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A B S T R A C T   

The evolution of soil structure in agricultural soils is driven by natural and anthropogenic factors including 
inherent soil properties, climate and soil management interventions, all acting at different spatial and temporal 
scales. Although the causal relationships between soil structure and these individual factors are increasingly 
understood, their relative importance and complex interactive effects on soil structure have so far not been 
investigated across a geo-climatic region. 

Here we present the first attempt to identify the relative importance of factors that drive the evolution of soil 
structure in agricultural soils as well as their direction of effect with a focus on the temperate-boreal zone. This 
was done using a random forest (RF) approach including soil, climate, time, and site factors as covariates. 
Relative entropy, as quantified by the Kullback-Leibler (KL) divergence, was used as a quantitative index of soil 
structure, which is derived from the particle-size distribution and soil water retention data, and integrates the 
effects of soil structure on pores from the micrometre-scale to large macropores. Our dataset includes 431 intact 
topsoil and subsoil samples from 89 agricultural sites across Sweden and Norway, which were sampled between 
1953 and 2017. The relative importance of covariates for the evolution of soil structure was identified and their 
non-linear and non-monotonic effects on the KL divergence were investigated through partial dependence 
analysis. To reveal any differences between topsoils (0–30 cm; n = 174) and subsoils (30–100 cm; n = 257), the 
same analysis was repeated separately on these two subsets. 

The covariates were able to explain on average more than 50% of the variation in KL divergence for all soil 
samples and when only subsoil samples were included. However, the predictions were poorer for topsoil samples 
(≈ 35%), underlining the complex dynamics of soil structure in agricultural topsoils. Parent material was the 
most important predictor for the KL divergence, followed by clay content for all soil samples and sampling year 
for only subsoil samples. Mean annual air temperature ranked third and annual precipitation ranked fourth for 
subsoil samples. However, it remains unclear whether the effects of climate factors are direct (e.g., freezing and 
thawing, wetting and drying, rainfall impact) or indirectly expressed through interactions with soil management. 
The partial dependence analysis revealed a soil organic carbon threshold of around 3% below which soil 
structure starts to deteriorate. Besides this, our results suggest that subsoil structure in the agricultural land of 
Sweden deteriorated steadily during the 1950′s to 1970′s, which we attribute to traffic compaction as a conse-
quence of agricultural intensification. We discuss our findings in the light of data bias, laboratory methods and 
multicollinearity and conclude that the approach followed here gave valuable insights into the drivers of soil 
structure evolution in agricultural soils of the temperate-boreal zone. Theses insights will be of use to inform soil 
management interventions that address soil structure or soil properties and functions related to it.   
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1. Introduction 

Soil structure is a crucial factor for sustaining the production ca-
pacity of agricultural systems by controlling the flow of water, air and 
nutrients to roots, determining their ability to explore the soil medium 
and by regulating the activity of soil biota (Bengough et al., 2011; Erktan 
et al., 2020; Or et al., 2021). Furthermore, soil structure governs the 
accessibility of organic matter to soil biota and therefore affects the 
flows of carbon, nutrients and energy (Janzen, 2015; Meurer et al., 
2020a). It is thus of vital interest to identify the main drivers of structure 
formation and evolution. 

Soils are structured at all scales, ranging from the largest pores 
formed by soil tillage and the actions of soil fauna and plant roots 
(Meurer et al., 2020a; Or et al., 2021) to the turnover of organic matter 
and the aggregation of clay minerals by so-called ‘cementing agents’ 
affecting mainly smaller pores (Fukumasu et al., 2022; Meurer et al., 
2020b; Totsche et al., 2018). The state of soil structure in agricultural 
soils is ever-changing, driven by natural and anthropogenic factors, 
which act at a wide range of spatial and temporal scales (Bodner et al., 
2008; Mohammed et al., 2020; Or et al., 2021). 

Various metrics have been used to describe the current state of soil 
structure that refer either to the soil solid phase or pore space (Rabot 
et al., 2018). Commonly, these metrics only reveal information about 
soil structure at a specific scale, focusing mostly on the larger structural 
pores (Rabot et al., 2018). The soil water retention curve (SWRC), 
describing the relationship between the two major state variables of soil 
water – water content (θ) and pressure head (h) – has the potential to 
characterize soil structure across different spatial scales since it carries 
information about the pore-size distribution over a wide range of pore 
sizes (Rabot et al., 2018; Vogel et al., 2010). However, since the pore- 
size distribution is the result of both properties of the soil mineral 
phase (e.g., particle-size distribution, particle shape) and soil structure, 
a major challenge has been to separate the effects of soil texture and 
structure. While previous indices of soil structure based on the SWRC did 
not account the effects of soil texture (e.g., Dexter, 2004; Yoon and 
Giménez, 2012), this issue has been addressed in a recently proposed 
index of soil structure by Klöffel et al. (2022). This index quantifies the 
difference between two pore/void-size distributions (VSD) using the 
concept of relative entropy, also known as the Kullback-Leibler (KL) 
divergence (Kullback & Leibler, 1951), where one VSD is for the struc-
tured soil and the second is derived from soil texture for a hypothetical 
soil without structure. The KL divergence can therefore serve as an in-
tegrated measure of soil structure across spatial scales. 

The KL divergence as an index of soil structure has so far only been 
tested on a small dataset (Klöffel et al., 2022). However, an important 
advantage of this index is that only data on particle-size distribution 
(PSD), total porosity and soil water retention are required. In this 
respect, an increasing number of databases are now available that 
include these properties from a multitude of soil types and locations that 
cover broad geo-climatic areas (e.g., European Commission, 2013; 
Gupta et al., 2022a; Lilburne et al., 2012; Nemes et al., 2001). In each 
soil sample in these databases, the pore space structure has developed 
under unique boundary conditions, that is, they were exposed to 
different soil management regimes and climates, formed on different 
parent materials, were located at different depths, and were sampled at 
different times. There is ample evidence that these and other soil 
forming factors have strong implications for the evolution and current 
state of soil structure and its effects on, for example, soil hydraulic 
properties (Bodner et al., 2013a; Gupta et al., 2022b; Hirmas et al., 
2018; Lin et al., 2006; Or et al., 2021; Schlüter et al., 2011; Wu et al., 
2023). Thus, it should be possible to identify the main drivers of soil 
structure formation in agricultural soils as well as their relative impor-
tance over a wide range of spatial and temporal scales by extracting 
quantitative information on soil structure from these databases. 

The twin aims of this study were (i) to further test the utility of the KL 
divergence (Klöffel et al., 2022) as an integrated measure of soil 

structure on a larger dataset and (ii) to identify the main drivers of soil 
structure evolution and their relative importance in agricultural soils of 
a temperate-boreal region. To these ends, we made use of existing soil 
survey databases containing measurements of soil water retention and 
particle-size distribution for agricultural soils in Sweden and Norway 
and applied a random forest analysis to explore relationships between 
the KL divergence and a range of covariates characterizing soil, climate, 
time and site factors that are known or expected to affect soil structure. 

2. Materials and methods 

2.1. The KL divergence as an index of soil structure 

The KL divergence is a quantitative measure of how one probability 
distribution differs from a second one, which is considered to be the 
reference distribution. Applied as an index of soil structure, the KL 
divergence is determined from two VSDs, where one VSD is that of the 
structured soil and the other that of a hypothetical so-called reference 
soil (Klöffel et al., 2022). The latter is defined as the same soil ‘without 
structure’. This means that the VSD of the reference soil is in principle 
solely determined by the isotropic packing of soil particles, which we 
assume depends only on the PSD and packing density (Fiès and Bruand, 
1998; Gupta and Larson, 1979). The VSD of the structured soil is derived 
from the measured SWRC, while the VSD of the hypothetical reference 
soil is derived from the measured PSD. The original approach followed 
by Klöffel et al. (2022) to derive the KL divergence of a soil was slightly 
modified in this study and can be broadly subdivided into three steps, 
which are described in the following subsections. 

2.1.1. Modelling the pore-size distribution of the structured soil 
The first step is to estimate the VSD of the structured soil from the 

SWRC. We translated the soil water pressure head (h) [cm] to an 
equivalent pore radius (rv) [cm] using the Young-Laplace relationship to 
obtain (rv, θ) pairs. Assuming physical properties of water at 20 ◦C and 
full contact between liquid and solid phases, this relationship can be 
written as (e.g., Brutsaert, 1966) 

rv = −
0.149

h
(1)  

Describing the SWRC of a structured soil requires a model that is able to 
account for both the ‘textural’ and ‘structural’ pore domain (Alaoui 
et al., 2011; Nimmo, 1997). The presence of these two domains is re-
flected in multi-, often bimodal SWRCs, for example due to the presence 
of soil macropores (Durner, 1994; Jensen et al., 2019; Ross and Smet-
tem, 1993; Zhang et al., 2022). However, multimodality in SWRCs does 
not necessarily imply a well-developed soil structure, but can also result 
from the grading of soil particles (Fredlund et al., 2000; Klöffel et al., 
2022). Conversely, soil structure formation at much smaller scales (e.g., 
micro-aggregation arising from the association of soil organic matter 
with mineral particles) does not likely contribute to multimodality in 
SWRCs (Hwang and Choi, 2006). 

Here, we used the bimodal Kosugi (1996) model to describe the 
SWRC of the structured soil, where θ [cm3 cm− 3] is expressed as a 
function of rv (e.g., Pollacco et al., 2017). The model is given as 
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where θs [cm3 cm− 3] is the saturated water content, θr [cm3 cm− 3] is the 
residual water content, rm [cm] is the median pore radius, σ [-] is the 
standard deviation of ln(rv), erfc(.) denotes the complementary error 
function, and the subscripts ‘1′ and ‘2′ refer to the smaller and larger pore 
domain respectively. The VSD of the structured soil is obtained by 
differentiating Eq. (2) with respect to rv. 
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2.1.2. Modelling the pore-size distribution of the reference soil without 
structure 

The VSD of the hypothetical reference soil without structure is 
derived from the measured PSD of the fine-earth fraction (i.e., particles 
<2 mm in diameter). Many models have been developed to derive a 
SWRC from the cumulative PSD (e.g., Arya et al., 1999; Arya and 
Heitman, 2015; Chang et al., 2019; Haverkamp and Parlange, 1986; 
Mohammadi and Vanclooster, 2011; Pollacco et al., 2020; You et al., 
2022), and one major difference among these models is how the rela-
tionship between particle and pore size is defined. Chang et al. (2019) 
demonstrated that a simple linear relationship yields satisfactory results 
for soils with mixed particle sizes. We therefore used their suggested 
factor of 0.3 to translate particle radius (rp) into the pore radius of the 
reference soil. Thus, the ith equivalent pore radius is given as 

rv,i = 0.3rp,i (3)  

However, we made two exceptions to the scaling factor of 0.3 in Eq. (3). 
First, the scaling factor for clay-sized particles (rp = 1 µm) was reduced 
to 0.1, such that rv = 0.1rp. The fraction of clay-sized particles is thereby 
directly related to the amount of water retained at permanent wilting 
point (θpwp), since the pore radius of 0.1 µm resulting from this equation 
is equivalent to h = − 15,000 cm according to the Young-Laplace rela-
tionship. This modification was motivated by the strong correlation 
between clay content and water content at permanent wilting point that 
has been demonstrated in many studies (e.g., Bagnall et al., 2022; Chang 
et al., 2019; Kätterer et al., 2006; Pollacco et al., 2020), as well as the 
one presented here (see Subsection 2.2.2), suggesting that clay particles 
strongly contribute to the creation of pores of this equivalent radius. The 
second exception results from the notion that a scaling factor of 0.3 may 
not be justifiable for very sandy soils. Sand-sized particles often have a 
rounded shape similar to spheres. Consequently, for very sandy soils, the 
packing properties of the soil particles should be comparable with those 
of sphere packing. Furthermore, the presence of only sand-sized parti-
cles means that there is a lack of smaller particles that can fit within the 
voids created by larger grains (Fiès and Bruand, 1998). Indeed, pre-
liminary calculations of the KL divergence showed unrealistic values for 
soils with sand contents larger than 92 %. We therefore used a different 
scaling factor for these soils, which we derived from Gupta & Larson 
(1979) who presented scaling factors for mono-sized sphere packing at 
different densities. We chose a scaling factor of 0.5, which is in line with 
the theoretical packing density we defined for coarse-textured soils 
without structure (see next paragraph). 

To calculate the water contents of the (rv, θ) pairs of the reference 
soil, we first defined the ‘dry end’ and the ‘wet end’ of the SWRC, that is, 
the water content at the permanent wilting point (θpwp) and at satura-
tion (θs). For the dry end, we assumed that soil structure had no effect on 
θpwp and thus this value was set equal to that of the structured soil. For 
the wet end, θs was set equal to the total porosity of a soil without 
structure, which, in turn, was derived from our dataset in the following 
way: we split the dataset according to soil texture following the FAO 
classification scheme (FAO-UNESCO, 1974) into ‘fine’ (clay content 
>35 %), ‘coarse’ (clay content <18 %, sand content >65 %) and ‘me-
dium’ (all others). The first percentile of the total porosities for each 
class was then used as total porosities of the reference soil amounting to 
0.37, 0.31 and 0.34 cm3 cm− 3 for the classes fine, medium and coarse 
respectively. The remaining water contents for the (rv, θ) pairs were 
calculated by assigning a fraction of the pore space between θs and θpwp 
to each pore radius proportional to the weight fraction of the corre-
sponding particle radius (Arya and Heitman, 2015; Arya and Paris, 
1981). In summary, θ corresponding to the ith pore radius is given by 

θi =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θpwp, i = 1

∑n− 1

i=2

[
(
θs − θpwp

)wi − wi− 1

1 − wclay

]

+ θpwp, i ≥ 2 < n

θs, i = n

(4)  

where n is the total number of particle-size fractions, wi [g g− 1] is the 
weight of the ith particle-size fraction and wclay [g g− 1] is the weight 
fraction of clay-sized particles (rp = 1 µm). 

As noted before, bimodality of SWRCs can also be induced by particle 
grading, for example, if the PSD peaks in both coarse and fine particle- 
size fractions (Fredlund et al., 2000; Pieri et al., 2006). To account for 
this possibility and to achieve a good description of the SWRC, we also 
fitted the bimodal Kosugi (1996) model in Eq. (2) to the (rv, θ) pairs of 
the reference soil. As for the structured soil, the SWRC was differentiated 
with respect to rv to obtain the VSD. 

2.1.3. Calculating the KL divergence 
Klöffel et al. (2022) presented an analytical solution to calculate the 

KL divergence, where the VSDs of both structured and reference soil are 
unimodal. However, as described in Subsections 2.1.1 and 2.1.2, we 
applied a bimodal model for both soils to achieve the best fits possible, 
for which no easy (if any) analytical solution exists. We therefore 
approximated the KL divergence numerically using the trapezoidal rule 
by subdividing the pore radius domain into N segments, each repre-
senting a trapezoid with a width of (rv,upper − rv,lower)/N, where rv,upper 
and rv,lower are upper and lower pore radii: 

DKL(P||Q) =

[
∑N

i=1
p
(
rv,i

)
log

p
(
rv,i

)

q
(
rv,i

)

]

×

(
rv,upper − rv,lower

)

N
(5)  

In Eq. (5), DKL denotes the KL divergence [-], p(rv,i) and q(rv,i) represent 
the value of the VSD of the structured soil and of the reference soil for 
the ith segment boundary respectively. Here, we defined the upper pore 
radius limit as rv,upper = 1,500 µm and the lower limit as rv,lower = 0.1 
µm. These choices were based on the assumptions that water retention 
measurements are unreliable for h > − 1 cm (corresponding to rv,upper 
>1500 µm according to the Young-Laplace relationship) and, as noted 
before, that pores that remain water-filled at permanent wilting point 
are not affected by soil structure development. 

2.1.4. Fitting the soil water retention curves 
We fitted Eq. (2) to the measured and derived (rv, θ) pairs of the 

structured and reference soil with the least squares non-linear fitting 
algorithm (Levenberg-Marquardt) implemented in the Python module 
lmfit (Newville et al., 2022). In fitting the SWRC, we set θr to zero for 
both reference and structured soil. This resulted in the optimization of 
six model parameters: θs,1, rm,1, σ1, θs,2, rm,2 and σ2. 

The least squares fitting algorithm is sensitive to initial parameter 
values and thus, if not chosen properly, the algorithm may not converge 
to an acceptable solution. Here, the initial parameter values for the 
structured soil were derived from the PSD following a similar approach 
as described in Klöffel et al. (2022). For the reference soil, we tested 
different combinations of initial parameter values and found a set within 
physically reasonable limits (Fernández-Gálvez et al., 2021) that ach-
ieved good convergence in most cases. Table S1 shows the default initial 
parameter values for fitting the SWRC of the structured and reference 
soils. Each fit was evaluated visually and, if an acceptable convergence 
was not achieved with the default initial values, they were adjusted 
manually to see whether this improved the convergence. If this was not 
the case, the sample was excluded from further analysis. 
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2.2. Soil physical data 

2.2.1. Description of datasets 
As described in Section 2.1, the KL divergence as an index of soil 

structure only requires data on basic soil physical and hydraulic prop-
erties: soil texture, total porosity and soil water retention. The datasets 
from Sweden and Norway included in this study are described in the 
following. 

2.2.1.1. Sweden. The majority of the Swedish soil physical data was 
obtained from the European HYdropedological Data Inventory (EU- 
HYDI) (European Commission, 2013). This data, which includes 1,596 
samples from 187 soil profiles in arable land (including grassland for ley 
production), was collected by the Department of Soil Sciences at the 
Swedish University of Agricultural Sciences (SLU) between 1955 and 
1973. The sampling distribution shows a decreasing coverage from 
south to north, generally reflecting the distribution of arable land in 
Sweden. However, it should be noted that, as a result of past research 
focus, the soils included in this dataset are not fully representative of the 
agricultural soils of Sweden with respect to their basic properties such as 
texture (Piikki and Söderström, 2019). In particular, the data shows a 
bias towards soils within the silty and clayey soil texture classes (see also 
Fig. 1 in Kätterer et al., 2006). 

Each soil profile in this dataset was sampled at 10 cm intervals to a 
depth of at least 100 cm if the parent material allowed. The particle-size 
distribution of the fine earth fraction (≤2 mm) was measured from 
disturbed soil samples using wet sieving for particle diameters >60 µm 
and using the pipette method for the smaller size fractions (Kätterer 
et al., 2006). The data were reported in six particle-size classes ac-
cording to Swedish standards: clay (<2 µm), fine silt (2–6 µm), medium 
silt (6–20 µm), coarse silt (20–60 µm), fine sand (60–200 µm), and 
medium and coarse sand (200–2,000 µm). Four replicates of undisturbed 
soil cores (100 cm3 volume) and disturbed soil samples (ca. 15 cm3 

volume) were used for water retention measurements (Wilkert, 1983). 
On the undisturbed cores, (h, θ) pairs were obtained using sand boxes at 
h ≥ − 100 cm and pressure plate apparatus at − 100 cm > h > − 5,000 
cm, while disturbed samples were used to measure (h, θ) pairs at h <
− 5,000 cm on the pressure plate apparatus. Total porosity was derived 
from particle density and dry bulk density, where the former was 
determined from volume displacement of a fine earth sub-sample in 
ethyl alcohol and the latter from sample drying at 105 ◦C for 48 h. 

We included additional data collected by the Department of Soil and 
Environment at SLU between 1974 and 1997, which is not available in 
the EU-HYDI database. This dataset included measurements on 591 soil 
samples from 64 sites across Sweden, sampled at varying depths, with 
the measurement procedures and data reporting carried out as described 
above. Finally, data from an additional 45 samples were obtained from a 
series of soil descriptions of long-term soil fertility experiments (Kirch-
mann, 1991; Kirchmann et al., 2005; Kirchmann et al., 1999; Kirchmann 
et al., 1996; Kirchmann and Eriksson, 1993). This series includes ten soil 
profiles across southern and central Sweden, where sampling was per-
formed between 1991 and 2004 outside the treatments tested in these 
experiments and to a depth of 100 cm. While soil texture and total 
porosity were measured according to soil horizons, water retention data 
was given in 10 cm depth intervals. Thus, to make the data consistent, 
we generated weighted averages of θ for each horizon from the water 
retention measurements. The methods applied to determine soil water 
retention, soil texture and total porosity were identical to the other 
Swedish data. 

2.2.1.2. Norway. The Norwegian soil physical dataset considered for 
this study was collected during the “SOILSPACE” project (Norges For-
skningsrådet pr. no. #240663) between 2015 and 2019 (e.g., Koestel 
et al., 2018). It includes 261 soil samples taken at various depths from 50 
arable sites including grassland. The particle-size distribution of the fine 

Fig. 1. Geographical (a, b) and textural distribution (c) of the final sites (n =
89) and samples (n = 431). The geographical distribution is shown in terms of 
mean annual air temperatures (a) and annual precipitation (b). The climate 
data was retrieved from the MARS Meteorological Database (Toreti, 2014) and 
shows mean values between 1979 and 2022. 
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earth fraction (≤2 mm) was measured from disturbed soil samples using 
wet sieving for particle diameters >63 µm and using the integral sus-
pension pressure method (PARIO, Durner et al., 2017) to derive the <63 
µm portion of the distribution. Sample preparation took place according 
to Norwegian standards (Børresen and Krogstad, 2015). After curve- 
fitting to the quasi-continuous particle-size distribution data within 
the 0.01–2000 µm particle diameter range using the PARIO software, the 
same six particle-size classes as for Sweden were derived. Soil water 
retention was determined on undisturbed soil cores of either 200 or 250 
cm3 in volume (height = 6 cm): (h, θ) pairs were measured by sand boxes 
for h ≥ − 100 cm, by the simplified evaporation method using the ku-pF 
device (UGT GmbH, Germany) for ca. − 50 cm ≥ h ≥ − 900 cm, by 
pressure plate at h = − 1000 and − 3000 cm, and by the dew point 
method (Campbell et al., 2007) using the WP4C device (METER Group 
Inc. USA) for ca. h ≤ − 3500 cm. Undisturbed sub-samples 10 cm3 in 
volume (height = 1 cm) were used for pressure plate measurements, 
while dew point measurements were made on disturbed sub-samples 
taken from the original cores. The full range of measurements was not 
available for all samples in the database. Total porosity was equated 
with the measured θs. 

2.2.2. Data manipulation, inclusion criteria and final dataset 
The datasets on soil physical and hydraulic properties described 

above differ with respect to laboratory procedures and the number and 
range of measured data points both for water retention and soil texture. 
This required some manipulation to ensure the data was consistent and 
comparable between the different sources. We set the measured total 
porosity equal to θs if not measured specifically. Since θpwp was not 
measured for some of the soil samples in the datasets, we estimated θpwp 
from clay content (wclay) for these samples using a pedotransfer function 
developed from our own data. Specifically, a second degree polynomial 
function was fitted to (wclay, θpwp) pairs including all soil samples for 
which wclay and θpwp were reported (n = 493; R2 = 0.89): 

θpwp = 0.014+ 0.572wclay − 0.202w2
clay (6) 

Subsequently, we defined several inclusion criteria with respect to 
the water retention data with the aims to (i) avoid systematic errors 
between the different measurement techniques, (ii) set the range of 
measured points, (iii) ensure the points are balanced across this range, 
and (iv) make the different datasets comparable. We only used data in 
the 0> h ≥ − 15,000 cm range measured by either sand box, pressure 
plate or the dew point technique; we required each sample to have at 
least one (h, θ) pair at h < − 3000 cm; we required (h, θ) pairs to have θ 
≤ θs and have at least six (h, θ) pairs remaining to facilitate the fitting of 
the six-parameter model. In addition, samples were excluded if they 
were taken from >1 m soil depth or if the water retention data were 
clearly tri-modal or showed obvious inconsistencies such as non- 
monotonic behaviour. After applying these criteria, we obtained a 
final dataset that comprises 431 soil samples from 89 sites across Swe-
den and Norway. Fig. 1a and b show the locations of these sites super-
imposed on climate maps, while the range of soil textures covered is 
shown in Fig. 1c. 

2.3. Covariates 

The covariates used to analyse the variation in KL divergence across 
our study area were selected based on their availability for all sites and 
their known or expected relevance for soil structure evolution in agri-
cultural soils. The selection of covariates was also done with the aim to 
minimize multi-collinearity as far as possible, which is important when 
investigating partial dependencies (see Subsection 2.4.2). Nevertheless, 
some degree of multi-collinearity cannot be prevented. For example, 
naturally enough, there is a strong negative relationship between soil 
organic carbon content and soil depth in our dataset (Spearman’s r =
− 0.74, p < 0.001). We included in total nine covariates, both continuous 

and categorical, in our analysis of the variation in KL divergence across 
the study area. These covariates can be subdivided into four categories:  

i. Soil properties: clay content, silt content, soil organic carbon 
content (SOC), soil depth.  

ii. Climate: mean annual air temperature (Tm), annual precipitation 
(Pa).  

iii. Time: sampling year, sampling season.  
iv. Geology: Parent material. 

Details on the nine covariates are provided in Table 1 and their 
frequency distributions are shown in Fig. S1. Note that we included silt 
instead of sand content because sand content showed a higher correla-
tion with clay content in our final dataset. Although information about 
land cover was available in the databases, we did not include it as a 
covariate in the analysis. This is because only the land cover at the time 
of sampling was recorded, while information on long-term crop rota-
tions and tillage practices was lacking. Preliminary model testing 
confirmed the low explanatory power of the available information on 
land cover at the time of sampling. 

Clay and silt contents were obtained from the soil texture data, where 
we used the Swedish and Norwegian thresholds for the silt fraction (>2 
µm and <60 µm particle diameter). Furthermore, data on sampling year, 
sampling season and soil depth were reported during sample collection 
for all datasets and were thus readily available. The same was true for 
parent material, except for some more recent Swedish data. These gaps 
were filled using a quaternary geology map from the Geological Survey 
of Sweden. Soil organic carbon content was measured directly by com-
bustion for all Swedish and Norwegian datasets except for the EU-HYDI 
data. Here, SOC contents had to be derived from loss on ignition (LOI) 
measurements. We used an empirical function specifically developed for 
the Swedish data to convert LOI measurements to SOM contents, and a 
factor of 0.5 to convert SOM to SOC contents (Ljung, 1987; Pribyl, 
2010). This gave the following equation: 

SOC =
LOI − K

2
(8)  

where LOI [g/g] refers to the weight loss on ignition and K is a factor 
depending on clay content (wclay): 

K = 0.1 wclay, wclay⩽20%
K = 1.06 + 0.047 wclay, wclay > 20%  

Finally, data on mean annual air temperature (Tm) and annual precipi-
tation (Pa) for Sweden and Norway were obtained from the European 
Joint Research Centre (JRC) MARS Meteorological Database (Toreti, 
2014). This database includes daily observations from European 
weather stations between 1979 and 2022, which are interpolated on a 
25x25 km grid. The grid points closest to each of the 89 sites were 
determined with the Haversine distance formula. 

2.4. Random forest (RF) analysis 

A random forest (RF) comprises a large number of decision trees, 
where each individual tree considers a bootstrapped subset of the total 
number of observations. Decision trees are usually grown by sequen-
tially searching the variable space of each covariate for the best split of 
the subset, that is, the split that minimizes the mean squared error. 
Random forests are special in this context as they only take a random 
subset of these covariates into account while growing the decision tree. 
The rationale behind only considering subsets of observations and 
covariates is that the variance of the random forest model is consider-
ably reduced and its prediction accuracy is increased (James et al., 
2013). 

We performed the RF analyses for three scenarios: (i) all samples, (ii) 
only topsoil samples, and (iii) only subsoil samples. Samples with soil 
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depth ≤30 cm were regarded as topsoil (n = 174) and the others as 
subsoil (n = 257). The same approach was applied to each of the three 
scenarios, except that the variable ‘soil depth’ was removed as a co-
variate for the scenarios where only topsoil or only subsoil samples were 
considered. For each scenario, the RF analysis was repeated for 100 
random subsets, each comprising 90 % of the observations. From these 
repetitions, we could test the robustness of the RF analysis by identifying 
whether its performance depended on the inclusion of a subgroup of 
samples. The RF was built from 500 decision trees and three covariates 
per tree were considered, which is the standard of one third of the 
covariates commonly applied for regression problems (James et al., 
2013). We used so-called ‘out-of-bag’ (OOB) error estimates as a mea-
sure of the performance of the RF models. This entails using decision 
trees derived from bootstrapped subsets of observations to make pre-
dictions for the remaining observations. Predictions are made for each of 
the observations from each tree in the RF model. These predictions are 

then averaged and compared with the true observations resulting in the 
OOB error estimates (James et al., 2013). Subsequently, the OOB error 
estimates were used to calculate the coefficient-of-determination (R2). 
We estimated the relative importance of each covariate for the KL 
divergence by calculating the increase in total mean squared error on 
removing them from the model (e.g., Gupta et al., 2022b). We also used 
partial dependence plots to illustrate the non-linear and potentially non- 
monotonic effect of each covariate on the KL divergence (e.g., Jorda 
et al., 2015). This is done by fixing a value for the variable of interest and 
calculating the average model output over the whole range of the other 
covariates (James et al., 2013). All operations related to the RF analysis 
were performed using the ‘randomForest’ package in R (Liaw and 
Wiener, 2002). 

Table 1 
Covariates included in this study.  

Category Variable name Variable 
type 

Range/categories Unit 

Soil 
properties 

Clay content Continuous [0, 81.3] weight- 
%  

Silt content Continuous [0, 93.3] weight- 
%  

Soil depth a Continuous [0, 93] cm  
Soil organic carbon content Continuous [0, 8.7] weight- 

%  

Climate Mean annual air 
temperature (Tm) 

Continuous [2.3, 8.8] ◦C  

Annual precipitation (Pa) Continuous [430, 1215] mm  

Time Sampling year Continuous [1954, 2017] year  
Sampling season b Categorical spring, summer, autumn, winter –  

Geology Parent material Categorical aeolian sediments, fluvial sediments, glacial sediments, gyttja, lacustrine sediments, marine sediments, organic 
material, postglacial sediments, shore, till 

–  

a Soil depth was not considered for topsoil and subsoil analyses. 
b Spring: April-May, Summer: June-August, Autumn: September-November, Winter: December-March. 

Fig. 2. Example fits of Eq. [2] to derived (reference soil) and measured (structured soil) water retention data of a coarse- (loamy sand), medium- (silt loam) and fine- 
textured (clay) soil. Soil texture classes according to Soil Science Division Staff (2017). 
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3. Results and discussion 

3.1. Model fitting 

Fig. 2 shows three example SWRCs fitted to (rv, θ) pairs of the 
structured and reference soils. The bimodal Kosugi (1996) model (Eq. 
(2)) gave excellent fits for the soil samples in the different soil texture 
classes. This is evident from the mean root-mean-square errors (RMSE), 
which were 0.001±0.005 cm3 cm− 3 and 0.005±0.005 cm3 cm− 3 for the 
reference and structured soils respectively. 

3.2. Performance of random forests 

The performance of the RF models, that is, their ability to explain the 
variation in KL divergence using the nine covariates as expressed by the 
coefficient of determination (R2), is shown in Fig. 3. Each boxplot rep-
resenting one of the three scenarios shows the R2 values for the 100 
model runs. Most of the RF models developed on all samples and subsoil 
samples explained more than 50 % of the variance in KL divergence. This 
is encouraging as there are several additional factors that are not 
accounted for in this study that affect soil structure either directly or 
indirectly, for example soil management, clay mineralogy, reactive 
(hydro-)oxides, soil biota and the presence and type of exchangeable 
cations (Arthur et al., 2013; Regelink et al., 2015; Wu et al., 2023). 

In contrast, none of the models developed on topsoil samples could 
explain more than 50 % of the variance (Fig. 3). Fig. 3 also shows that 
there is a larger variation in R2 values for topsoil samples compared with 
the other two scenarios. This indicates that the performance of each of 
the 100 model runs with topsoil samples depended strongly on the 
samples included when the RF model was built. In other words, for the 
topsoil samples there existed several subsets for which predictions were 

particularly poor. While this could be partly related to the relatively 
small sample size (n = 174), we also see this as a sign of the complexity 
inherent in the evolution of soil structure in agricultural topsoils. 
Furthermore, the poorer performance of models when only topsoil 
samples were included implies that the KL divergence in topsoils is to a 
significant extent controlled by covariates that were not included in the 
RF analysis. In particular, soil tillage and subsequent consolidation as 
well as shrink-swell and freeze-thaw processes in response to short-term 
weather conditions can have large effects on the structure of agricultural 
topsoil (Assouline, 2006; Bodner et al., 2013b; Ghezzehei and Or, 2003; 
Or et al., 2021; Sandin et al., 2017; Unger, 1991). Furthermore, topsoils 
show the highest density of roots and the largest activity of soil biota, 
especially where root-restricting layers are present below plough depth 
(Bengough et al., 2011). Effects of root growth and soil biota activity on 
the VSD are species dependent and the result of several feedback 
mechanisms (Bodner et al., 2014; Leuther et al., 2023; Lucas et al., 2022; 
Lucas et al., 2019; Meurer et al., 2020a), which most likely contributes 
to the variance which cannot be explained by our RF models. In contrast, 
subsoils are less exposed to these processes and it seems that their 
structure can be better predicted with the covariates included in the 
analysis. 

As a result of the poorer performance of models when only topsoil 
samples were included, we focus the following discussion on the sce-
narios where all samples and only subsoil samples were included in the 
analysis. 

3.3. Relative importance of covariates and effects on the KL divergence 

For the scenarios where all samples and only subsoil samples were 
included, Fig. 4 shows the relative importance of each variable for 
explaining the variance in KL divergence, quantified as the increase in 
mean squared error (MSE) when this variable was removed from the 100 
RF models. Note that the standard errors in Fig. 4 are hardly visible due 
to the small variability between the individual RF models, highlighting 
the robustness of the models. Figs. 5 and 6 show the partial dependence 
plots for all samples and subsoil samples respectively. For completeness, 
the relative importance and partial dependence plots for the topsoil 
samples are presented in the supplementary material (Fig. S2 and Fig. S3 
respectively). However, care should be taken with the interpretation of 
these results for the reasons mentioned above. 

3.3.1. Soil properties and parent material 
Parent material was the most important factor both for all samples 

and only subsoil samples (Fig. 4). The partial dependence plots suggest 
much larger KL divergences for soils developed on lake-derived sedi-
ments and, in particular, “gyttja” as compared with the other parent 
materials (Figs. 5 and 6). “Gyttja” is a Swedish term that refers to qua-
ternary lacustrine sediments with high clay and SOC contents. Soils that 
develop on these sediments are characterised by a large porosity, usually 
more than 60 %, and well-developed fractures, especially in the subsoil 
arising from irreversible shrinkage following drainage (Berglund, 1996; 
Berglund & Berglund, 2010). These characteristics result in large KL 
divergences throughout the soil profile. The differences in KL divergence 
among the other parent materials are comparatively small, which sug-
gests that the strong structural development in gyttja soils was the main 
reason why parent material was ranked as the most important variable. 
To test this, we re-ran the analysis after removing the gyttja soils from 
our dataset. We found that the order of relative importance was unaf-
fected, while the importance of parent material for explaining the 
variation of KL divergence in the subsoil even seemed to increase rela-
tive to the other covariates (Fig. 4). The reasons for this rather surprising 
result are not clear to us. 

Clay content was the most important soil property, ranking overall 
second if all samples were included in the RF analysis and fifth when 
only subsoil samples were included (Fig. 4). The trends in the partial 
dependence plots were similar in both scenarios, showing a decrease in 

Fig. 3. Performance of random forest models for the three scenarios (all sam-
ples, topsoil samples, subsoil samples) based on out-of-bag error estimates. 
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KL divergence with increasing clay contents until a value of around 60 
%. This was followed by a sharp increase in KL divergence and relatively 
constant values at larger clay contents. The sharp increase in KL diver-
gence at around 60 % clay content can be explained by the gyttja soils, 
which have the highest clay contents in our dataset. This is illustrated by 
the dashed lines in Figs. 5 and 6 for the analysis carried out without the 
gyttja samples, which lack the sharp increase in KL divergence. The 
gradual decrease in KL divergence with increasing clay contents is a 
little surprising at first sight, given that swelling and shrinking upon 
wetting and drying in soils with relatively high clay contents is known to 
enhance soil structure development (Bodner et al., 2013a; Diel et al., 
2019). However, with the exception of the soils in the south-west of 
Sweden, the mineralogy of clay soils in Scandinavia is dominated by 
minerals such as illite, which are less prone to swelling and shrinking. 
We suggest that the decrease in KL divergence with increasing clay 
content may be the result of an increased susceptibility to soil 
compaction, a well-known consequence of intensive agriculture in the 
temperate-boreal zones with short growing seasons and predominantly 
wet soil conditions (Batey, 2009). For example, Gebhardt et al. (2009) 
noted a much higher susceptibility to harmful compaction of soils falling 
into the clay loam and heavy clay texture class as compared with more 
coarse-textured soils. Similarly, Smith et al. (1997) found a bell-shaped 
relationship between susceptibility towards uni-axial soil compaction 
and clay-plus-silt contents with a peak at around 70 %. In comparison to 
clay contents, silt contents were less important for explaining the 

variance in KL divergence (Fig. 4). Similar to clay content, a slight 
decreasing trend in the KL divergence with increasing silt content until a 
value of around 60 % can be noted (Figs. 5 and 6). 

Soil depth was the fifth most important covariate for the scenario 
when all soil samples were included in the RF analysis (Fig. 4). The 
partial dependence plot showed a sharp decrease in KL divergence with 
increasing soil depth, reaching a minimum at around 30 cm (Fig. 5). We 
interpret this minimum as a sign of soil compaction at and just below 
plough depth (Batey, 2009; Håkansson and Medvedev, 1995). In 
contrast, the uppermost few centimetres in arable soils are commonly 
subject to regular and intensive processes that loosen the soil such as 
ploughing, seedbed preparation, root growth and the activity of soil 
biota (Meurer et al., 2020a; Or et al., 2021). The partial dependence plot 
suggests that the KL divergence remains relatively constant with 
increasing soil depth below plough depth, with the KL divergence even 
showing a slight tendency to increase (Fig. 5). The reason for this is not 
clear, but it may be a consequence of mechanical stresses and compac-
tion from farm vehicle traffic, which are greater in the upper subsoil 
(Hadas, 1994). Fig. 5 also shows that the subsoils of gyttja have a 
strongly developed structure that buffers the decrease in KL divergence 
with increasing soil depth. 

Soil organic carbon content had the smallest effect of all soil prop-
erties on the KL divergence, ranking sixth and seventh for all samples 
and subsoil samples respectively (Fig. 4). This finding is in apparent 
contrast to other studies that reported significant effects of SOC on 
various soil structural properties, including the KL divergence (e.g., 
Anderson et al., 1990; Klöffel et al., 2022; Naveed et al., 2014). We 
propose several reasons for this. First, SOC contents for 71 % of the 
samples included here were estimated from loss on ignition (LOI) data 
using an empirical function, thereby introducing errors that may have 
distorted the relationship between SOC and KL divergence (Chatterjee 
et al., 2009; Hoogsteen et al., 2015). This is supported by the fact that 
LOI samples showed a weaker correlation (Spearman’s r = 0.31, p <
0.001) between SOC and KL divergence compared with samples where 
SOC contents were measured directly (Spearman’s r = 0.46, p < 0.001). 
Second, Klöffel et al. (2022) showed that the KL divergence is most 
sensitive to structure formation in the larger pore region, because this is 
where the VSD of the structured and reference soil have the potential to 
diverge most. In agricultural soils, SOC is often dominated by the 
mineral-associated organic matter fraction (Fukumasu et al., 2022; 
Poeplau et al., 2018) and thus mostly drives soil structure formation at 
smaller scales (e.g., through aggregation) with little direct effect on 
larger structural pores (Jarvis et al., 2017). Third, subsoil samples of low 
SOC content represent a considerable proportion of the samples in our 
dataset (see Figure S1), for which the positive effects of SOC on soil 
structure may not be apparent. Finally, regular mechanical disturbance, 
for example through soil tillage, may override the effect of SOC by 
periodically or permanently destroying larger structural pores. This 
explanation is supported by the partial dependence plots, which 
revealed an interesting effect of SOC on the KL divergence, showing a 
steep increase in KL divergence with SOC contents less than ca. 2 % and 
reaching a plateau at larger SOC contents with a maximum at around 3 
% (Figs. 5 and 6). While the increasing trend for lower SOC contents is in 
line with the expected development of soil structure, expressed as wider 
VSDs and higher porosities with increasing SOC contents (Fukumasu 
et al., 2022; Jarvis et al., 2017; Klöffel et al., 2022; Meurer et al., 2020b; 
Zhang et al., 2021), the plateau at 3 % contradicts the increase in total 
porosity for SOC contents beyond this value, which is observed for other 
land uses (Robinson et al., 2022). Thus, the partial dependence plots 
derived from our dataset suggest that a critical SOC content (Loveland 
and Webb, 2003) may exist in tilled and trafficked agricultural soils 
below which soil structure starts to deteriorate and that this threshold is 
around 3 %. We note that our dataset contains only few samples with 
SOC contents above this threshold (n = 23; Fig. S1) so that any increases 
in KL divergence with SOC contents larger than 3 % may not have be 
revealed. Furthermore, we previously noted the significant negative 

Fig. 4. Relative importance of covariates for explaining the variation in KL 
divergence for the scenarios including all samples (a) and only subsoil samples 
(b). The relative importance is expressed as the increase in mean squared error 
if a specific covariate is left out of the models. Filled circles represent the case 
where all samples were included in the random forest analysis, while empty 
circles represent the case without “gyttja” soils. Error bars (hardly visible) 
indicate standard errors. 
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correlation between SOC content and soil depth in our dataset. How-
ever, the shape of the partial dependence plots is the same for subsoil 
and topsoil (Fig. 6 and Fig. S3), which gives us some confidence that the 
relationship between SOC content and KL divergence revealed here is 
largely the effect of SOC. 

3.3.2. Climate 
The annual average air temperature, Tm, was the third most impor-

tant variable both when all samples and only subsoil samples were 
included in the RF analysis (Fig. 4). The partial dependence plots show 
that the KL divergence tends to be larger in colder climates, which is 
more prominent in the case where all samples were included (Figs. 5 and 
6). This difference between scenarios is due to the inclusion of topsoil 
samples (Fig. S3). The smaller KL divergences in the warmer regions of 
Sweden and Norway may be a consequence of more intensive agricul-
ture, which is associated with the use of heavier machinery and thus an 
increased risk of soil structure deterioration by compaction (Björklund 

et al., 1999; Keller et al., 2019). Another likely reason for the larger KL 
divergences in colder regions could be the effects of freezing and 
thawing on soil structure. We roughly approximated the number of 
freeze-thaw cycles in the soil from our air temperature data, where one 
cycle was defined by a drop below − 0.5 ◦C and subsequent increase 
above 0.5 ◦C. We found a strong negative correlation between the esti-
mated number of freeze-thaw cycles and Tm (Spearman’s r = − 0.80; p <
0.001). Freeze-thaw cycles can have a ‘structure-recovering’ effect in 
soils whose structure has previously been degraded, even in the subsoil 
(Bryk et al., 2017; Gregory et al., 2009; Ma et al., 2019). In southern 
Sweden, where the largest Tm are found, intense freeze-thaw cycles are 
rare and freezing does not penetrate far into the soil rendering structure- 
recovering effects ineffective. This supports the results of Hirmas et al. 
(2018), who found a positive correlation between the frequency of 
freezing and effective porosity (i.e., the difference between total 
porosity and water content at field capacity) across different climate 
regions of the US. Finally, it can also be noticed that the peak in KL 

Fig. 5. Partial dependence plots for the scenario including all soil samples. Both continuous and categorical covariates, which were used to explain the variation in 
KL divergence, are shown. For the continuous covariates, the solid lines represent the case including all soil samples and the dashed lines represent the case without 
“gyttja” soils. 
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divergence at Tm values of around 6.5 ◦C in Figs. 5 and 6 is caused by the 
gyttja soils. 

The second climate variable, the annual average precipitation, Pa, 
was less important than Tm in both scenarios, ranking fourth for the 
subsoil samples, while it was the third least important variable when all 
samples were included (Fig. 4). The partial dependence plots in Figs. 5 
and 6 show similar trends with the largest KL divergences in dry cli-
mates, decreasing to minimum values at a Pa of ca. 500 to 600 mm, with 
relatively constant KL divergences with further increases in annual 
precipitation. This finding is in line with previous studies, which showed 
directly or indirectly that soils in drier climates tend to have a stronger 
developed structure and more heterogeneous VSDs (Caplan et al., 2019; 
Hirmas et al., 2018; Jarvis et al., 2013; Jorda et al., 2015; Wu et al., 
2023). The reasons for this, however, are still unclear. It is possible that 
the effect is indirect and due to an increased risk of soil compaction in 
wetter regions (Jarvis et al., 2013). Shrinking and swelling may also be a 
relevant process in this context, as shrinkage would be more pronounced 

in drier climates (Bodner et al., 2013a; Caplan et al., 2019). 

3.3.3. Time 
Sampling year was the second most important covariate if only 

subsoil samples were included in the RF analysis, while it was less 
important for the scenario with all samples (Fig. 4). The partial depen-
dence plots showed a decline in KL divergence between the 1950′s and 
1970′s (Figs. 5 and 6) and was relatively constant thereafter. These re-
sults suggest a gradual deterioration of soil structure in the recent past, 
which seems to have been especially prevalent in the subsoil. This 
deterioration most probably resulted from the considerable increase in 
production intensity between the 1950′s and 1990′s, in particular in 
southern Sweden (Björklund et al., 1999). Key aspects of this intensifi-
cation were an overall increase in the weight of agricultural machinery 
(Keller et al., 2019; Parvin et al., 2022) and more repeated trafficking, 
both of which would tend to enhance vertical stresses transmitted to the 
soil and aggravate the severity of soil compaction (Hadas, 1994; 

Fig. 6. Partial dependence plots for the scenario including only subsoil samples. Both continuous and categorical covariates, which were used to explain the variation 
in KL divergence, are shown. For the continuous covariates, the solid lines represent the case including all soil samples and the dashed lines represent the case 
without “gyttja” soils. 
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Håkansson and Medvedev, 1995; Keller and Or, 2022). It can be noted 
that the larger KL divergences found for samples taken between the 
1950′s and 1970′s do not appear to be an artifact due to collinearity. For 
example, they do not coincide with the sampling of soils that are natu-
rally more structured such as the gyttja soils. In fact, the opposite is the 
case, as most of the samples of gyttja soils were taken after the 1970′s, 
which therefore buffered the decline in KL divergence with time (Figs. 5 
and 6). Similarly, the warmer sites, which showed lower KL divergences, 
were not preferentially sampled in more recent years, as shown by a lack 
of correlation between sampling year and Tm (Spearman’s r = − 0.03, p 
= 0.50). 

In contrast to sampling year, sampling season was the least important 
variable in all scenarios (Fig. 4), and the partial dependence plots 
showed little variation among the different seasons (Figs. 5 and 6). This 
is in contrast to many studies that stress the importance of within-season 
variability of soil pore structure (e.g., Alletto et al., 2015; Messing and 
Jarvis, 1993; Schwen et al., 2011). However, this within-season vari-
ability has only been investigated in topsoil, where it mainly results from 
the consolidation of soil following mechanical loosening by tillage 
(Ghezzehei and Or, 2003). The dominance of subsoil samples in our 
dataset might therefore have played a role. However, sampling season 
ranked lowest even for the scenario where only topsoil samples were 
included (Fig. S2). It seems more likely that the low relevance of sam-
pling season may be because many of the topsoil samples in our database 
were sampled in summer, presumably after the soil had already un-
dergone some degree of consolidation, while relatively few were taken 
soon after tillage in spring (Fig. S1). 

4. Summary and conclusions 

We conclude that an index of soil structure based on relative entropy, 
the Kullback-Leibler (KL) divergence, gave useful insights into the 
drivers of soil structure evolution in agricultural soils of a region in the 
temperate-boreal zone. The random forest (RF) analysis explained on 
average more than 50 % of the variation in KL divergence for a large 
dataset of samples from Sweden and Norway. However, the performance 
was worse in the topsoil, highlighting the complex dynamics of soil 
structural evolution in agricultural topsoils and the need to include 
other covariates than those chosen here, such as information on soil 
tillage and recent weather conditions. Our analysis revealed the leading 
role of properties of the soil mineral phase for driving the evolution of 
soil structure, in particular properties resulting from the nature of the 
parent material and clay content. This raises the question to what degree 
soil structure is “pre-determined” by inherent soil properties, which are 
difficult to manage. Furthermore, we found relatively large effects of 
mean annual air temperature and average annual precipitation on the 
KL divergence. Although we were unable to answer the question 
whether these effects are direct, for example through swelling and 
shrinking and/or freezing and thawing processes, or indirectly 
expressed through interactions with soil management (e.g., increased 
risks of traffic compaction in wetter regions), they might be relevant in 
the context of climate change. In particular, as climate change in the 
temperate-boreal zone is expected to result in wetter soil conditions and 
the northward expansion of intensive agriculture due to warmer tem-
peratures, the results suggest an increased risk of soil structure deteri-
oration in the future. Soil organic carbon content turned out to be the 
least relevant soil property for explaining the variation in KL divergence 
in our study. However, our results suggest a threshold SOC content at 
around 3 % below which soil structure deteriorates. Further in-
vestigations are needed to test whether the de-coupling between SOC 
increase and soil structure formation may be the result of regular soil 
tillage and thus a typical feature of agricultural soils. Lastly, our analysis 
confirmed signs of soil structure deterioration, in particular in the upper 
subsoil. Through the inclusion of sampling year as a covariate, we could 
reveal that this deterioration worsened between the 1950’s and 1970’s, 
which is most probably related to the increase in machinery weight and 

agricultural intensification in the recent past. This finding implies the 
need for soil structure monitoring to unveil such trends at an early stage 
that allows for timely mitigation measures. We note that the dataset 
used here suffers to some degree from sampling bias as a result of past 
research interests in Sweden. This calls for a uniform spatial represen-
tation of soil physical data in the study area, which may be achieved 
through targeted sampling campaigns. Furthermore, we note that our 
results are likely to be strictly only valid for agricultural soils of the 
temperate and boreal zone. A similar study in other regions would 
therefore be a logical next step. 
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Scandinavica, Section B - Soil & Plant Science 43, 193–205. https://doi.org/ 
10.1080/09064719309411242. 
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