Sofie Wikberg). 

Climate 
Precipitation and temperature data were obtained from SMHI maps with a resolu-
tion of 4 × 4 kilometres. Data from the period 1991-2013 were used (most recent 
available) and we tested both annual (precip_ann, temp_ann) and seasonal data 
(spring (precip_mam, temp_mam), summer (precip_jja, temp_jja), fall (precip_son, 
temp_son), winter (precip_djf, temp_djf)). From the same source we also got the 
start and the length of the vegetation period (veg_start, veg_per). 

Exposure 
Elevation data for the quadrats were based on the Swedish National Elevation 
Model with a resolution of 2 meters. The 2-meter cells were first aggregated into 
10-meter cells and mean elevation was calculated. From the 10-meter cells 
minimum, maximum and mean values of elevation, slope and aspect were 
calculated for each of the one hectare quadrats (hojd100m_min, hojd100m_max, 
hojd100m_mean, slope100m_min, slope100m_max, slope100m_mean, 
aspect100m_min, aspect100m_max, aspect100m_mean). From the aspect values 
the minimum, maximum and mean percent south of 100 m2 cell was calculated (if 
x larger than 180-> x=360-x) (perc_south_min, perc_south_max, 
perc_south_mean). 

Bedrock 
Information about the bedrock material in the one-hectare quadrats was obtained 
from the SGU bedrock map, with a scale between 1:50 000 and 1:250 000. There 
were 58 different bedrock types, divided into calcareous (Kalkberg) and not cal-
careous types, as well as into 14 different types of chemical composition of the 
bedrock. Proportions of each type in the one-hectare quadrats were calculated. 
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Soil types 
Soil type maps from SGU were used to calculate the proportion of different soil 
types in the one-hectare quadrats. The maps come in different scales, from 
1:25 000 to 1:750 000, but the one with the most detailed scale available was 
always used in any location. The soil types were grouped into eight classes (Sväm- 
eller älvsediment, Organisk jordart, Lera-silt, Isälvssediment, Grov silt-finsand, 
sand eller grus, Morän, moränlera eller lerig morän, Sedimentärt berg, Berg). 

Soil chemistry 
To get an estimate of the soil chemistry in the quadrats, we used data from the 
Swedish Forest Soil Inventory. The sample points of this inventory are at least 12.5 
km apart and interpolation using an inverse distance weighted (IDW) technique 
was used to obtain a raster surface with cells corresponding to the one hectare 
quadrats. We used pH, hydrogen ion concentration and base saturation data from 
both the humus layer (0-30 cm depth) as well as from the mineral soil (>65 cm 
depth) (idw_ph_h30, idw_hconc_h30, idw_base_sat_h30, idw_ph_m2065m, 
idw_base_sat_m265). 

Soil moisture 
Soil moisture data were obtained from the SLU Soil moisture map with a resolu-
tion of 2 meters. The 2-meter cells were first aggregated into 10-meter cells and 
mean soil humidity was calculated. From the 10-meter cells minimum, maximum 
and mean values soil humidity were calculated for each of the one hectare quadrats 
(soil_moisture100m_min, soil_moisture100m_max, soil_moisture100m_mean). 

Land cover 
We used the National Land Cover map with a resolution of 10 meters to obtain the 
proportions of 24 different land cover types in the one-hectare squares. The same 
source also provided us with proportions of three forest productivity classes 
(Ej_skogsmark, Improduktiv_skogsmark, Produktiv_skogsmark). 

From all available variables several where selected to be individually tested as ex-
planatory variables for the C. bulbosa occurrences (Table 1). As can be expected, 
many of these were highly correlated (Fig. S1). We therefore selected several un-
correlated extracted variables and calculated several new variables. Hence, this first 
selection was based on (i) discussions of the relevance of certain explanatory varia-
bles for the species occurrences among Sofie Wikberg, Jörg Stephan, and Sebastian 
Sundberg, (ii) that the predictor needed to offer some variability, and (iii) that the 
predictors cannot be correlated among each other. If correlated one, biological 
more meaningful, explanatory variable was selected. 

The variables aimed to represent larger groups of important conditions: exposure, 
soil, climate, forest type, ground type (Table 1). Three variables were tested with 
the aim to evaluate if the variability within a hectare quadrat affected the species 
occurrences. The reasoning behind was that the species could occur at quite differ-
rent heights/slopes/percent souths if there was great variability within the quadrat, 
meaning the association with the quadrat mean could be very weak. To avoid large 
computational efforts the range, not the standard deviation was used. Two variables 
were tested, if they would provide a more meaningful measure of pH. 
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The final data set with all environmental variables consisted of 9 636 observations 
across Sweden (species absences = 8 983; species presences = 653). 

Fig. 1: Variability of the 113 
environmental variables. 
Shown are each observation 
site (hectare quadrat) with 
respect to each extracted vari-
able. Orange indicates that the 
value is 0, Grey indicates that 
the value is any number other 
than 0, and white indicates the 
data are not available 
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Table 1: Overview of variables that were uncorrelated, assumed to be important for the species 
occurence, and further tested individually. Variables in italics were calculated from GIS-extracted 
variables. 

Group Predictor Explanation 

Exposure 

hojd100m_mean mean height of 100 m2 cell 

slope100m_mean mean slope of 100 m2 cell 

perc_south_mean mean percent south of 100 m2 cell (from aspect, if x larger 
than 180-> x=360-x) 

Soil 

idw_ph_h30 pH in the top humus layer 

soil_moisture100m_mean mean soil moisture in 100 m2 cell 

organisk_jordart proportion of 100 m2 cell with organic soil 

berg proportion of 100 m2 cell with surface rock 

Climate 
precip_ann mean annual precipitation 

temp_ann mean annual temperature 

Forest type 

granskog proportion of 100 m2 cell with spruce forest 
(=granskog_pa_vatmark + granskog_utanfor_vatmark) 

tallskog 
proportion of 100 m2 cell with pine forest 
(=tallskog_pa_vatmark + 
temporart_ej_skog_utanfor_vatmark) 

barrblandskog 
proportion of 100 m2 cell with mixed conifer forest 
(=barrblandskog_pa_vatmark+ 
barrblandskog_utanfor_vatmark) 

lovblandad_barrskog 
proportion of 100 m2 cell with mixed forest 
(=lovblandad_barrskog_pa_vatmark+ 
lovblandad_barrskog_utanfor_vatmark) 

Ground type 

silikatkemi proportion of 100 m2 cell with silicate in soil 

kalkberg proportion of 100 m2 cell with limestone 

granit proportion of 100 m2 cell with granite 

Quadrat 
variability 

hojd100m_range range of heights within 100 m2 cell (=max-min) 

slope100m_range range of slopes within 100 m2 cell (=max-min) 

perc_south_range range of percent south within 100 m2 cell (=max-min) 

pH-alternatives 
idw_base_sat_m2065 other measure of pH (least correlated with idw_ph_h30) 

idw_hconc_h30 hydrogen concentration 

Modelling framework used and general model set up 
Here we used a species distribution model to predict the occurrences. We used R 
(R Core Team 2020) and Hierarchical modelling of species communities (Hmsc) 
using the Hmsc package (Tikhonov et al. 2019, 2021). This joint species distribu-
tion model (Ovaskainen & Abrego 2020) is a Bayesian multivariate, hierarchical 
generalized linear mixed model. The response variable can be constituted by the 
matrix of presence-absence (or abundance, percentages) of each species at each 
site. Here we modelled only one species. This model type offers options to be app-
lied to spatially explicit data and large data sets over extensive areas (Tikhonov et 
al. 2020). 

All models had a Bernoulli likelihood and probit link function. All explanatory va-
riables were centred (subtracted by mean) and scaled (divided by standard devia-
tion). The resulting z-scores are on the same scale and their effect sizes can be 
compared. 

The model’s explanatory power were quantified using Tjur’s R2, which is the ave-
rage predicted occurrence probability among the sites where the species occurs, 
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minus the average where the species does not occur (Tjur 2009). The model’s pre-
dictive power was compared using AUC and WAIC for the individual models and 
further quantified for the final model using a four-fold cross-validation with Tjur’s 
R2 and AUC averaged over the folds (cTjur’s R2, cAUC). We further plotted the 
ROC curve and estimated several model performance measures (Fig. S4). To eva-
luate the importance of the variables for the species occurrence, we performed 
variance portioning. Default prior distributions were used and model convergence 
was examined using the potential scale reduction factors (Gelman & Rubin 1992) 
and the effective number of samples. 

Identifying variable that are important for C. bulbosa occurrences with one model 
for each variable 
We fit one model for each of the variables in Table 1 and one model each with the 
northing and southing coordinates (Fig. 2). For most of the variables, we found a 
negative estimate, indicating that with increasing value of the variable the occur-
rence probability decreases. Neither the variability within the quadrat nor the pH-
alternatives had strong effects. Individual variables explained between zero and 
6.79% of the occurrences (Table 2). 

 

 
Fig. 2: Posterior distribution of estimates for each explanatory variables in models with only one ex-
planatory variable. 

  



8 (22) 
 

Table 2: Variability in species occurrence explained by individual explanatory variables in models 
with only one explanatory variable. For example, in a model with only annual precipitation 
(m_precip_ann) this predictor explained 4% of the variability in species occurrences (Tjur’s R2 = 
0.0416). 

 
Building a model with all relevant explanatory variables 
From the 23 tested explanatory variables 11 were selected given their higher expla-
natory power. We further aimed to have one variable for each group (Table 1). The 
selected variables were included in one model (Fig. 3), and were not correlated 
(Fig. S2). Hence, each variable explained different variability. The coordinates 
were not included as we aimed to include these within the random part of the mo-
del to make large-scale predictions. Furthermore, it is not the coordinates themsel-
ves that are biologically meaningful, but rather the environmental conditions that 
are changing along these coordinates. 

The model explained 16% out of the occurrences (Tjur’s R2 = 0.16; Table 3). Also 
the predictive power was good as cross-validated measures of fit (averaged over 
the four folds) were very close to the measures of fit. Individual variables explai-
ned between 0.4% and 29.4% of the variability, based on variance partitioning. 
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Fig. 3: Posterior distribution of estimates for each variables within the model. 

Table 3: Variability in species occurrence explained by individual explanatory variables in models 
with 11 explanatory variables. For each variable, the percent variability explained based on variance 
partitioning is shown. The last rows show the explanatory power (Tjur’s R2) and the predictive power 
of the model (AUC), was well as the average of these over the four-fold cross-validations (cTjur R2, 
cAUC). 

 

Building a spatial explicit model 
The last step of the model building was to additionally include a spatial random 
effect in the model, which enables us to predict occurrence probability for the used 
hectare squares as well as over new areas in Sweden. The large number of observa-
tions makes it not computationally feasible to use a simple spatial structured ran-
dom effect with each observations as random level. Hence, we implemented a 
model with Gaussian Predictive Process (GPP) to account for the spatial structure. 
This method assumes that the information on the spatial structure can be summa-
rized with a small number of so called ‘knot’ locations (Fig. S3). The explanatory 
power slightly increased (Tjur’s R2 = 0.17; Table 4) and the importance of three 
predictors further decreased to nearly zero. 
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Table 4: Variability in species occurrence explained by a model with 11 explanatory variables and a 
spatial explicit random effect. For each variable the percent variability explained based on variance 
partitioning is shown. The last rows show the explanatory power of the model (Tjur’s R2, AUC). 

 

With this model we predicted the probability of species presence (posterior mean), 
which fairly well matches the observed presences (Fig. 4, Fig. S4). 

 
Fig 4: The left shows recorded species presence (red) and inferred species absence (blue). The right 
shows the occurrence probability in percent. 
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Predicting over new areas with a spatial explicit model 
Using the extracted variables for 22 155 548 quadrats over Sweden, we used the 
developed model to predict the species occurrence. In order to do so, we standar-
dized the new data using the mean and SD from the data the model was built with. 
We included only quadrats where the species could exist. These were the ones con-
taining some type of forest but not forests in wetland areas. 

For each quadrat we estimated a posterior predictive distribution of the expected 
values (between 0 and 1), rather than a posterior predictive distribution of the data 
(0 or 1). From these we calculated the posterior mean, representing the probability 
of occurrence (with 95% credibility intervals), and the median, representing the 
most likely value (1 = occurs, 0 = does not occur). These predictions can be viewed 
in the GIS layer/Artportalen as probability of finding Calypso (Fig. S5-S7, Electro-
nic appendix). To increase computation speed the ~22 million quadrats were split 
into 22 data sets for which occurrence probabilities were estimated separately. 

Results and discussion 
Using derived variables and pseudo-absences of the species, we were able to build 
a species distribution model that explained typical amount of variability (~17%) 
with a good predictive power (AUC = 0.9). 

While we accomplished to select potential variables to predict the presence of C. 
bulbosa and could predict its presence over a vast area, one has to bear in mind that 
this may only still be a rough estimation (e.g. see Fig. S4). Our method of genera-
ting pseudo-absences using frequently associated species is considered rather 
robust (Phillips et al. 2009). Still, we only modelled the potential distribution that 
could be reached if unlimited by dispersal ability or dispersal barriers (De Kort et 
al. 2020). However, our aim was to model the potential distribution over new areas 
and in such a case it is recommended to exclude dispersal-limited absences (Hattab 
et al. 2017). We further included, as recommended (De Kort et al. 2020), climate 
and land-use variables. Here, organisk_jordart may be seen as an indicator of soil 
fertility and nutrient level, which often is affected by human agri- and silviculture. 

The first challenge was that only presences are recorded for the species, meaning 
pseudo-absences had to be inferred, which is highly critical as it can influence the 
modelling outcome (VanDerWal et al. 2009). It has been shown that only presence 
data from opportunistic reporting are especially useful at larger spatial scales and 
can be seen as complementation of systematic collection of data (Henckel et al. 
2020). A common bias of opportunistic data is that records more reflect where the 
reporters are, rather than where the species is, which may lead to an incomplete 
evaluation of the habitats the species persist in. One approach to address this bias is 
to use the number of records (e.g. per quadrat) as additional predictor (Andersson 
et. al. 2015, Stephan & Toräng 2021). It is further possible to improve the opportu-
nistic collected species reports by using check-lists or questionnaires for the repor-
ters (Bradter et al. 2021). Another common method to infer absences is to use 
background sites, like 1000 forest sites at varying distances from each recorded 
presence (Greiser et al. 2020). Here we used the presence of 70 plant species that 
are associated with the focus plant as a method of using background sites. We 
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assumed that focus and associated species have similar habitat niches. Hence, 
pseudo-absences can be inferred to the location where the focus species is absent, 
but the associated species is present since there is a good chance it can exist at this 
site, but was not recorded. A drawback may be that, consequently, the range of the 
environmental variables is restricted a priori. However, our data to build the model 
are very similar to the data used to predict over new areas (Table S1). 
 
The resulting map shows that the predicted probability of occurrence of C. bulbosa 
is highest in northern Sweden, especially in forested parts of the alpine region and 
in the northernmost part of the boreal region (Fig. S5). In Norrbotten county and in 
the alpine biogeographical region, there is a rather high chance of finding new sites 
since about one quarter of the forested area is predicted to have at least a 2 % pro-
bability of hosting Calypso (Table 5). At a more detailed scale we get clear indica-
tions of where the probability of finding the plant is highest (Fig. S6). However, 
the contrast between the predicted probabilities and the known presences and 
pseudo-absences are rather large (Fig. S7, Fig. S4). Hence, we could exclude many 
sites where the species will most probably not be found and provide first indica-
tions where new occurrences could be discovered. Since the model does not inclu-
de the dynamic predictor forest age, one has to take that into account when sear-
ching for Calypso because the species appears to be generally disfavoured by clear-
cuts. Hence, efforts to find the plant should also use the most resent estimation of 
forest age and future species distribution modelling should include more informa-
tion on forest characteristics. 
 
The computational effort of this project deserves some discussion also. The estima-
tions and predictions of the models in R and the computations in ArcGIS were very 
time and resource intensive. For example, predicting over one set of the 22 sites 
across Sweden took around 15 hours of High-Performance Computing. On the 
other hand, the (computation intensive) Bayesian estimation enables to account for 
all uncertainty in the data. Alternative methods may require less computational 
effort, but we decided to use the model type with the best predictive performance 
currently available to model species distributions (Norberg et al. 2019). 

Lastly, we have done in silico model validation (cross-validation, AUC, WAIC) 
but the planned future sampling may offer one of the rare opportunities of in situ 
model validation (Williams et al. 2009). During the new monitoring, sampling will 
be performed in model-predicted hot spots that show highest likelihood of C. bul-
bosa presence. This validation would be possible if also sites are sampled where 
the model predicted no presence, but the experience in the field or other biological 
indicators make it still likely that it is present. Hence, false positives and false 
negatives could be evaluated. 
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Table 5: The predicted area of hot spots in different modelled probability classes for finding Calypso 
bulbosa, and proportion of forest area according to the land cover map, per county, biogeographical 
region and in protected (Natura 2000) and not protected areas in northern Sweden. Only areas consi-
dered forest on not-wetland in the Swedish landcover map are included. 

Prob. class 5-7 % 4-5 % 3-4 % 2-3 % Sum 

County ha % ha % ha % ha % ha % 

Dalarna 0 0 0 0 0 0 2 214 0.11 2 214 0.11 

Gävleborg 0 0 0 0 0 0 2 066 0.14 2 066 0.14 

Västernorrland 0 0 0 0 130 0.01 52 006 2.95 52 136 2.96 

Jämtland 0 0 0 0 198 0.01 58 950 1.96 59 147 1.96 

Västerbotten 3 0.00 1 465 0.04 29 075 0.81 281 179 7.85 311 722 8.71 

Norrbotten 1 403 0.03 17 892 0.39 142 081 3.10 1 040 526 22.72 1 201 902 26.25 

SUM 1 406 0.01 19 357 0.12 171 484 1.05 1 436 941 8.77 1 629 187 9.94 

           

Alpine region  1 335 0.06 10 787 0.45 89 326 3.72 565 548 23.54 666 996 27.76 

Boreal region 71 0.00 8 570 0.06 82 159 0.59 871 390 6.23 962 190 6.88 

           

Protected 1 247 0.09 11 313 0.78 82 185 5.64 418 760 28.72 513 505 35.22 

Not protected 159 0.00 8 043 0.05 89 299 0.60 1 018 181 6.82 1 115 682 7.47 
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Appendix 

 

Fig. S1: Pearson correlations among all extracted variables. 
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Fig. S2: Correlation among explanatory variables included in one model on original scale (spread can be 
seen on the y-axis). 
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Fig. S3: Locations of used quadrats (black) and 383 knot locations (red) used in Gaussian Predictive 
Process (GPP). 
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Fig. S4: ROC courve and model performance estimations for the model in relation to the orgiginal data. Within the 
plot the confusion matrix shows the frequency of Occurrences (one/present) and Absences (zero/absent) in data to 
build the model and in predictions over these data. In 8933 cases absences and in 31 cases presences are cor-
rectly predicted. In 622 cases the species was present, but the model would predict an absence. In 50 
cases the species was absent, but the model would predict a presence. 
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Fig. S5: Predicted probability of occurrence of Calypso bulbosa in the alpine and boreal regions of 
northern Sweden. Background map: © Lantmäteriet. 
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Fig. S6: Predicted probability of occurrence of Calypso bulbosa in the area northeast of Jukkasjärvi. Nei-
ther presences nor pseudo-absences have been recorded in this area. Background map: © Lantmäteriet. 
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Fig. S7: Predicted probability of occurrence of Calypso bulbosa in an area between Skellefteå and Jörn. 
Recorded presences and pseudo-absences are shown. Background map: © Lantmäteriet. 
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Table S1: Summary of untransformed data used to build model and untransformed new data used to pre-
dict occurrence with developed model. 

 

Electronic appendix 
GIS layer for the probability of finding Calypso bulbosa at the hectare level in northern Sweden is 
available upon request or may be viewed in a specific project in Artportalen. 
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