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Moments of the likelihood-based discriminant function
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ABSTRACT
The likelihood approach used in this paper leads to quadratic dis-
criminant functions. Classification into one of two known multivariate
normal populations with a known and unknown covariance matrix
are separately considered, where the two cases depend on the sam-
ple size and an unknown squared Mahalanobis distance. Their exact
distributions are complicated to obtain. Therefore, moments for the
likelihood based discriminant functions are established to express
the basic characteristics of respective distribution.
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1. Introduction

Over the years many have been interested in discriminant analysis and classification tech-
niques. These multivariate techniques are concerned with discriminating between distinct
sets of observations and classifying new observations into predefined populations. The dis-
tribution of the proposed discriminant functions are usually complicated, which makes it
difficult to obtain exact misclassification errors. This is what motivates our research.
Several researchers investigated a plug-in approach for deriving a linear discriminant func-
tion. In this paper, two alternative classification functions are considered under assumption
about multivariate normality of the populations and adopting the likelihood approach. For
one approach a known covariance matrix is supposed to hold and for the second approach
an unknown covariance matrix is handled. Assume that we have pi, i 2 f1, :::, qg, popula-
tions, in classification methodology the aim is to allocate a p-dimensional random vector

x ¼ ðx1, :::, xpÞT to one of these populations by minimizing the error of misclassification.
Pearson (1915, 1926), Mahalanobis (1925, 1930), Barnard (1935), Fisher (1936, 1938) and
Rao (1948, 1966) introduced a classification rule for discriminating between two normal
multivariate populations p1 or p2, the covariance matrix being the same, but with different
mean vectors. See McLachlan (1992) for a general reference to discriminant analysis.
There exists many different techniques of deriving discriminant functions. The most

widely used is the plug-in approach, that is, to derive the classification function by sim-
ply replacing the unknown parameters in the classification function with their
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estimators. This approach leads to a linear discriminant function. The most well known
linear classification rule is the Wald-Anderson’s rule, proposed by Wald (1944) and
Anderson (1951), commonly known as the W-rule:

WðxÞ ¼ ð�x1 � �x2ÞTS�1x � 1
2
ð�x1 � �x2ÞTS�1ð�x1 þ �x2Þ, (1.1)

where S � Wpðn,RÞ, the p-variate central Wishart distribution with n degrees of free-
dom and covariance matrix R and the rule is that the new observation x is classified as
coming from p1 if W(x) > 0 and from p2 otherwise (Anderson 1951).
An alternative approach to derive a discriminant function when the populations are

normally distributed and have unknown parameters is a likelihood approach as pre-
sented by Srivastava and Khatri (1979). The maximum likelihood discriminant rule con-
sist of allocating an observation x into population pi if fi ¼ max

1�j�q
fjðxÞ where fjðxÞ stands

for the density connected to the jth population, Day and Kerridge (1967). This approach
was introduced by Kudo (1959, 1960) as the Z-rule; a maximum likelihood criterion as
an alternative to Wald-Anderson’s W-rule. In this paper, only two populations p1 and
p2 will be considered.
Unfortunately, the exact distribution of the classification function is often too compli-

cated to allow for easy numerical calculations of obtaining misclassification probabilities.
This has been pointed out by Sitgreaves (1961), see also Fujikoshi, Ulyanov, and
Shimizu (2011). The use of asymptotic expansions is one way to address this problem;
see Bowker and Sitgreaves (1961) and Okamoto (1963). Moments and cumulants of a
function play an important role for expressing characteristic properties of its distribu-
tion as they can be used to approximate the distribution for example via an Edgeworth
expansion. Critchley and Ford (1984), for example, obtained the variance of the esti-
mated linear discriminant function and Davis (1987) derived the first four central
moments and carried out asymptotic expansions for the cumulants of Wald-Anderson’s
linear discriminant function. The expected value and variance of W are given by

E W½ � ¼ 1
2
n
m

D2 þ p
1
n2

� 1
n1

� �� �
,

n
m

� �2

ðm� 2Þðmþ 1ÞVar W½ � ¼ 1
2
ðmþ 1ÞD4 þ D2ðmþ 1Þ m 1þ 1

n2

� �
þ 1

n1
� 1
n2

� �� �

þ pðmþ pÞ m
1
n2

þ 1
n1

� �
þ 1

2
ðmþ 1Þ 1

n1
þ 1
n2

� �
� 1

n1n2

� �
,

where m ¼ n1 þ n2 � p� 3 and D2 ¼ ðl1 � l2ÞTR�1ðl1 � l2Þ is the Mahalanobis
squared distance. These results have been obtained by Schaafsma (1982) and
Davis (1987).
The maximum likelihood-based discriminant functions are derived in Section 3 and

the first two moments of the discriminant functions are given explicitly in Section 4.
All vectors are column vectors. Bold lower case letters are used to denote vector val-

ued variables and bold upper case letters are used for matrix valued variables.
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2. Useful definitions and technical results

In this section, we will define some concepts and theorems applied in derivations of
moments of the likelihood-based discriminant function.

Definition 2.1.
(i) The vectorization of a m � n matrix A ¼ ðaijÞ is the mn� 1 column vector

vecA ¼ ða11, :::, am1, a12, :::, am2, :::, a1n , :::, amnÞT:
(ii) The Kronecker product of A ¼ ðaijÞ and B ¼ ðbklÞ is defined

by A� B ¼ ðaijBÞ:
Theorem 2.2. Let x � Npðl,RÞ, R > 0, and let A be a p� p constant matrix, the hth

cumulant ðwhÞ of the quadratic form xTAx equals

whðxTAxÞ ¼ 2h�1h!
trfðARÞhg

h
þ lTðARÞh�1Al

( )
:

This expression is derived in Mathai and Provost (1992).
From Theorem 2.2, the first and second cumulants of the quadratic form are directly

deduced in the new corollary.

Corollary 2.3. Let x � Npðl,RÞ, and A be a constant matrix. Then

(i) E½xTAx� ¼ trfARg þ lTAl;
(ii) Var½xTAx� ¼ 2½trfðARÞ2g þ 2lTARAl�:

Definition 2.4.
(i) The random matrix W is central Wishart-distributed with n degrees of freedom

if and only if W ¼ XXT, for some X � Np, nð0,R, IÞ, R � 0, which is
denoted W � WpðR, nÞ:

(ii) The random matrix W�1 is said to follow an inverted Wishart distribution.

Definition 2.5. The partitioned matrix Kp, q : pq� pq consisting of q� p-blocks is called
commutation matrix, if

ðKp, qÞði, jÞðg, hÞ ¼
1; g ¼ j, h ¼ i, i, h ¼ 1, :::, p; k, g ¼ 1, :::, q,
0; otherwise:

�

Definitions 2.4 and 2.5 can be found in Kollo and von Rosen (2005).

Theorem 2.6. Let W � WpðR, nÞ and let A : p� p be a constant matrix. Then

(i) E½W�1� ¼ c1R�1, n� p� 1 > 0;
(ii) E½W�1AW�1� ¼ c2R�1AR�1 þ c3ðR�1ATR�1 þ trfAR�1gR�1Þ, n� p� 3 > 0;
(iii) Var½W�1� ¼ c3ðIþKp,pÞðR�1 �R�1Þ þ ðc2 � c21ÞvecR�1vecTR�1, n� p� 3> 0,

where c1 ¼ 1
n�p�1 , n � p � 1 > 0; c2 ¼ n�p�2

ðn�pÞðn�p�1Þðn�p�3Þ , n � p � 3 > 0 and c3¼
1

n�p�2c2, n�p�3>0:

1124 E. U. GASANA ET AL.



The proofs and technical expressions for Theorem 2.6 can be found in Kollo and von
Rosen (2005).

Theorem 2.7. Let R and S be positive definite matrices of size p� p. Then

jRj�1
2ne�

1
2trðR�1SÞ �

���� 1n S
�����

1
2n

e�
1
2np,

and equality holds if and only if R ¼ 1
n S:

The proof of Theorem 2.7 can for example be found in Srivastava and Khatri (1979).

3. The likelihood approach

In classification problems, in some cases we consider that the populations are completely
known beforehand whereas in other cases, they can depend on unknown parameters which
must be estimated from a sample drawn from respective population (Anderson 1951).
Assume that a new observation x is to be classified into one of two known multivari-

ate normal populations. We want to calculate the likelihood when x belongs either to
population p1 or p2. Let y 2 p1, z 2 p2 and x be the new observation to be classified. If
x 2 pi, i 2 f1, 2g, the likelihood is given by

Liðy, z j x 2 piÞ ¼ ð2pÞ�3
2pjRj�3

2 exp

�
� 1
2

�
ðy � l1ÞTR�1ðy � l1Þ

þ ðz � l2ÞTR�1ðz � l2Þ þ ðx � liÞTR�1ðx � liÞ
��

, i 2 f1, 2g:

The ratio of the two likelihood functions equals

L1ðy, z j x 2 p1Þ
L2ðy, z j x 2 p2Þ ¼ e�

1
2 ðx�l1ÞTR�1ðx�l1Þ�ðx�l2ÞTR�1ðx�l2Þ½ �: (3.1)

The observation x is classified into population p1 if the ratio (3.1) is greater than or
equal to 1 and otherwise into p2. Taking the logarithm of the ratio yields

D ¼ ln
L1ðy, zjx 2 p1Þ
L2ðy, zjx 2 p2Þ
� �

¼ � 1
2

ðx � l1ÞTR�1ðx � l1Þ � ðx � l2ÞTR�1ðx � l2Þ
h i

¼ ðl1 � l2ÞTR�1ðx � 1
2
ðl1 þ l2ÞÞ,

(3.2)

which is a linear function in x and hence is normally distributed. The decision of classi-
fying x depends on whether D � 0 or D< 0.

Theorem 3.1. Consider the discriminant function D in (3.2). Then

D � N
1
2
D2,D2

� �
, if x 2 p1,

D � N � 1
2
D2,D2

� �
, if x 2 p2,

8>>><
>>>:
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where

D2 ¼ ðl1 � l2ÞTR�1ðl1 � l2Þ (3.3)

is the Mahalanobis squared distance (Anderson 2003).

3.1. Classification with known dispersion matrix

Suppose that there are yi, i 2 f1, 2, :::, n1g, observations selected from p1 and zj, j 2
f1, 2, :::, n2g, observations from p2. Let �y ¼ 1

n1

Pn1
i¼1 yi, and �z ¼ 1

n2

Pn2
j¼1 zj: In the next

proposition, since the mean is supposed to be unknown, instead of (3.2), the following
classification rule is presented.

Proposition 3.2. Let yi � Npðl1,RÞ, i 2 f1, :::, n1g, be a sample from p1 collected in Y ¼
ðy1, :::, yn1Þ and zj � Npðl2,RÞ, j 2 f1, :::, n2g be a sample from p2 collected in
Z ¼ ðz1, :::, zn2Þ. Assume that an observation x is to be classified. Put

~D ¼ 1
2

n2
n2 þ 1

ð�z � xÞTR�1ð�z � xÞ � 1
2

n1
n1 þ 1

ð�y � xÞTR�1ð�y � xÞ: (3.4)

If ~D � 0 then x is classified to p1 and to p2 otherwise.
In case of n1 ¼ n2, definition of the classification function given in (3.4) is identical

to Fisher’s linear discriminant function, what motivates factor 1
2 in the formula. The

classification function ~D has same distribution as the difference between two non-cen-

tral v2 distributions. The distributions for R�1
2ð�z � xÞ and R�1

2ð�y � xÞ do not depend on
R: Thus, the distribution for ~D does not depend on the covariance, which is reasonable
since we have assumed a common variance for both populations and therefore it is rea-
sonable that R is not involved in classification of x to either p1 or p2.

3.2. Classification with unknown dispersion matrix

One approach which can be used in classification to handle unknown parameters is the
maximum likelihood approach with the observation which is to be classified, x,
involved in the estimation, e.g., see Kudo (1959). Assume observations to be normally
distributed. Now, let yi be a sample from p1 collected in Y ¼ ðy1, :::, yn1Þ, and zj be a
sample from p2 collected in Z ¼ ðz1, :::, zn2Þ: Moreover Y, Z, and x are supposed to be
jointly independent. If x 2 p1 the following two models emerge in terms of Y, Z and x,

ðY : xÞ ¼ l11
T
n1þ1 þ e, e � Np, n1þ1ð0,R, In1þ1Þ,

Z ¼ l21
T
n2 þ e, e � Np, n2ð0,R, In2Þ,

(3.5)

where 1n is a column vector of n ones. If x 2 p2 the models are specified as

Y ¼ ~l11
T
n1 þ e, e � Np, n1ð0,R, In1Þ,

ðZ : xÞ ¼ ~l21
T
n2þ1 þ e, e � Np, n2þ1ð0,R, In2þ1Þ,

(3.6)

Equations (3.5) and (3.6) will be used to obtain the likelihood function when x 2 p1
and x 2 p2, respectively. Put

1126 E. U. GASANA ET AL.



X ¼ ðY : x : ZÞ, C ¼ 1Tn1þ1 0Tn2
0Tn1þ1 1Tn2

 !
, ~C ¼ 1Tn1 0Tn2þ1

0Tn1 1Tn2þ1

 !
,

S ¼ XðI� CTðCCTÞ�1CÞXT, ~S ¼ XðI� ~C
Tð~C ~C

TÞ�1 ~CÞXT,

(3.7)

where 0n is a column vector of n zeros.

Lemma 3.3. Let R̂i be the estimated covariance matrix when x belongs to population i,
i 2 f1, 2g and C, ~C, S and ~S be defined in (3.7), and put n ¼ n1 þ n2. Then, if x 2 p1,
the maximum likelihood estimators of the unknown parameters in (3.5) equal

ðl̂1, l̂2Þ ¼ XCTðCCTÞ�1,

ðnþ 1ÞR̂1 ¼ S:

If x 2 p2, the maximum estimators of the unknown parameters in (3.6) equal

ð~̂l1, ~̂l2Þ ¼ X ~C
Tð~C ~C

TÞ�1,

ðnþ 1ÞR̂2 ¼ ~S:

Proof. If x 2 p1, the likelihood, LðY:xÞðl1,RÞ, is given by

LðY:xÞðl1,RÞ ¼ ð2pÞ�ðn1þ1Þp=2jRj�ðn1þ1Þ=2e�
1
2

Pn1þ1

i¼1
ðyi�l1ÞTR�1ðyi�l1Þ, (3.8)

whereas the likelihood, LZðl2,RÞ, is given by

LZðl2,RÞ ¼ ð2pÞ�n2p=2jRj�n2=2e
�1

2

Pn2
j¼1

ðzj�l2ÞTR�1ðzj�l2Þ: (3.9)

Hence, for l ¼ ðl1 : l2Þ, and n ¼ n1 þ n2 the likelihood, LXðl,RÞ, is given by:

LXðl,RÞ ¼ ð2pÞ�ðnþ1Þp=2jRj�ðnþ1Þ=2e�
1
2trfR�1ðX�lCÞðX�lCÞTg:

Using MANOVA results and Theorem 2.7 yield the proof. w

Replacing the unknown parameters with their estimators in the likelihood functions,
the likelihood ratio for classification of x into p1 or p2 is given by

ð2pÞ�p
2ðnþ1ÞjR̂1j�

1
2ðnþ1Þe�

1
2trfR̂

�1
1 ðX�ðl̂1, l̂2ÞCÞðX�ðl̂1, l̂2ÞCÞTg

ð2pÞ�p
2ðnþ1ÞjR̂2j�

1
2ðnþ1Þe�1

2trfR̂
�1
2 ðX�ð~̂l 1, ~̂l 2ÞCÞðX�ð~̂l 1, ~̂l 2ÞCÞTg

¼ jR̂2j
jR̂1j

 !nþ1
2

, (3.10)

where R̂i denotes the maximum likelihood estimator, given in Lemma 3.3, when x 2 pi,
i¼ 1, 2. Moreover, l̂1, l̂2 are the maximum likelihood estimators of l1, l2 when x 2
p1, and ~̂l1, ~̂l2 are respective estimators when x 2 p2: The new observation x is classi-
fied into p1 if the ratio (3.10) is larger or equal to 1 and into p2 if the ratio (3.10) is
smaller than 1. Furthermore, let

Sy ¼ YYT � n1�y�y
T, Sz ¼ ZZT � n2�z�z

T

and put Syz ¼ Sy þ Sz, i.e., the sum of squares matrix based on the joint sample from
populations p1 and p2, without taking into consideration the new observation.
Moreover, Syz � WpðR, n1 þ n2 � p� 3Þ: Consequently, Sy and Sz can be expressed as
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Sy ¼ XðI� CTðCCTÞ�1ÞXT ¼ Syz þ n1
n1 þ 1

ð�y � xÞð�y � xÞT,

and similarly,

Sz ¼ Syz þ n2
n2 þ 1

ð�z � xÞð�z � xÞT:

As a result, the likelihood ratio in (3.10) is equivalent to

jSzj
jSyj ¼

jSyz þ n2
n2þ1 ð�z � xÞð�z � xÞTj

jSyz þ n1
n1þ1 ð�y � xÞð�y � xÞTj ¼

1þ n2
n2þ1 ð�z � xÞTS�1

yz ð�z � xÞ
1þ n1

n1þ1 ð�y � xÞTS�1
yz ð�y � xÞ , n1 þ n2 � 3 � p:

(3.11)

Note that S�1
yz exits if n1 þ n2 � 3 � p: A large likelihood suggests that x is to be classi-

fied into p1. Therefore, x is classified into p1 if
n2

n2 þ 1
ð�z � xÞTS�1

yz ð�z � xÞ � n1
n1 þ 1

ð�y � xÞTS�1
yz ð�y � xÞ: (3.12)

Note, since Syz � WpðR, n1 þ n2 � p� 3Þ, Theorem 2.6 (i) implies E½S�1
yz � ¼ m�1R�1:

Proposition 3.4. Consider the models given in (3.5) and (3.6), suppose
m ¼ n1 þ n2 � p� 3 > 0, and put

D̂ ¼ n2m
n2 þ 1

1
2
ð�z � xÞTS�1

yz ð�z � xÞ � n1m
n1 þ 1

1
2
ð�y � xÞTS�1

yz ð�y � xÞ: (3.13)

The observation x is classified to p1 if D̂ � 0 and to p2 otherwise.

Note that the classification rule (3.13) does not have to include m
2 : However, the fac-

tor 1
2 is used because in Proposition 3.2 it was also used and the constant m is reason-

able since E½S�1
yz � ¼ m�1R�1: The distribution function for D̂ given in Proposition 3.4 is

more complicated than the distribution of ~D given in Proposition 3.2 since it is
expressed as a difference of two non-central F-distributions. Its basic properties are
given in the next section.

4. Moments of ~D and D̂

The two classification functions ~D and D̂ both depend on sample sizes and the
unknown D2, given in (3.3), and their distributions are a difference between non-central
v2 distributions and a difference between two non-central F-distributions, respectively,
which are complicated to derive. Therefore, we derive moments of the classification

functions ~D and D̂: It follows that D̂ and ~D are asymptotically equivalently distributed
since for any e,

PððD̂ � ~DÞ2 > eÞ ! 0, ni ! 1, i 2 f1, 2g:

Theorem 4.1. Let ~D be defined in Proposition 3.2. Then

1128 E. U. GASANA ET AL.



(i) if x 2 p1,
E½~D� ¼ 1

2
n2

n2 þ 1
D2,

Var½~D� ¼ pð1� q2Þ þ n2
n2 þ 1

D2;

8>><
>>:

(ii) if x 2 p2,
E½~D� ¼ � 1

2
n1

n1 þ 1
D2,

Var½~D� ¼ pð1� q2Þ þ n1
n1 þ 1

D2,

8>><
>>:

where D2 ¼ ðl1 � l2ÞTR�1ðl1 � l2Þ and

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n1

n1 þ 1

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

n2 þ 1

r
: (4.1)

Proof. Note that �y, �z , Syz and x are independently distributed. Let lx ¼ E½x�: Put uT ¼
ðuT1 , uT2 Þ, where

u1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

n2 þ 1

r
1ffiffiffi
2

p ð�z � xÞ � Np

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

n2 þ 1

r
1ffiffiffi
2

p ðl2 � lxÞ,
1
2
R

 !

u2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n1

n1 þ 1

r
1ffiffiffi
2

p ð�y � xÞ � Np

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n1

n1 þ 1

r
1ffiffiffi
2

p ðl1 � lxÞ,
1
2
R

 !
:

(4.2)

Thus, u � N2pðl,wÞ, l is now defined as

lT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

n2 þ 1

r
1ffiffiffi
2

p ðl2 � lxÞT,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n1

n1 þ 1

r
1ffiffiffi
2

p ðl1 � lxÞT
 !

,

w ¼ 1 q
q 1

� �
� 1
2
R,

(4.3)

Let P ¼
�
1 0
0 �1

�
� R�1: Then, ~D in Proposition 3.2 equals uTPu: Therefore, using

Corollary 2.3 (i) it follows that

E ~D½ � ¼ 1
2

n2
n2 þ 1

ðl2 � lxÞTR�1ðl2 � lxÞ �
1
2

n1
n1 þ 1

ðl1 � lxÞTR�1ðl1 � lxÞ: (4.4)

If x 2 p1, lx ¼ l1: Thus, the proof follows. Furthermore, using Corollary 2.3 (ii) we get

Var ~D½ � ¼ 2trfwPwPg þ 4lTPwPw, (4.5)

where we have

PwP ¼ 1 �q
�q 1

� �
� 1
2
R�1: (4.6)

Therefore,

wPwP ¼ 1� q2 0
0 1� q2

� �
� 1
4
Ip: (4.7)

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 1129



Hence, the terms in (4.5) are given by

trfwPwPg ¼ 1
2
pð1� q2Þ (4.8)

and

lTPwPw ¼ 1
4

�
n2

n2 þ 1
ðl2 � lxÞTR�1ðl2 � lxÞ � q2ðl1 � lxÞTR�1ðl2 � lxÞ

� q2ðl2 � lxÞTR�1ðl1 � lxÞ þ
n1

n1 þ 1
ðl1 � lxÞTR�1ðl1 � lxÞ

	
,

(4.9)

where lx equals either l1 or l2: Moreover, the two middle terms will always be zero. If

x 2 p1, replacing (4.8) and (4.9) in (4.5) and considering D2 defined by (3.3) yields

Var ~D½ � ¼ pð1� q2Þ þ n2
n2 þ 1

D2: (4.10)

The proof of (ii) can be obtained using similar calculations. w

Theorem 4.2. Consider the discriminant function D̂ in Proposition 3.4. The expected
value of the discriminant function is given by

E D̂½ � ¼
1
2

n2
n2 þ 1

D2, if x 2 p1,

� 1
2

n1
n1 þ 1

D2, if x 2 p2,

8>><
>>: (4.11)

where D2 is the Mahalanobis squared distance given in (3.3).

Proof. Let u1 and u2 be defined in (4.2) and hence, u ¼ ðu1, u2Þ � N2pðl,wÞ, where l and

w are defined in (4.3) and q in (4.1). Let Q ¼
�
1 0
0 �1

�
�mS�1

yz : Hence, D̂ ¼ uTQu: The

vectors u and Q are independently distributed. Then, since u � N2pðl,wÞ, using

Corollary 2.3 (i) and the fact that trðwQÞ ¼ tr

�
1 �q
q �1

�
� 1

2mRS�1
yz

( )
¼ 0, we get

E D̂jSyz
h i

¼ E uTQujSyz
h i

¼ trðwQÞ|fflfflffl{zfflfflffl}
¼0

þlTQl ¼ lTQl,

where E½	j	� denotes conditional expectation. As a result,

E D̂½ � ¼ E E D̂jSyz
h ih i

¼ E lTQl
� �

¼ E
1
2

n2
n2 þ 1

ðl2 � lxÞTmS�1
yz ðl2 � lxÞ �

1
2

n1
n1 þ 1

ðl1 � lxÞTmS�1
yz ðl1 � lxÞ

� 	
:

As depending on population which x belongs to, lx is equal l1 or l2, both middle
terms are equal to 0. Thus, if x 2 p1, then lx ¼ l1: Therefore, since from Theorem 2.6
(i), E½mS�1

yz � ¼ R�1, we get
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E D̂½ � ¼ 1
2

n2
n2 þ 1

ðl2 � l1ÞTE mS�1
yz

h i
ðl2 � l1Þ ¼

1
2

n2
n2 þ 1

D2:

Similarly, if x 2 p2, then lx ¼ l2 and

E D̂½ � ¼ � 1
2

n1
n1 þ 1

ðl1 � l2ÞTE mS�1
yz

h i
ðl1 � l2Þ ¼ � 1

2
n1

n1 þ 1
D2:

w

Theorem 4.3. Consider the discriminant function D̂ in Proposition 3.4 and let
c0 ¼ mþp

mðm�2Þðmþ1Þ. For m ¼ n1 þ n2 � p� 3 > 2, the variance of the discriminant function

is given by

Var D̂½ � ¼
ð1� q2Þm2c0pþm2 n2

n2 þ 1
c0D

2 þ
�

n2
n2 þ 1

�2 1
2ðm� 2Þ ðD

2Þ2, if x 2 p1,

ð1� q2Þm2c0pþm2 n1
n1 þ 1

c0D
2 þ

�
n1

n1 þ 1

�2 1
2ðm� 2Þ ðD

2Þ2, if x 2 p2,

8>>>><
>>>>:

(4.12)

where D2 is the Mahalanobis squared distance given by (3.3) and q is given by (4.1).

Proof. It will be utilized that

Var D̂½ � ¼ Var E D̂jSyz
h ih i

þ E Var D̂jSyz
h ih i

, (4.13)

where Var½	j	� denotes conditional variance. Moreover, D̂ ¼ uTQu, u � N2pðl,wÞ,
where u, Q and w are defined in the proof of Theorem 4.2. Using Theorem 2.2 (ii) we
get,

Var D̂jSyz
h i

¼ 2trfwQwQg þ 4lTQwQw: (4.14)

Evaluating (4.14) step by step:

QwQ ¼ 1 0

0 �1

 !
�mS�1

yz

" #
1 q

q 1

 !
� 1
2
R

" #
1 0

0 �1

 !
�mS�1

yz

" #

¼ 1 �q

�q 1

 !
� 1
2
m2S�1

yz RS
�1
yz ,

(4.15)

wQwQ ¼ 1 q

q 1

 !
� 1
2
R

" #
1 �q

�q 1

 !
� 1
2
m2S�1

yz RS
�1
yz

¼ 1� q2 0

0 1� q2

 !
� 1
4
m2RS�1

yz RS
�1
yz :

(4.16)
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Then the first term on the right side in (4.14) becomes

trfwQwQg ¼ 1
2
ð1� q2Þm2trfRS�1

yz RS
�1
yz g:

Furthermore, for q ¼
ffiffiffiffiffiffiffiffi
n1

n1þ1

q ffiffiffiffiffiffiffiffi
n2

n2þ1

q
, the second term of (4.14) equals

lTQwQw ¼ 1
4
m2 n2

n2 þ 1
ðl2 � lxÞTS�1

yz RS
�1
yz ðl2 � lxÞ �

1
2
q2m2ðl2 � lxÞTS�1

yz RS
�1
yz ðl1 � lxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

þ 1
4
m2 n1

n1 þ 1
ðl1 � lxÞTS�1

yz RS
�1
yz ðl1 � lxÞ:

(4.17)

The term 1
2 q

2m2ðl2 � lxÞTS�1
yz RS

�1
yz ðl1 � lxÞ is always zero because either x 2 p1

or x 2 p2:
Moreover, for m>2, Theorem 2.6 (ii) yields E½S�1

yz RS
�1
yz � ¼ c0R�1: Then, we can evalu-

ate

E Var D̂jSyz
h ih i

¼ ð1� q2Þm2tr

�
E RS�1

yz RS
�1
yz

h i�
þm2 n2

n2 þ 1
ðl2 � lxÞTE S�1

yz RS
�1
yz

h i
ðl2 � lxÞ

þm2 n1
n1 þ 1

ðl1 � lxÞTE S�1
yz RS

�1
yz

h i
ðl1 � lxÞ

¼ ð1� q2Þm2c0pþm2 n2
n2 þ 1

c0ðl2 � lxÞTR�1ðl2 � lxÞ

þm2 n1
n1 þ 1

c0ðl1 � lxÞTR�1ðl1 � lxÞ:

Hence, if x 2 p1 then

E Var D̂jSyz
h ih i

¼ ð1� q2Þm2c0pþm2 n2
n2 þ 1

c0D
2:

Now, let’s calculate Var½E½D̂jSyz��: First we have

E D̂jSyz
h i

¼ 1
2

n2
n2 þ 1

ðl2 � lxÞTmS�1
yz ðl2 � lxÞ �

1
2

n1
n1 þ 1

ðl1 � lxÞTmS�1
yz ðl1 � lxÞ:

Put M ¼ 1
2

n2
n2þ1 ðl2 � lxÞðl2 � lxÞT � 1

2
n1

n1þ1 ðl1 � lxÞðl1 � lxÞT: Then, E½D̂jSyz� ¼
trfm S�1

yz Mg:
Let m ¼ n1 þ n2 � p� 3 and put

c1 ¼ 1
m
, c2 ¼ m� 1

mðmþ 1Þðm� 2Þ and c3 ¼ 1
m� 1

c2: (4.18)

Hence, using Theorem 2.6 (vii), with c1, c2 and c3 defined as in (4.18) we get

Var E D̂jSyz
h ih i

¼ Var trfmS�1
yz Mg

h i
¼ m2vecTMVar S�1

yz

h i
vecM

¼ 2c3m
2vecTMðR�1 � R�1ÞvecM þ ðc2 � c21ÞðtrfR�1MgÞ2:

If x 2 p1, M ¼ 1
2

n2
n2þ1 ðl2 � l1Þðl2 � l1ÞT and if x 2 p2, M ¼ 1

2
n1

n1þ1 ðl1 � l2Þðl1 � l2ÞT:
Therefore, if x 2 p1,
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Var E D̂jSyz
h ih i

¼ 1
2
m2 n2

n2 þ 1

� �2�
c3 þ 1

2
ðc2 � c21Þ

�
ðD2Þ2,

and if x 2 p2,

Var E D̂jSyz
h ih i

¼ 1
2
m2 n1

n1 þ 1

� �2�
c3 þ 1

2
ðc2 � c21Þ

�
ðD2Þ2,

where c3 þ 1
2 c2 � 1

2 c
2
1 ¼ 1

m2ðm�2Þ : Thus the proof follows. w

Though they are are asymptotically equivalent, the distribution of ~D defined in

Proposition 3.2 is comparably simpler than the distribution of D̂ in Proposition 3.4. In

addition, the expectations of D̂ and ~D are the same.

5. Concluding remarks

In this paper, two asymptotically equivalent classification rules were considered using a
likelihood approach, for a known and unknown covariance matrix, under the assump-
tion about multivariate normality of the populations. We regard an observation x as
coming from p1 or p2 populations according to whether the observed value of the dis-

criminant functions ~D or D̂ is positive or negative. Note that when n1 ¼ n2 
 n, D̂ ¼
� mn

nþ1W, where m ¼ 2n� p� 3: The discriminant functions ~D and D̂ have smaller var-

iances than the W-rule, (Wald 1944; Anderson 1951)
The presence of an inverted Wishart distributed covariance matrix in the estimated

discriminant function, D̂ makes it difficult to derive moments. The results of this paper
can be utilized in for example Edgeworth expansion which gives alternative approxima-
tions of the distribution of the misclassification errors.
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