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Summary

Calypso bulbosa is a rare orchid listed in the Habitats Directive’s annex 2 and 4.
Since the species occupies rather common habitats, mesic and moist forest in the
true boreal region, a major dark figure of hitherto undetected occurrences of the
species is probable. These unknown occurrences are important to discover for spe-
cies protection and to get a better estimate of the probable population size and dis-
tribution of the species in Sweden. Therefore, we modelled and mapped the spe-
cies’ potential sites of occurrence at the hectare level, based on presence/ pseudo-
absence of Calypso and in relation to an initial set of 113 environmental and habitat
variables, including e.g. land cover, land use, forest type, climate, soil moisture,
soil and bedrock type. We used a forward model selection, using a Bayesian spe-
cies distribution model, which ultimately resulted in 11 explanatory variables that
best explain the presence/absence of the species and had the highest predictive
power. Our final model explained typical variation (17%) in the species occurrence
given these macro scale environmental variables and could very well discriminate
between presences and absences (AUC = 0.9). The resulting habitat suitability map
indicates that there may be many undiscovered Calypso sites in spruce forests in
the far north, especially in the alpine region in the northwest. The probability map
may be used as a guide for finding undiscovered sites/hot spots. After further sam-
pling the accuracy of the model could be tested as the number of false negative and
positive would be available. If reliable, the model may also be used to calculate
dark figures for the distribution and populations size of Calypso bulbosa.
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Aim

The aim of this analysis is to provide “hotspots” where the forest-plant species
Calypso bulbosa could occur. It further describes the opportunities and limitations
of using opportunistic reporting of species occurrences (Artportalen) and large-
scale GIS based variables in order to predict species occurrences in new areas.

Background

All plant species have ecological niches within which they can persist. These
niches are given by environmental conditions like light availability, microclimate,
humidity, water availability, pH, or nutrients. In addition, the possible presence of
the species in a locality is affected by biotic factors like competition or facilitation
with/by other species. Populations are also not static but constantly change, with
this change depending e.g. on the proximity to (historical) occurrences of the spe-
cies and the ability to disperse and establish.

The aim of this report was to develop a species distribution model for Calypso
bulbosa [norna], a plant species in moist forests that is listed in annex 2 and 4 of
the Habitats Directive.

The first objective was to identify variables that are important for predicting the
occurrences of C. bulbosa.

The second objective was to build a model that can be used to predict occurrences
given these environmental variables over new areas allowing the identification of
areas where new populations could be discovered.

Methods

The used approach to identify important variables for predicting the species occur-
rences is explained in detail in this section. This includes intermediate results that
led to decisions on how to proceed, while the main output of hot spots of occurren-
ces is stored as layers in ArcGIS and in a project in Artportalen. The spatial scale
of the data output is quadrats of one hectare (100 x100 m).
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Preparation of data and first selection of variables

Species observations

The presences of C. bulbosa in each quadrat were extracted from Artportalen. In
case of several observations within the quadrats each quadrat was counted as
“present”.

The absences were estimated by using 70 plant species that are frequently associa-
ted with C. bulbosa. A quadrat was recorded as species present if C. bulbosa was
found within and recorded as absent if any of the 70 associated plants were found
but not C. bulbosa. Species occurrences of the associated plant species were limi-
ted to northern Sweden, from the provinces of Dalarna and Géstrikland and north-
wards during the period May 15-July 1 (when C. bulbosa is most likely discove-
red).

Environmental variables

Available data consisted of the presence of C. bulbosa (norna_presence), the co-
ordinates (point_x, point_y), and 113 variables, with many of them offering very
sparse information (Fig. 1). The variables were summarized to the used scale (e.g.
mean, proportion of area). The environmental variables were extracted using
ArcGIS (provided by Sofie Wikberg).

Climate

Precipitation and temperature data were obtained from SMHI maps with a resolu-
tion of 4 x 4 kilometres. Data from the period 1991-2013 were used (most recent
available) and we tested both annual (precip_ann, temp_ann) and seasonal data
(spring (precip_mam, temp _mam), summer (precip_jja, temp_jja), fall (precip_son,
temp_son), winter (precip_djf, temp_djf)). From the same source we also got the
start and the length of the vegetation period (veg_start, veg_per).

Exposure
Elevation data for the quadrats were based on the Swedish National Elevation

Model with a resolution of 2 meters. The 2-meter cells were first aggregated into
10-meter cells and mean elevation was calculated. From the 10-meter cells
minimum, maximum and mean values of elevation, slope and aspect were
calculated for each of the one hectare quadrats (hojd100m_min, hojd100m_max,
hojd100m_mean, slopel00m_min, slopel 00m_max, slope100m_mean,
aspect]100m_min, aspect]100m_max, aspect100m_mean). From the aspect values
the minimum, maximum and mean percent south of 100 m? cell was calculated (if
x larger than 180-> x=360-x) (perc_south min, perc_south max,

perc_south mean).

Bedrock

Information about the bedrock material in the one-hectare quadrats was obtained
from the SGU bedrock map, with a scale between 1:50 000 and 1:250 000. There
were 58 different bedrock types, divided into calcareous (Kalkberg) and not cal-
careous types, as well as into 14 different types of chemical composition of the
bedrock. Proportions of each type in the one-hectare quadrats were calculated.
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Soil types
Soil type maps from SGU were used to calculate the proportion of different soil

types in the one-hectare quadrats. The maps come in different scales, from

1:25 000 to 1:750 000, but the one with the most detailed scale available was
always used in any location. The soil types were grouped into eight classes (Svam-
eller dlvsediment, Organisk jordart, Lera-silt, Isdlvssediment, Grov silt-finsand,
sand eller grus, Morén, morinlera eller lerig morin, Sedimentirt berg, Berg).

Soil chemistry
To get an estimate of the soil chemistry in the quadrats, we used data from the

Swedish Forest Soil Inventory. The sample points of this inventory are at least 12.5
km apart and interpolation using an inverse distance weighted (IDW) technique
was used to obtain a raster surface with cells corresponding to the one hectare
quadrats. We used pH, hydrogen ion concentration and base saturation data from
both the humus layer (0-30 cm depth) as well as from the mineral soil (>65 cm
depth) (idw_ph_h30, idw_hconc_h30, idw_base_sat _h30, idw_ph_m2065m,

idw base sat m265).

Soil moisture

Soil moisture data were obtained from the SLU Soil moisture map with a resolu-
tion of 2 meters. The 2-meter cells were first aggregated into 10-meter cells and
mean soil humidity was calculated. From the 10-meter cells minimum, maximum
and mean values soil humidity were calculated for each of the one hectare quadrats
(soil_moisture100m_min, soil moisture100m_max, soil_moisture100m_mean).

Land cover

We used the National Land Cover map with a resolution of 10 meters to obtain the
proportions of 24 different land cover types in the one-hectare squares. The same
source also provided us with proportions of three forest productivity classes
(Ej_skogsmark, Improduktiv_skogsmark, Produktiv_skogsmark).

From all available variables several where selected to be individually tested as ex-
planatory variables for the C. bulbosa occurrences (Table 1). As can be expected,
many of these were highly correlated (Fig. S1). We therefore selected several un-
correlated extracted variables and calculated several new variables. Hence, this first
selection was based on (i) discussions of the relevance of certain explanatory varia-
bles for the species occurrences among Sofie Wikberg, Jorg Stephan, and Sebastian
Sundberg, (ii) that the predictor needed to offer some variability, and (iii) that the
predictors cannot be correlated among each other. If correlated one, biological
more meaningful, explanatory variable was selected.

The variables aimed to represent larger groups of important conditions: exposure,
soil, climate, forest type, ground type (Table 1). Three variables were tested with
the aim to evaluate if the variability within a hectare quadrat affected the species
occurrences. The reasoning behind was that the species could occur at quite differ-
rent heights/slopes/percent souths if there was great variability within the quadrat,
meaning the association with the quadrat mean could be very weak. To avoid large
computational efforts the range, not the standard deviation was used. Two variables
were tested, if they would provide a more meaningful measure of pH.
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The final data set with all environmental variables consisted of 9 636 observations
across Sweden (species absences = 8 983; species presences = 653).
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Fig. 1: Variability of the 113
environmental variables.
Shown are each observation
site (hectare quadrat) with
respect to each extracted vari-
able. Orange indicates that the
value is 0, Grey indicates that
the value is any number other
than 0, and white indicates the
data are not available



Table 1: Overview of variables that were uncorrelated, assumed to be important for the species
occurence, and further tested individually. Variables in italics were calculated from GIS-extracted

variables.
Group Predictor Explanation
hojd100m_mean mean height of 100 m? cell
Exposure slope100m_mean mean slope of 100 m? cell
h mean percent south of 100 m? cell (from aspect, if x larger
perc_south_mean than 180-> x=360-x)
idw_ph h30 pH in the top humus layer
| soil_moisturel00m_mean mean soil moisture in 100 m? cell
Soi
organisk_jordart proportion of 100 m? cell with organic soil
berg proportion of 100 m? cell with surface rock
precip_ann mean annual precipitation
Climate
temp_ann mean annual temperature
ransko proportion of 100 m? cell with spruce forest
granskog (=granskog_pa_vatmark + granskog utanfor vatmark)
proportion of 100 m? cell with pine forest
tallskog (=tallskog_pa_vatmark +
temporart_ej_skog_utanfor vatmark)
Forest type proportion of 100 m? cell with mixed conifer forest
barrblandskog (=barrblandskog_pa vatmark+
barrblandskog_utanfor vatmark)
proportion of 100 m? cell with mixed forest
lovblandad_barrskog (=lovblandad_barrskog pa vatmark+
lovblandad barrskog utanfor vatmark)
silikatkemi proportion of 100 m? cell with silicate in soil
Ground type kalkberg proportion of 100 m? cell with limestone
granit proportion of 100 m? cell with granite
hojd100m_range range of heights within 100 m? cell (=max-min)
Quadrat s 2 — ;
variability slopel00m_range range of slopes within 100 m* cell (=max-min)

perc_south_range

range of percent south within 100 m? cell (=max-min)

pH-alternatives

idw_base_sat m2065
idw_hconc_h30

other measure of pH (least correlated with idw_ph_h30)

hydrogen concentration

Modelling framework used and general model set up

Here we used a species distribution model to predict the occurrences. We used R
(R Core Team 2020) and Hierarchical modelling of species communities (Hmsc)
using the Hmsc package (Tikhonov et al. 2019, 2021). This joint species distribu-
tion model (Ovaskainen & Abrego 2020) is a Bayesian multivariate, hierarchical
generalized linear mixed model. The response variable can be constituted by the
matrix of presence-absence (or abundance, percentages) of each species at each
site. Here we modelled only one species. This model type offers options to be app-
lied to spatially explicit data and large data sets over extensive areas (Tikhonov et
al. 2020).

All models had a Bernoulli likelihood and probit link function. All explanatory va-
riables were centred (subtracted by mean) and scaled (divided by standard devia-
tion). The resulting z-scores are on the same scale and their effect sizes can be
compared.

The model’s explanatory power were quantified using Tjur’s R2, which is the ave-
rage predicted occurrence probability among the sites where the species occurs,
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minus the average where the species does not occur (Tjur 2009). The model’s pre-
dictive power was compared using AUC and WAIC for the individual models and
further quantified for the final model using a four-fold cross-validation with Tjur’s
R? and AUC averaged over the folds (cTjur’s R%, cAUC). We further plotted the
ROC curve and estimated several model performance measures (Fig. S4). To eva-
luate the importance of the variables for the species occurrence, we performed
variance portioning. Default prior distributions were used and model convergence
was examined using the potential scale reduction factors (Gelman & Rubin 1992)
and the effective number of samples.

Identifying variable that are important for C. bulbosa occurrences with one model
for each variable

We fit one model for each of the variables in Table 1 and one model each with the
northing and southing coordinates (Fig. 2). For most of the variables, we found a
negative estimate, indicating that with increasing value of the variable the occur-
rence probability decreases. Neither the variability within the quadrat nor the pH-
alternatives had strong effects. Individual variables explained between zero and
6.79% of the occurrences (Table 2).
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Fig. 2: Posterior distribution of estimates for each explanatory variables in models with only one ex-
planatory variable.
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Table 2: Variability in species occurrence explained by individual explanatory variables in models
with only one explanatory variable. For example, in a model with only annual precipitation
(m_precip_ann) this predictor explained 4% of the variability in species occurrences (Tjur’s R?=
0.0416).

Model RMSE AUC TjurR2  WAIC
m_point_x 02454 073 0.0511 0.2247
m_point_y 02462 082 00679 02114

m_hojd100m_mean 0.2512 0.56 0.0030 0.2462
m_slope100m_mean 0.2514 0.57 0.0003 0.2480
m_perc_south_mean 0.2509 0.56 0.0039 0.2464

m_idw_ph_h30 02513 052 00019  0.2470

m_soil_moisture100m_mean 0.2509 0.58 0.0050 0.2454

m_organisk_jordart 0.2499 0.58 0.0118 0.2391
m_precip_ann 0.2474 0.74 0.0416 0.2250
m_temp_ann 02501 073  0.0249 02320
m_granskog 0.2499 0.62 0.0128 0.2425
m_tallskog 0.2514  0.53 0.0001 0.2481
m_barrblandskog 0.2514 0.50 0.0001 0.2481
m_lovblandad_barrskog 0.2514 0.50 0.0001 0.2482
m_silikatkemi 02510 055 0.003%  0.2465
m_kalkberg 0.2511 0.53 0.0031 0.2460
m_granit 0.2510 0.55 0.0034 0.2463
m_berg 02515 048 0.0000  0.2482
m_hojd100m_range 02514 059 00005  0.2479
m_slope100m_range 0.2514 0.51 0.0006 0.2479
m_perc_south_range 02514 0.53 0.0003 0.2480
m_idw_base_sat_m2085 02514 050 00004  0.2479
m_idw_hconc_h30 0.2514 0.52 0.0001 0.2481

Building a model with all relevant explanatory variables

From the 23 tested explanatory variables 11 were selected given their higher expla-
natory power. We further aimed to have one variable for each group (Table 1). The
selected variables were included in one model (Fig. 3), and were not correlated
(Fig. S2). Hence, each variable explained different variability. The coordinates
were not included as we aimed to include these within the random part of the mo-
del to make large-scale predictions. Furthermore, it is not the coordinates themsel-
ves that are biologically meaningful, but rather the environmental conditions that
are changing along these coordinates.

The model explained 16% out of the occurrences (Tjur’s R?= 0.16; Table 3). Also
the predictive power was good as cross-validated measures of fit (averaged over
the four folds) were very close to the measures of fit. Individual variables explai-
ned between 0.4% and 29.4% of the variability, based on variance partitioning.
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hojd100m_mean = I
perc_south_mean = /I\
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Fig. 3: Posterior distribution of estimates for each variables within the model.

Table 3: Variability in species occurrence explained by individual explanatory variables in models
with 11 explanatory variables. For each variable, the percent variability explained based on variance
partitioning is shown. The last rows show the explanatory power (Tjur’s R?) and the predictive power
of the model (AUC), was well as the average of these over the four-fold cross-validations (cTjur R?,
cAUC).

Variable/Fit Variability explained/Fit result
granit 25
granskog 49
hojd100m_mean 14
idw_ph_h30 1
kalkberg 14
organisk_jordart 294
perc_south_mean 04
precip_ann 16.4
silikatkemi 0.5
soil_moisture100m_mean 04
temp_ann 29
RMSE 0.23
AUC 0.88
TjurR2 0.16
WAIC 0.2
cAUC 0.88
cTjurR2 0.15

Building a spatial explicit model

The last step of the model building was to additionally include a spatial random
effect in the model, which enables us to predict occurrence probability for the used
hectare squares as well as over new areas in Sweden. The large number of observa-
tions makes it not computationally feasible to use a simple spatial structured ran-
dom effect with each observations as random level. Hence, we implemented a
model with Gaussian Predictive Process (GPP) to account for the spatial structure.
This method assumes that the information on the spatial structure can be summa-
rized with a small number of so called ‘knot’ locations (Fig. S3). The explanatory
power slightly increased (Tjur’s R? = 0.17; Table 4) and the importance of three
predictors further decreased to nearly zero.
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Table 4: Variability in species occurrence explained by a model with 11 explanatory variables and a
spatial explicit random effect. For each variable the percent variability explained based on variance
partitioning is shown. The last rows show the explanatory power of the model (Tjur’s R, AUC).

Variable/Fit Variability explained/Fit result
hojd100m_mean 14
perc_south_mean 0

idw_ph_h30 1

soil_moisture100m_mean 0
organisk_jordart 30
precip_ann 16
temp_ann 28
granskog 5
silikatkemi 0
kalkberg 2
granit 2
Random: norna_id 0.01
RMSE 0.23
AUC 0.0
TjurR2 0.17
WAIC 0.2

With this model we predicted the probability of species presence (posterior mean),
which fairly well matches the observed presences (Fig. 4, Fig. S4).
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80
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Fig 4: The left shows recorded species presence (red) and inferred species absence (blue). The right
shows the occurrence probability in percent.
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Predicting over new areas with a spatial explicit model

Using the extracted variables for 22 155 548 quadrats over Sweden, we used the
developed model to predict the species occurrence. In order to do so, we standar-
dized the new data using the mean and SD from the data the model was built with.
We included only quadrats where the species could exist. These were the ones con-
taining some type of forest but not forests in wetland areas.

For each quadrat we estimated a posterior predictive distribution of the expected
values (between 0 and 1), rather than a posterior predictive distribution of the data
(0 or 1). From these we calculated the posterior mean, representing the probability
of occurrence (with 95% credibility intervals), and the median, representing the
most likely value (1 = occurs, 0 = does not occur). These predictions can be viewed
in the GIS layer/Artportalen as probability of finding Calypso (Fig. S5-S7, Electro-
nic appendix). To increase computation speed the ~22 million quadrats were split
into 22 data sets for which occurrence probabilities were estimated separately.

Results and discussion

Using derived variables and pseudo-absences of the species, we were able to build
a species distribution model that explained typical amount of variability (~17%)
with a good predictive power (AUC = 0.9).

While we accomplished to select potential variables to predict the presence of C.
bulbosa and could predict its presence over a vast area, one has to bear in mind that
this may only still be a rough estimation (e.g. see Fig. S4). Our method of genera-
ting pseudo-absences using frequently associated species is considered rather
robust (Phillips et al. 2009). Still, we only modelled the potential distribution that
could be reached if unlimited by dispersal ability or dispersal barriers (De Kort et
al. 2020). However, our aim was to model the potential distribution over new areas
and in such a case it is recommended to exclude dispersal-limited absences (Hattab
et al. 2017). We further included, as recommended (De Kort et al. 2020), climate
and land-use variables. Here, organisk jordart may be seen as an indicator of soil
fertility and nutrient level, which often is affected by human agri- and silviculture.

The first challenge was that only presences are recorded for the species, meaning
pseudo-absences had to be inferred, which is highly critical as it can influence the
modelling outcome (VanDerWal et al. 2009). It has been shown that only presence
data from opportunistic reporting are especially useful at larger spatial scales and
can be seen as complementation of systematic collection of data (Henckel et al.
2020). A common bias of opportunistic data is that records more reflect where the
reporters are, rather than where the species is, which may lead to an incomplete
evaluation of the habitats the species persist in. One approach to address this bias is
to use the number of records (e.g. per quadrat) as additional predictor (Andersson
et. al. 2015, Stephan & Tordang 2021). It is further possible to improve the opportu-
nistic collected species reports by using check-lists or questionnaires for the repor-
ters (Bradter et al. 2021). Another common method to infer absences is to use
background sites, like 1000 forest sites at varying distances from each recorded
presence (Greiser et al. 2020). Here we used the presence of 70 plant species that
are associated with the focus plant as a method of using background sites. We
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assumed that focus and associated species have similar habitat niches. Hence,
pseudo-absences can be inferred to the location where the focus species is absent,
but the associated species is present since there is a good chance it can exist at this
site, but was not recorded. A drawback may be that, consequently, the range of the
environmental variables is restricted a priori. However, our data to build the model
are very similar to the data used to predict over new areas (Table S1).

The resulting map shows that the predicted probability of occurrence of C. bulbosa
is highest in northern Sweden, especially in forested parts of the alpine region and
in the northernmost part of the boreal region (Fig. S5). In Norrbotten county and in
the alpine biogeographical region, there is a rather high chance of finding new sites
since about one quarter of the forested area is predicted to have at least a 2 % pro-
bability of hosting Calypso (Table 5). At a more detailed scale we get clear indica-
tions of where the probability of finding the plant is highest (Fig. S6). However,
the contrast between the predicted probabilities and the known presences and
pseudo-absences are rather large (Fig. S7, Fig. S4). Hence, we could exclude many
sites where the species will most probably not be found and provide first indica-
tions where new occurrences could be discovered. Since the model does not inclu-
de the dynamic predictor forest age, one has to take that into account when sear-
ching for Calypso because the species appears to be generally disfavoured by clear-
cuts. Hence, efforts to find the plant should also use the most resent estimation of
forest age and future species distribution modelling should include more informa-
tion on forest characteristics.

The computational effort of this project deserves some discussion also. The estima-
tions and predictions of the models in R and the computations in ArcGIS were very
time and resource intensive. For example, predicting over one set of the 22 sites
across Sweden took around 15 hours of High-Performance Computing. On the
other hand, the (computation intensive) Bayesian estimation enables to account for
all uncertainty in the data. Alternative methods may require less computational
effort, but we decided to use the model type with the best predictive performance
currently available to model species distributions (Norberg et al. 2019).

Lastly, we have done in silico model validation (cross-validation, AUC, WAIC)
but the planned future sampling may offer one of the rare opportunities of in situ
model validation (Williams et al. 2009). During the new monitoring, sampling will
be performed in model-predicted hot spots that show highest likelihood of C. bul-
bosa presence. This validation would be possible if also sites are sampled where
the model predicted no presence, but the experience in the field or other biological
indicators make it still likely that it is present. Hence, false positives and false
negatives could be evaluated.
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Table 5: The predicted area of hot spots in different modelled probability classes for finding Calypso
bulbosa, and proportion of forest area according to the land cover map, per county, biogeographical
region and in protected (Natura 2000) and not protected areas in northern Sweden. Only areas consi-
dered forest on not-wetland in the Swedish landcover map are included.

Prob. class  5-7 % 4-5% 3-4% 2-3% Sum

County ha % ha % ha % ha % ha

Dalarna 0 0 0 0 0 0 2214 0.11 2214
Giévleborg 0 0 0 0 0 0 2 066 0.14 2 066
Visternorrland 0 0 0 0 130 0.01 52 006 2.95 52 136
Jéamtland 0 0 0 0 198  0.01 58 950 1.96 59 147
Visterbotten 3 0.00 1465 0.04 29075 0.81 281179 7.85 311722
Norrbotten 1403 003 17892 039 142081 3.10 1040526 2272 1201902 2
SUM 1406 0.01 19357 0.12 171484 1.05 1436941 8.77 1629187
Alpine region 1335 0.06 10787 045 89326 3.72 565548  23.54 666996 2
Boreal region 71  0.00 8570 0.06 82159 0.59 871390 6.23 962 190
Protected 1247 009 11313 0.78 82185 5.64 418760  28.72 513505 3
Not protected 159  0.00 8043 0.05 89299 0.60 1018181 6.82 1115682
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Fig. S2: Correlation among explanatory variables included in one model on original scale (spread can be
seen on the y-axis).
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Fig. S3: Locations of used quadrats (black) and 383 knot locations (red) used in Gaussian Predictive
Process (GPP).
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cases the species was absent, but the model would predict a presence.
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Fig. S5: Predicted probability of occurrence of Calypso bulbosa in the alpine and boreal regions of
northern Sweden. Background map: © Lantmateriet.
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Fig. S6: Predicted probability of occurrence of Calypso bulbosa in the area northeast of Jukkasjarvi. Nei-
ther presences nor pseudo-absences have been recorded in this area. Background map: © Lantméteriet.
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Fig. S7: Predicted probability of occurrence of Calypso bulbosa in an area between Skelleftea and Jorn.
Recorded presences and pseudo-absences are shown. Background map: © Lantméiteriet.
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Table S1: Summary of untransformed data used to build model and untransformed new data used to pre-
dict occurrence with developed model.

Variable N Mean Std. Dev. Min Pctl. 25 Pctl. 75 Max
DATA: Data used to build model

hojd100m_mean 9636 266.383 173.196 -0.08 122914 361.961 1283.295
perc_south_mean 9636 123.07 39.295 -1 95.675 155.629 179.996
idw_ph_h30 9636 4.037 0.25 35 3.852 4.196 4.955
soil_moisture100m_mean 9636 46.557 28.045 0.003 23.744 66.075 101
organisk_jordart 9636 0127 0.297 0 0 0 1
precip_ann 9636 691.972 78.943 4493 641.48 723.31 1330.29
temp_ann 9636 2787 1.676 -2.307 1.72 3.85 6.01
granskog 9636 0.223 0.301 0 0 0.381 1
silikatkemi 9636 0.208 0.399 0 0 0 1
kalkberg 9636 0.067 0.245 0 0 0 1
granit 9636 0.267 0.433 0 0 1 1

DATA: Data used to predict over using model

hojd100m_mean 22155548 351.178 177712 -0.194 230.726 461.583 1390.73
perc_south_mean 22155548 120.43 39.979 -1 90.776 164 284 180
idw_ph_h30 221555438 3.974 0.213 3.393 3.822 4.078 5.36
soil_moisture100m_mean 22155548 42.744 29457 0 16.753 66.31 101
organisk_jordart 22155548 0141 0.3 0 0 0.02 1
precip_ann 22155548 6I6.667 93.354 414 .66 639.33 737.98 1493.64
temp_ann 221555438 1.688 1.674 -5.66 0.52 2749 6.01
granskog 22155548 027 0.239 0 0 0.14 1
silikatkemi 22155548 0.204 0.398 0 0 0 1
kalkberg 221555438 0.015 0.12 0 0 0 1
granit 22155548 0.331 0.466 0 0 1 1

Electronic appendix

GIS layer for the probability of finding Calypso bulbosa at the hectare level in northern Sweden is
available upon request or may be viewed in a specific project in Artportalen.
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