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1  |  INTRODUC TION

The demand for pollinators has increased worldwide as more ento-
mophilous flowering crops are cultivated (Aizen & Harder, 2009). At 
the same time, wild pollinators are in decline and there are reports 
of recurring high losses of managed honey bee colonies (Goulson 
et al., 2015; Koh et al., 2016; Neumann & Carreck, 2010; Steinhauer 

et al., 2018). This mismatch in supply and demand for pollination ser-
vices has led to an increased interest in honey bees and has drawn 
attention to various factors that can affect bee health, such as 
honey bee- associated microorganisms (Aizen & Harder, 2009; Gallai 
et al., 2009; Genersch, 2010a).

The majority of the bacterial species associated with honey 
bees are non- pathogenic (Corby- Harris et al., 2014; Cox- Foster 
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Abstract
The honey bee microbiota is involved in several important functions, and alterations 
in the composition could have a severe effect on honey bee health. Among the bacte-
ria identified in the honey bee microbiome are a group of non- pathogenic honey bee- 
specific	lactic	acid	bacteria	(hbs-	LAB)	that	have	been	shown	to	inhibit	the	growth	of	
bacterial pathogens such as Paenibacillus larvae, the causative agent of American foul-
brood	(AFB).	While	P. larvae only causes disease in larvae and not in adult honey bees, 
there are reports of the pathogen causing changes in the microbiota composition of 
the	adults.	The	aim	of	this	study	was	to	investigate	how	AFB	in	the	colony	affect	the	
hbs-	LAB	composition	in	adult	honey	bees.	Adult	bees	were	collected	from	colonies	
with	and	without	AFB	during	three	outbreaks	of	AFB	in	Sweden.	The	hbs-	LAB	was	an-
alyzed	using	qPCR	to	detect	and	quantify	the	number	of	ten	hbs-	LAB	(five	Lactobacilli, 
two Apilactobacilli, one Bombilactobacilli, and two Bifidobacterium).	The	hbs-	LAB	com-
position	was	compared	between	AFB	outbreaks	and	depending	on	the	AFB	status	of	
the honeybee colony at the time of sampling. The data analyses revealed differences 
in	the	abundance	of	individual	hbs-	LAB	between	outbreaks	and	an	overall	difference	
in	bacterial	community	composition	depending	on	AFB	status.	Also,	a	higher	hbs-	LAB	
diversity was observed in samples that were P. larvae culture positive.
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et al., 2007;	 Engel	 et	 al.,	2016) and may be of great importance 
to honey bee health. The honey bee microbiota is involved in sev-
eral important functions such as food digestion, immune system 
activation, and protection against pathogens, and compositional 
variations of the bacterial community can affect these functions 
(Engel	 et	 al.,	2012; Khan et al., 2020;	 Raymann	&	Moran,	2018; 
Vásquez et al., 2012). Among the non- pathogenic bacteria identi-
fied and isolated from honey bees are a group of functionally simi-
lar	lactic	acid	bacteria	(LAB).	This	group	of	honey	bee-	specific	LAB	
(hbs-	LAB)	includes	species	belonging	to	lactobacilli,	apilactobacilli,	
bombilactobacilli, and bifidobacteria and are in combination or in-
dividually suggested to have health- promoting effects on honey 
bees	(Olofsson	et	al.,	2014, 2016;	Olofsson	&	Vásquez,	2008). As 
part	of	the	honey	bee	microbiota,	hbs-	LAB	may	affect	the	health	
of	honey	bees	in	several	ways.	In	addition	to	their	ability	to	directly	
inhibit bacterial growth by secreted antimicrobial compounds, 
these bacteria can outcompete pathogens and activate the immune 
defense	 in	honey	bees	 (Engel	 et	 al.,	2016;	 Evans	&	Lopez,	2004; 
Forsgren et al., 2010;	 Janashia	&	Alaux,	2016; Killer et al., 2014; 
Pachla et al., 2018;	 Pătruică	 &	 Mot,	 2012; Truong et al., 2023; 
Zendo et al., 2020).

One	of	the	most	important	honey	bee	pathogens	is	the	spore-	
forming bacterium Paenibacillus larvae. This bacterium causes the 
honey	 bee	 brood	 disease	 American	 foulbrood	 (AFB),	 lethal	 not	
only to individual larvae but also to entire colonies. P. larvae causes 
disease in young honey bee larvae that become infected by con-
suming food contaminated with infectious bacterial endospores. 
The spores germinate and multiply in the midgut of the larvae 
and then invade and putrefy the larval tissue (Genersch, 2010b). 
Even	 though	 P. larvae does not cause obvious disease in adult 
honey bees (Crailsheim & Riessberger- Gallé, 2001), changes in 
the microbiome of adult honey bees have been reported after 
infection with P. larvae	 (Erban,	 Ledvinka,	 Kamler,	 Nesvorna,	
et al., 2017).

Hbs-	LAB	 have	 been	 shown	 to	 have	 an	 inhibitory	 effect	 on	
P. larvae both in vitro and when fed to honey bee larvae in vivo 
(Forsgren et al., 2010; Pachla et al., 2018; Truong et al., 2023). This 
inhibitory	effect	may	suggest	 the	possibility	of	using	hbs-	LAB	as	
probiotics	 to	 prevent	 diseases	 such	 as	 AFB	 (Pachla	 et	 al.,	 2018; 
Truong et al., 2023). However, the honey bee colony is a com-
plex super- organism, and effects at the individual bee level do 
not automatically translate to effects on the colony level (Lamei 
et al., 2020; Stephan et al., 2019). Previous field experiments by 
Lamei et al. (2020) found that feed supplements containing hbs- 
LAB	 at	 the	 colony	 level	 had	 no	 effect	 on	 hbs-	LAB	 composition	
and abundance in the honey crop of sampled workers, but that 
there	was	 higher	 hbs-	LAB	 diversity	 in	 colonies	with	 a	 history	 of	
AFB	compared	to	colonies	with	no	history	of	AFB.	The	aim	of	the	
current study was to build on these results with a broader investi-
gation	of	the	composition	and	diversity	of	hbs-	LAB	in	samples	of	
honey	 bees	 collected	 from	 colonies	with	AFB	 and	 from	 colonies	
with	various	AFB	statuses	in	the	surrounding	area	during	AFB	out-
breaks in Sweden.

2  |  MATERIAL S AND METHODS

2.1  |  Samples

The samples originated from three geographically separate out-
breaks	of	AFB	in	Sweden	during	the	summer	of	2018.	Bee	inspec-
tors collected approximately 300 adult honey bees per colony from 
apiaries in the outbreak areas. The samples were sent to the Swedish 
National	 Reference	 Laboratory	 for	 Bee	 Health	 and	 analyzed	 for	
P. larvae using standard cultivation methods according to Swedish 
legislation (Forsgren & Laugen, 2014; Nordström & Fries, 1995) 
(Table 1). Five bees from each 41 samples collected were pooled 
and used for analyses. The samples were classified according to four 
categories:	honey	bee	colonies	with	disease	(AFB1,	N = 3	[one	from	
each separate disease outbreak]), disease- free colonies from the 
same	apiaries	as	AFB1	(AFB2,	N = 9	 [3	from	each	separate	disease	
outbreak]), disease- free apiaries belonging to beekeeping operations 
with	AFB	(AFB3,	N = 16	[4–6	per	outbreak]),	and	disease-	free	bee-
keeping	operations	 in	 the	AFB-	outbreak	 areas	 (AFB0,	N = 13	 [3–5	
per outbreak]) (Figure 1, Table 1). Sample information is summarized 
in Table 1. All honey bee samples were collected during the same 
period	(early	May	until	early	June	2018).

2.2  |  DNA extraction from bee samples

DNA	was	extracted	in	duplicates	as	described	by	Engel	et	al.	(2013), 
with	 minor	 modifications,	 using	 the	 DNeasy	 Blood	 and	 Tissue-	kit	
(Qiagen, Hilden, Germany). The bees were washed in a 1% aque-
ous	 solution	 of	 Klorin	 Original	 (Colgate-	Palmolive	 AB,	 Stockholm,	
Sweden)	for	2–3 min	before	being	rinsed	three	times	in	sterile	water.	
Heads and thoraxes were removed and abdomens were placed in a 
2 mL	tube	(one	tube	per	pooled	sample,	each	pooled	sample	consist-
ing	of	five	bees)	with	5–6	glass	beads	and	500 μL RLT- buffer (Qiagen) 
with	 beta-	mercaptoethanol	 (10 μL/mL). The samples were homog-
enized	using	Precellys	 Evolution	 (Bertin	 Instruments,	Montigny-	le-	
Bretonneux,	 France)	 with	 a	 pre-	set	 protocol	 (2 × 5400 rpm	 for	 90	
s, 30 s break between runs). The homogenization program was re-
peated twice and the samples kept on ice between runs. The samples 
were	centrifuged	for	2 min	at	5000 rpm	and	200 μL of the resulting 
supernatant	was	mixed	with	200 μL 99% ethanol. Two hundred μL 
of	 the	mixture	was	used	 for	DNA	 recovery	 following	 the	protocol	
“Purification	of	Total	DNA	from	Animal	Tissues”	in	the	DNeasy	Blood	
and	Tissue-	kit	(Qiagen,	starting	at	step	4	in	DNeasy	Blood	&	Tissue	
Handbook	07/2006).	The	DNA	was	eluted	in	60 μL	AE-	buffer	and	the	
quality	and	yield	of	the	DNA	was	estimated	using	Nanodrop.	All	DNA	
samples	were	diluted	to	20 ng/μL	and	stored	at	−20°C	until	analyzed.

2.3  |  DNA extraction from lactic acid bacteria

Ten	 isolates	 of	 hbs-	LAB	 species	 (Lactobacillus apis, 
Apilactobacillus kunkeei, Lactobacillus kullabergensis, Lactobacillus 
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TA B L E  1 Honeybee	samples	used	in	this	study	and	information	on	American	foulbrood	status	for	the	honey	bee	colonies	the	samples	
were collected from.

Outbreak Sample Beekeeper Paenibacillus larvae culture

Visual AFB disease

AFB status 
category

Beekeeping 
operation Apiary Colony

1 1 A Pos Yes Yes Yes AFB1

2 B Pos No No No AFB0

3 B Neg No No No AFB0

4 A Pos Yes No No AFB3

5 A Neg Yes No No AFB3

6 A Neg Yes No No AFB3

7 A Neg Yes No No AFB3

8 A Pos Yes No No AFB3

9 A Pos Yes No No AFB3

10 A Pos Yes Yes No AFB2

11 A Pos Yes Yes No AFB2

12 A Pos Yes Yes No AFB2

13 C Neg No No No AFB0

14 C Neg No No No AFB0

15 C Neg No No No AFB0

2 16 D Pos Yes Yes Yes AFB1

17 D Pos Yes Yes No AFB2

18 D Pos Yes Yes No AFB2

19 D Pos Yes Yes No AFB2

20 D Pos Yes No No AFB3

21 D Neg Yes No No AFB3

22 D Pos Yes No No AFB3

23 D Neg Yes No No AFB3

24 D Pos Yes No No AFB3

25 D Neg Yes No No AFB3

26 E Pos No No No AFB0

27 E Neg No No No AFB0

28 E Pos No No No AFB0

29 E Neg No No No AFB0

30 E Neg No No No AFB0

3 31 F Pos Yes Yes Yes AFB1

32 F Pos Yes No No AFB3

33 F Neg Yes No No AFB3

34 F Neg Yes No No AFB3

35 F Neg Yes No No AFB3

36 G Pos No No No AFB0

37 G Neg No No No AFB0

38 G Neg No No No AFB0

39 F Neg Yes Yes No AFB2

40 F Neg Yes Yes No AFB2

41 F Neg Yes Yes No AFB2
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kimbladii, Lactobacillus helsingborgensis, Lactobacillus melliventris, 
Apilactobacillus apinorum, Bombilactobacillus mellis, Bifidobacteria 
asteroides, and Bifidobacteria coryneforme) (Lamei et al., 2020) were 
cultured	 in	 Man,	 Rogosa	 and	 Sharpe	 broth	 (Oxoid,	 Basingstoke,	
UK)	supplemented	with	2%	fructose	(Merck,	Darmstadt,	Germany)	
and 0.1% l-	cysteine	 (Sigma-	Aldrich,	 St.	 Louis,	 Missouri,	 USA)	
(sMRS-	broth)	as	described	by	Lamei	et	al.	 (2017). Approximately, 
109	bacteria	of	each	isolate	were	harvested	and	used	for	DNA	ex-
traction.	The	bacteria	were	lysed	in	lysis	buffer	(20 mM	Tris,	2 mM	
EDTA,	1.2%	Triton	x-	100)	on	a	shaker	at	37°C	for	18 h.	DNA	was	
purified	from	the	lysate	using	a	QIAcube	extraction	robot	(Qiagen)	
and	the	Qiagen	DNA	extraction	protocol	“Purification	of	bacterial	
or	yeast	DNA	with	enzymatic	lysis	V1,”	eluting	in	60 μL	AE-	buffer	

(Qiagen).	The	quality	and	concentration	of	the	DNA	was	estimated	
using Nanodrop.

2.4  |  Assay design

Primers for five Lactobacilli, two Apilactobacilli, one Bombilactobacilli, 
and two Bifidobacterium were designed to fit sequences available 
through	the	National	Center	for	Biotechnology	Information	(NCBI)	
(Table 2).	The	primers	were	designed	using	the	Primer-	BLAST	func-
tion	on	NCBI	and	CLC	Main	Workbench	8.1	(Qiagen	Bioinformatics).	
The	primers	were	evaluated	using	qPCR	and	DNA	 from	 reference	
isolates	using	SsoFast	EvaGreen	Supermix	(Bio-	Rad)	according	to	the	
manufacturer's recommendation with an annealing temperature of 
60°C	followed	by	a	melt	curve	analysis	(hot	start	2 min	98°C;	35 cy-
cles	5 s	98°C,	10	s	60°C;	melting	curve	65–95°C	0.5°C/5 s).	To	verify	
the specificity of the primers, the assays were tested with conven-
tional	PCR	using	HotStarTaq	Plus	DNA	Polymerase	(Qiagen)	accord-
ing to manufacturer's recommendations. The PCR products were 
visualized	by	gel	electrophoresis	and	Sanger-	sequenced	(Macrogen	
Europe,	Amsterdam,	the	Netherlands)	to	confirm	their	identity.

2.5  |  qPCR analyses

The	 qPCR	 analyses	 were	 performed	 using	 a	 Biomark	 HD	 system	
(Fluidigm) following the manufacturer's protocol for gene expression 
analysis	and	as	described	by	D'Alvise	et	al.	 (2019). To evaluate the F I G U R E  1 Schematic	view	over	the	sample	origin.

Target Sequence 5′–3′ Reference

Apilactobacillus apinorum CGTGCTGCGAAGGGAATTCCAATTATCAATC This study

CAGGGGTTCTCTTTACGGTACCCTTTAGG

Lactobacillus apis AGGCTGGTTTCACGGTTTACCTGG This study

TGTTGGTGTCAACCTGAGAGGCA

Lactobacillus helsingborgensis CAGATAATGCATTTGTGCGCAGCCTG This study

AAAGCTACCGGGACTGTCAGCTACT

Lactobacillus kimbladii TGGTAAAAGTACAAGCCCACGCC This study

TGGAGTCAGTCAGTTCACGAGACAAG

Lactobacillus kullabergensis GGGCTCTGGTAAAAGTTCAGGCACATG This study

GATCTGCCAAGGCTTCTCTAGCCAAA

Apilactobacillus kunkeei CGATGGTGCCCACATTCAAACAC This study

GGAGATGCAGGCAATTGAGCCTTC

Bombilactobacillus mellis CCACGGTGAAAGGCGACGAAGATATTATG This study

TACACCCATTGTTGCGCGTTTAGTTTGAG

Lactobacillus melliventris TTGGCGGTGTCGGTTTAGGTAAAACA This study

GACAACCTTGGCATTAGGCCGTTC

Bifidobacterium asteroides GAATCCTACCTGTCCTATGCCCTGTC This study

TACATGGCGTAGATGACCCTGCG

Bifidobacterium coryneforme GGATCCGGCGATATTCGAAACAACG This study

TCTCCTCATTGGGACGCAGGTC

TA B L E  2 Primers	used	in	this	study.
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quantitative performance of the assays, the assays were tested on 
FlexSix	GE	integrated	fluidic	circuits	(IFC)	or	on	96	× 96	IFCs	for	gene	
expression (Fluidigm, San Francisco, CA, USA) using 10- dilution se-
ries	of	extracted	hbs-	LAB	DNA	as	template.	Eight	 to	twelve	repli-
cates of the assays were matched with a six-  to eight- step dilution 
series	 of	 each	 hbs-	LAB	with	 known	DNA	 concentration	 to	 deter-
mine detection limit, linear dynamic detection range, variation at 
detection limits, and PCR efficiency (all above 95%). All assays had a 
PCR	efficiency	above	95%	and	were	able	to	detect	as	few	as	40–850	
bacteria per reaction. The final qPCRs were performed on 96 × 96	
IFCs	for	gene	expression	(Fluidigm)	using	the	manufacturer's	stand-
ard qPCR protocol for fast PCR followed by a melt curve analysis 
(thermal	mix:	40 min	70°C,	30 s	60°C;	hot	start:	60 s	95°C;	30 cycles	
5 s	96°C,	20 s	60°C;	melting	curve:	60–95°C	1°C/s).	Each	duplicate	
of	the	extracted	DNA	was	analyzed	in	triplicates	and	repeated	twice.	
The qPCR data was checked using the automated quality control in 
the software Fluidigm Real- Time PCR analysis and further checked 
and	 revised	manually.	Only	Cq-	values	derived	 from	 reactions	 that	
showed a specific melting temperature peak of the product were 
used in the analysis.

2.6  |  Data analysis and statistics

Logarithmic linear regression was used for the conversion of Cq- 
values to number of bacteria per reaction and converted to bacteria 
per	honey	bee	by	back-	calculation	of	dilutions.	Means	of	 the	bac-
terial concentrations per honey bee was determined in duplicate, 
and was logarithmically (log10) transformed for use in the statistical 
analysis.	The	diversity	of	hbs-	LAB	species	was	estimated	 for	each	
individual sample using the calculated mean bacterial numbers using 
Shannon's diversity index.

The	statistical	software	SPSS	statistics	(IBM	SPSS	Statistics	for	
Windows,	Version	26.0)	was	used	for	data	analysis	and	significance	
testing between groups. Normality and homogeneity of variances 
of	the	dataset	was	checked	using	Shapiro–Wilk's	test	for	normality	
and Levene's test for homogeneity before the groups' mean values 
were compared. Since Shannon's diversity index data met the re-
quirements	for	normality	and	homogeneity,	an	ANOVA	was	used	to	
compare	the	means	of	 three	groups	or	more	 (AFB	status	and	out-
break region) and independent t- tests for comparing two groups (vi-
sual	AFB	symptoms	in	the	beekeeping	operation,	in	the	apiary,	or	in	
the colony, as well as P. larvae presence or absence).

The	abundance	of	the	respective	hbs-	LAB	was	not	normally	dis-
tributed	between	individuals.	A	Kruskal–Wallis	with	Dunn's	post	hoc	
test was therefore used to compare the means of three groups or 
more	(AFB	status	and	outbreak	region)	and	Mann–Whitney	U test for 
comparison	between	two	groups	(visual	AFB	symptoms	in	beekeep-
ing operation, apiary and colony, and P. larvae presence or absence).

The	program	R-	4.2.2	(Innocent	and	Trusting;	R	Core	Team,	2022) 
was used for determining community composition differences be-
tween	AFB	groups.	A	Bray-	Curtis	matrix	was	created	on	normalized	
species counts using the vegan package.

3  |  RESULTS

3.1  |  Distribution of honey bee- specific lactic acid 
bacteria by outbreak

One	 honey	 bee-	specific	 lactic	 acid	 bacterial	 species	 (hbs-	LAB),	
A. apinorum, was not detected in any of the samples and was there-
fore excluded from the statistical analyses (Table 3, Appendix 1). 
All	 other	 hbs-	LAB	 (L. apis, A. kunkeei, L. kullabergensis, L. kimbla-
dii, L. helsingborgensis, L. melliventris, B. mellis, B. asteroides, and 
B. coryneforme)	were	found	in	all	three	outbreaks	and	in	all	four	AFB	
groups (Table 3, Appendices 1 and 2). Four were detected in all sam-
ples: L. apis, L. kullabergensis, L. melliventris, and B. mellis, (Table 3, 
Appendices 1 and 2). Four additional bacterial species were found 
in a majority of the samples: L. helsingborgensis, L. kimbladii, B. as-
teroides, and B. coryneforme	 (97.6%,	 85.4%,	 95.1%,	 and	 68.3%	 re-
spectively; Table 3, Appendix 1). There were some differences in 
distribution between outbreaks; L. helsingborgensis and B. asteroides 
were	found	in	all	samples	(AFB0–AFB3)	from	outbreaks	1	and	2,	but	
for	outbreak	3	one	AFB0	sample	was	negative	for	L. helsingborgen-
sis,	and	one	AFB	1	sample	and	one	AFB	2	sample	were	negative	for	
B. asteroids (Table 3, Appendix 1). Conversely, L. kimbladii was found 
in all samples from outbreak 3 but was not present in one sample 
from outbreak 1 and 5 samples from outbreak 2. B. coryneforme was 
found in all but one sample from outbreak 1 (93.3%) compared to 
in eight (53.3%) and six (54.5%) from outbreaks 2 and 3, respec-
tively (Table 3, Appendix 1). A. kunkeei was detected in 12 (29.3%) 
of the overall samples and only in one sample from outbreak 3 (40% 
of outbreak 1 samples and 33.3% of outbreak 2 samples) (Table 3, 
Appendix 1).

3.2  |  Abundance of hbs- LABs

The	abundance	of	hbs-	LABs	was	compared	between	different	AFB	
status	 groups	 as	well	 as	 different	 outbreaks.	While	 no	 significant	
differences	were	 found	 between	 the	 different	 AFB	 status	 groups	
(Figure 2a),	a	Kruskal-	Wallis	comparison	of	samples	from	the	three	
outbreaks revealed differences in four bacterial species: L. apis 
(p = .019),	L. kullabergensis (p = .030),	B. mellis (p = .008),	and	B. aster-
oides (p < .001).	 The	 post	 hoc	 analysis	 revealed	 that	 samples	 from	
outbreak 1 had higher abundance of B. mellis and B. asteroides than 
samples from outbreak 2 (p = .015	and	.049	respectively)	(Figure 2b) 
and a higher abundance of L. kullabergensis, B. mellis, and B. aster-
oides (p = .013,	 p = .004	 and	 p < .001,	 respectively)	 than	 samples	
from outbreak 3 (Figure 2b). The abundance of L. kullabergensis 
was significantly higher in honey bees from outbreak 2 than in 3 
(p = .030,	respectively)	 (Figure 2b). Samples from outbreak 3 had a 
higher abundance of L. apis than both outbreak 1 and 2 (p = .032	and	
p = .007,	respectively)	(Figure 2b). Additionally, a significantly higher 
abundance of B. asteroides was found in samples from beekeeping 
operations	 with	 colonies	 without	 visible	 AFB	 symptoms	 (n = 13,	
p = .041,	data	not	shown).
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6 of 13  |     NILSSON et al.

Overall,	 the	 community	 composition	 of	 the	 different	 bacterial	
communities	was	different	between	AFB	groups.	The	group	with	vis-
ible	AFB	symptoms	(AFB1)	was	moderately	similar	to	the	other	three	

groups	(Bray–Curtis	dissimilarity	index	0.52–0.70,	Table 4), while the 
other	three	groups	(AFB0,	AFB2,	and	AFB3)	were	not	very	similar	to	
each	other	(Bray	Curtis	dissimilarity	index	0.1–0.27,	Table 4).

TA B L E  3 The	distribution	of	honeybee-	specific	lactic	acid	bacteria	in	41	honeybee	samples.

Hbs- LAB

Outbreak AFB status

Total1 2 3 AFB1 AFB2 AFB3 AFB0

n = 15 n = 15 n = 11 n = 3 n = 9 n = 16 n = 13 n = 41

(%) (%) (%) (%) (%) (%) (%) (%)

Lactobacillus apis 15 15 11 3 9 16 13 41

(100) (100) (100) (100) (100) (100) (100) (100)

Apilactobacillus kunkeei 6 5 1 1 5 3 3 12

(40) (33.3) (9.1) (33.3) (55.6) (18.8) (23.1) (29.3)

Lactobacillus kullabergensis 15 15 11 3 9 16 13 41

(100) (100) (100) (100) (100) (100) (100) (100)

Lactobacillus kimbladii 14 10 11 2 7 14 12 35

(93.3) (66.7) (100) (66.7) (77.8) (87.5) (92.3) (85.4)

Lactobacillus helsingborgensis 15 15 10 3 9 16 12 40

(100) (100) (90.9) (100) (100) (100) (92.3) (97.6)

Lactobacillus melliventris 15 15 11 3 9 16 13 41

(100) (100) (100) (100) (100) (100) (100) (100)

Bombilactobacillus mellis 15 15 11 3 9 16 13 41

(100) (100) (100) (100) (100) (100) (100) (100)

Apilactobacillus apinorum 0 0 0 0 0 0 0 0

(0) (0) (0) (0) (0) (0) (0) (0)

Bifidobacteria asteroides 15 15 9 2 8 16 13 39

(100) (100) (81.8) (66.7) (88.9) (100) (100) (95.1)

Bifidobacteria coryneforme 14 8 6 2 5 11 10 28

(93.3) (53.3) (54.5) (66.7) (55.6) (68.8) (76.9) (68.3)

Note:	The	table	shows	the	distribution	per	outbreak	and	according	to	AFB	status.

F I G U R E  2 Abundance	of	bacteria	found	in	honeybees	collected	during	outbreaks	of	AFB	in	Sweden	2018.	The	graph	shows	the	mean	of	
the	log10	bacteria/bee	concentration	and	standard	error	of	mean	for	each	group	regarding	AFB	status	(a)	and	outbreak	(b).	Apilactobacillus 
apinorum is not included in the figure as all samples were negative. Significant differences are indicated. *p < .05;	**p < .01;	***p < .001.
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3.3  |  Diversity of hbs- LAB

A comparison of the diversity between samples from P. larvae 
culture- positive (n = 20,	Tables 1 and 5) and culture- negative (n = 21,	
Tables 1 and 5) colonies revealed that the mean Shannon's diver-
sity	 index	 for	 the	 hbs-	LAB	was	 higher	 in	 culture-	positive	 samples	
(p = .040,	Figure 3c). However, no difference in diversity, as meas-
ured by Shannon's diversity index, was identified between sample 
groups	when	the	three	outbreaks	and	the	different	AFB	status	were	
compared (Figure 3a,b). There was almost no difference in commu-
nity composition between the samples that were P. larvae positive 
compared to those that were not.

4  |  DISCUSSION

Forty-	one	 samples	 collected	 from	 three	 AFB	 outbreaks	 in	 Sweden	
(2018)	were	assayed	for	ten	hbs-	LAB	species.	Our	results	show	that	
four	 of	 the	 assayed	 hbs-	LAB	 species	 were	 present	 in	 all	 samples	
while	one	of	the	hbs-	LAB,	A. apinorum, was not detected in any of the 
samples. Changes in the microbiome have been reported in associa-
tion with pathogen pressure, not only with P. larvae	(Erban,	Ledvinka,	
Kamler, Nesvorna, et al., 2017; Lamei et al., 2020; Ye et al., 2021), 
but also in association with Varroa infestations, Vairimorpha (previ-
ously Nosema) infection, neogregarine infections, and the bacte-
ria Melissococcus plutonius	 that	 causes	 European	 foulbrood	 (Erban,	
Ledvinka, Kamler, Hortova, et al., 2017; Hubert et al., 2017;	Ptaszyńska	
et al., 2021). This suggests that even though adult honey bees are not 
directly affected by the diseases caused by the pathogens, the hbs- 
LAB	may	be	a	factor	or	play	a	role	in	the	course	of	honey	bee	brood	
diseases. This may happen by alteration of the hygienic behavior of 

the adult honey bees or by altering the bacterial microbiome of honey 
bee brood through the feeding of the larvae. Although we did not find 
any	overall	differences	 in	hbs-	LAB	abundance	or	diversity	 in	honey	
bees from symptomatic or asymptomatic colonies, we did find a higher 
diversity	of	hbs-	LAB	 in	 individuals	 from	bee	 colonies	with	P. larvae. 
This is similar to the results in Lamei et al. (2020)	where	the	hbs-	LAB	
diversity	was	higher	in	bee	samples	from	colonies	with	an	AFB	history	
compared	to	colonies	without	any	history	of	AFB.	In	addition	to	dif-
ferences in diversity, we found differences in the abundance of the 
individual	hbs-	LABs	between	outbreaks.	This	is	contrary	to	studies	on	
the microbiota of humans and mice where a lower diversity was found 
in individuals infected with bacterial enteropathogens compared to 
uninfected individuals (Kampmann et al., 2016; Stecher et al., 2010). 
However, as our background knowledge of the colonies, apiaries, and 
beekeeping operations in our study is limited, we cannot conclude 
that	AFB	or	the	presence	of	P. larvae exclusively causes these differ-
ences. Several other factors such as age and quality of equipment, 
microclimate, foraging resources, or pathogen pressure may have an 
effect on the abundance and the prevalence of each individual hbs- 
LAB.	The	samples	 included	 in	 this	 study	were	collected	 from	 three	
AFB	 outbreaks	 in	 different	 geographic	 locations;	 hence,	 both	 mi-
croclimate and foraging resources might have had an impact on the 
composition	of	the	hbs-	LAB	species	in	this	study.	A. kunkeei has been 
suggested to be the most common and abundant species in the hbs- 
LAB	microbiota	(Vásquez	et	al.,	2009, 2012). However, in this study, 
L. melliventris	was	the	most	abundant	hbs-	LAB	in	all	but	one	sample	
where the most abundant and equally numerous bacteria were L. mel-
liventris and L. kullabergensis (Appendix 2). Studies where A. kunkeei 
has	been	found	to	be	the	most	abundant	hbs-	LAB	are,	however,	based	
on	analyses	of	DNA	extracted	from	cultured	bacteria.	This	means	that	
the estimations may be biased due to variation in growth rate and abil-
ity to grow in culture media. This is supported by other studies where 
they have used culture- independent methods and found little or no 
A. kunkeei	 in	honey	bees	 (Engel	et	al.,	2012;	Martinson	et	al.,	2011; 
Moran	et	al.,	2012; Sabree et al., 2012) and by Lamei et al. (2017), 
who	compared	growth	rates	of	hbs-	LABs	and	showed	that	A. kunkeei 
and A. apinorum had higher growth rates in artificial media compared 
to	other	hbs-	LAB.	This	 is	a	plausible	explanation	for	the	high	abun-
dance of A. kunkeei	reported	from	culture-	based	studies.	In	this	study,	
where	 DNA	 was	 extracted	 directly	 from	 the	 bee	 guts,	 A. kunkeei 
was prevalent in 29.3% of all the samples and only in 1 of 11 sam-
ples (9%) from one of the outbreaks (outbreak 3). This is in line with 
similar studies where they have shown that the relative abundance of 
A. kunkeei	 in	 the	hbs-	LAB	 is	affected	by	seasonal	changes	and	 food	
resources	 (Olofsson	&	Vásquez,	2008; Seeburger et al., 2020). The 
abundance of A. kunkeei may also vary depending on the diet of the 
honey	bees.	In	one	study	where	honey	bees	were	fed	a	diet	mimick-
ing honeydew, a decrease in A. kunkeei was seen when compared to 
a control group fed a diet consisting of glucose, sucrose, and fruc-
tose (Seeburger et al., 2020). Furthermore, an increased abundance 
of A. kunkeei has been observed in bees collecting nectar from linden 
flowers	(Olofsson	&	Vásquez,	2008). The proportion of A. kunkeei in 
the honey bee microbiome has been shown to be significantly higher 

TA B L E  4 Bray–Curtis	dissimilarity	index	for	the	AFB	groups.

Category AFB1 AFB0 AFB3

AFB0 0.6406250 – 0.1025641

AFB3 0.6973684 0.1025641 –

AFB2 0.5257732 0.1731844 0.2709360

Note:	Blue	are	similar	and	red	are	not	similar.

TA B L E  5 Proportions	of	samples	positive	for	the	pathogen	
Paenibacillus larvae	by	outbreak	and	AFB	status.

Outbreak AFB1 AFB2 AFB3 AFB0 Total

1 100% 100% 50% 20% 53.3%

(1/1) (3/3) (3/6) (1/5) (8/15)

2 100% 100% 50% 40% 60%

(1/1) (3/3) (3/6) (2/5) (9/15)

3 100% 0% 25% 33.3% 27.3%

(1/1) (0/3) (1/4) (1/3) (3/11)

Total 100% 66.7% 70% 30.8% 48.8%

(3/3) (6/9) (7/10) (4/13) (20/41)
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in	colonies	with	EFB	than	in	healthy	colonies	(Erban,	Ledvinka,	Kamler,	
Hortova, et al., 2017).	Interestingly,	a	lower	pathogen	load	and	patho-
gen activity has been shown in honey bees fed pollen patties sup-
plemented with Lactobacillus rhamnosus, Lactiplantibacillus plantarum, 
and A. kunkeei compared to untreated bees and bees fed pollen pat-
ties	without	supplement	of	bacteria	during	an	AFB	outbreak	(Daisley	
et al., 2020). However, other studies show that positive effects from 
lactobacilli supplements on individual bees not automatically trans-
lates to colony- level effects, and it may be critical how the lactoba-
cilli	are	administrated	(Daisley	et	al.,	2020, 2023; Lamei et al., 2020; 
Stephan et al., 2019). Further studies where bees are monitored over 
a longer period and data on variations in foraging sources, climate, 
etc. are needed to better understand how environmental factors may 
affect	 the	composition	of	hbs-	LAB	and	how	this	affects	honey	bee	
health and their susceptibility to infections.

A negative correlation between P. larvae	and	the	hbs-	LABs	B. as-
teroides and B. mellis in honey bees have previously been reported 
(Erban,	Ledvinka,	Kamler,	Nesvorna,	et	al.,	2017), and we observed a 
higher abundance of B. asteroides in the honey bees from beekeeping 
operations	free	from	colonies	with	visual	AFB	signs.	The	production	
of prostaglandins in honey bees have been shown to be induced by 
B. asteroides (Kešnerová et al., 2017) and to be involved in fluid se-
cretion, reproduction, and activation of the immune system in in-
sects (Stanley & Kim, 2011). Though the function of the B. asteroides 
induced prostaglandins in honey bees have not been fully studied 
(Kešnerová et al., 2017), they may play a role in honey bees protec-
tion against infections by activating the immune system and may ex-
plain the higher abundance of B. asteroides in beekeeping operations 
without	AFB.

In	conclusion,	we	found	no	differences	in	the	abundance	or	di-
versity	of	the	hbs-	LAB	composition	between	colonies	with	or	with-
out	AFB.	However,	we	 observed	 a	 higher	 diversity	 of	 hbs-	LAB	 in	
honey bees from colonies where P. larvae had been detected and 

saw	differences	in	the	abundance	of	the	individual	hbs-	LAB	in	honey	
bees	 from	different	AFB	outbreaks.	Longitudinal	 studies,	 in	which	
the health status of the bees, their microbiota, and climate and for-
aging resources data are monitored over longer times, are needed 
for a better understanding of what affects honey bee health and 
susceptibility to diseases.
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Paenibacillus larvae culture result (c). Significant differences are indicated. *p < .05.
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APPENDIX 2

Hbs-	LAB	abundance	for	the	individual	samples.	All	samples	were	negative	for	Apilactobacillus apinorum and the results for A. apinorum are 
not included in the figure.
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