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Abstract
Forest management in drained forested peatlands can negatively affect water 
quality due to the increase in exports of organic matter and nutrients. Therefore, 
new methods to alleviate this impact are needed. In laboratory conditions, bio-
char has been shown to be a strong sorbent of organic and inorganic nutrients 
due to its high surface area and ion- exchange capacity. However, evidence of 
the adsorption capacity in field conditions is lacking. Here, we studied the water 
purification performance of two different biochar feedstocks (wood-  and garden 
residue- based) in a 10- day laboratory experiment where we incubated biochar 
with runoff water collected from drainage ditches in clear- cut peatland forests. 
We measured changes in pH and concentrations of inorganic phosphorus (PO4), 
total dissolved nitrogen (TDN), and dissolved organic carbon (DOC). The biochar 
with the best adsorbent capacity in the laboratory experiment was then tested in 
field conditions in a replicated catchment- scale experiment, where both clear- 
cutting and ditch cleaning were performed. We determined the nutrient concen-
tration of water at the inlet and outlet of biochar filters placed in outflow ditches 
of four catchments. We found that under laboratory conditions wood- based bio-
char efficiently adsorbed TDN and DOC, however, it released PO4. Furthermore, 
we found that the biochar filters reduced TDN and DOC concentration in field 
conditions. However, the percentage decrease in concentration was dependent 
on the initial concentrations of nutrients in the water and could be considered 
low. Moreover, we found that the biochar in the filters increased in TN content 
over the course of the experiment. This suggests that a wood- based biochar filter 
has the potential to be a water protection tool for reducing the export of nutrients 
from catchments with high nutrient concentration. And that the biochar from the 
ditches could be applied back to the regenerating forest catchment as a potential 
soil amendment, closing the nutrient cycle.
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1  |  INTRODUCTION

In Sweden, 15% of peatland areas are influenced by for-
estry (Vasander et  al.,  2003) and are thus affected by 
forest management activities such as clear- cutting har-
vest followed by ditch cleaning. Clear- cutting and ditch 
cleaning in drained forested peatlands often deteriorates 
water quality due to the increased export of organic mat-
ter, nutrients, and suspended solids (Joensuu et al., 2002; 
Kaila et  al.,  2014; Nieminen et  al.,  2017; Nieminen & 
Penttilä,  2004). Specifically, increased concentrations of 
dissolved organic matter (DOC) and nutrients such as ni-
trogen (N) and phosphorus (P) to downstream freshwater 
ecosystems could lead to notorious alterations of streams 
and lakes such as brownification (Kritzberg et al.,  2020; 
Monteith et  al.,  2007) and eutrophication accompanied 
with algae blooms (Smith & Schindler, 2009).

Large areas of drained peatlands will soon reach har-
vest age in Sweden and Finland (Hytönen et  al.,  2020), 
increasing the risk of diffuse pollution in the near future. 
At present, a wide range of technologies and methods for 
safeguarding water resources have been used to mitigate 
nutrient export loads to watercourses, including sedimen-
tation ponds and peatland buffer areas. However, these 
are either expensive, require large areas, or are rather inef-
ficient in reducing dissolved nutrients export loads, espe-
cially outside the growing season (Hynninen et al., 2011; 
Liljaniemi et al., 2003). Consequently, new scalable tools 
are needed to counteract the negative effects of forest 
management on water quality. A promising solution to 
reduce nutrient exports is adsorption- based purification 
of runoff water using biochar has been proposed (Saarela 
et al., 2020). Biochar is a carbon- rich product made from 
any type of organic material (feedstock) by pyrolysis 
where the organic matter is heated at 300–800°C under 
low oxygen concentrations (Lehmann & Joseph,  2012). 
Biochar has been shown to be an effective nutrient ad-
sorbent (Laird et  al.,  2010) due to its porous structure, 
large specific surface area, and high cation and anion ex-
change capacity (Ahmad et al., 2014; Gwenzi et al., 2017). 
Furthermore, it is also well established that the applica-
tion of biochar to soils can promote soil fertility, which ul-
timately may enhance plant growth (Barrow, 2012; Jeffery 
et al., 2011). Hence, suggesting a potential circular system 
where nutrients successfully captured by biochar could 
then be applied back to forests, adding to the soil carbon 
stocks, and serving as a source of nutrition to trees that 
enhances growth (Palviainen et al., 2020).

The adsorption capacity of biochar varies with the 
properties of the feedstock, the pyrolysis temperature, and 
other manufacturing parameters (Liu et al., 2020; Zhang 
et  al.,  2020). A number of feedstocks including agricul-
tural residues, wood biomass, manure, and solid waste 

have been utilized to produce biochar. Likewise, new 
biochar feedstocks, such as municipal garden residues, 
are currently reaching the market. However, the effec-
tiveness of novel biochar feedstocks in the remediation 
of organic and inorganic contaminants is still uncertain 
(Ahmad et al., 2014). Furthermore, less attention has been 
focused on testing biochar as adsorbents for nutrient re-
moval in an aqueous solution, with the available litera-
ture largely derived from laboratory experiments (Gwenzi 
et al., 2017). Nevertheless, existing experiments with bio-
char from novel feedstocks (e.g., rice straw) show differ-
ent potentials in removing pollutants from water and soil 
environments (Luo et al., 2019). Therefore, understanding 
their potential and risk outside controlled experiments is 
a fundamental question that needs to be answered before 
we can apply this method as a mitigation tool for diffuse 
pollution from forestry.

The effectiveness of biochar in the purification of peat-
land runoff water has several challenges, specifically in 
field conditions. Biochar absorption capacity increases 
when the initial nutrient concentration is high, as for ex-
ample in wastewater (Zhang et al., 2020) or agricultural 
runoff (Laird et al., 2010). Although nutrient concentra-
tion increases after clear- cutting, the concentration of 
solutes remains low in comparison, at least in a Nordic 
context (Palviainen et al., 2014). Furthermore, discharge, 
nutrients, and DOC concentrations vary across weather 
conditions and seasons in peatland forests (Mattsson 
et  al.,  2015), creating unstable conditions with high 
water volume and fluctuating nutrient concentrations. 
Unfortunately, few studies have addressed the use of 
biochar in water protection in peatland forests (Kakaei 
Lafdani et  al.,  2020, 2021; Saarela et  al.,  2020), and to 
our knowledge, there are no studies that have tested the 
biochar adsorption capacity in on- site field conditions. 
Therefore, in order to upscale this technology it is import-
ant to understand the effectiveness and limitations of this 
method in a field context.

In this study, we studied biochar as a water purification 
method both in controlled conditions and in field condi-
tions. The study was conducted in two different phases; 
initially, we (a) evaluated the adsorption capacity of two 
different types of biochars (i.e., wood-  and garden residue- 
based) and (b) assessed the effect of initial nutrient con-
centration on the adsorption capacity of these biochars. 
Subsequently, the biochar feedstock that presented the 
best adsorption capacity in the controlled laboratory en-
vironment was tested in field conditions. Here, we (c) 
tested the biochar adsorption capacity in the field under 
fluctuating solute concentrations, temperatures, and flow-
ing water and (d) examined the role of average inflow 
solute concentration (i.e., outflow from managed catch-
ments with different catchment characteristics) on the 
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adsorption capacity. Changes in water pH, total dissolved 
nitrogen (TDN), phosphate (PO4), and dissolved organic 
carbon (DOC) concentrations were measured throughout 
both experiments, as well as changes in total organic car-
bon (Tot- C), total nitrogen (Tot- N), and total phosphorus 
(Tot- P) in the biochars.

2  |  MATERIALS AND METHODS

2.1 | Study site

Both phases were conducted in the Trollberget 
Experimental Area (TEA), an experimental study site es-
tablished in 2018 to test best practices for forestry man-
agement and develop new methods to mitigate negative 
effects on freshwater ecosystems (Laudon et al., 2021). The 
~60 ha site is located in the boreal zone of northern Sweden 
(64°14′ N, 19°46′ E), approximately 60 km from the Baltic 
Sea coast (Figure 1). The climate is typical for the north-
ern boreal zone, characterized as a cold temperate humid 
type with short and cool summers followed by long dark 

winters. The 30- year mean annual air temperature (1986–
2015) is +2.1°C with the highest mean monthly tempera-
ture occurring in July and the lowest in January (+14.6°C 
and −8.6°C, respectively; Kozii et al., 2020). Snow usually 
covers the ground from the end of October to late April. 
The total annual precipitation averages 614 mm year−1 of 
which approximately 35%–50% falls as snow and 311 mm 
becomes runoff (Laudon et al., 2013). At the TEA, a rep-
licated catchment- scale approach has been established, 
with four side- by- side comparison catchments (Figure 1) 
with two treatments (clear- cut with or without ditch 
cleaning). Ditches were dug during the 1930s with the 
goal of draining forested peatlands to increase forest pro-
duction (Hånell & Päivänen,  2012). To function as in-
tended, ditches may require periodic maintenance or the 
cleaning out of vegetation, eroded soils, or other debris, 
which lowers the water table and consequently changes 
the nutrient dynamics on the site (Hasselquist et al., 2018; 
Laurén et al., 2021). The study catchments have an aver-
age size of 10 ha, an average tree volume prior to clear- cut 
of 270 m3 ha−1, and a ditch density of 166 ± 40 m ha−1. In 
addition, for all catchments a weir has been installed in 

F I G U R E  1  Trollberget Experimental Area (TEA) is located in northern Sweden (left). The green areas are different treatment 
catchments; grey lines mark the ditch networks, and the orange circles are the locations of the biochar filters and water quality monitoring 
sites (outlet weirs) Map lines delineate study areas and do not necessarily depict accepted national boundaries. Map lines delineate study 
areas and do not necessarily depict accepted national boundaries.
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the outlet ditch for water sampling and discharge meas-
urements. In summer 2020, all four catchments were 
clear- cut using standard forestry practice and tree stems 
and branches were removed from the site (i.e., DC1, DC2, 
DC3, and DC4; Figure 1). In September 2021, two of the 
four catchments were ditch- cleaned using a 20- ton crawl-
ing excavator in DC1 and DC3, whereas the ditches were 
left uncleaned in DC2 and DC4 (see Laudon et al., 2021 for 
further details about the catchments).

2.2 | Experimental setup

2.2.1 | Experiment 1: Biochar adsorption 
potential in a laboratory experiment

In the laboratory phase, we tested for adsorption capacity 
of two different biochars, both produced by slow pyrolysis 
at high temperature (i.e., 600°C), known to increase the 
adsorption capacity (Yao et  al.,  2012). The wood- based 
biochar was produced by a local company (Vindekol AB, 
Vindeln Sweden) and manufactured primarily from the 
wood and bark of Pinus sylvestris, and a small portion 
of Picea abies and Betula pendula (hereafter referred to 
as “wood” feedstock; Gundale et  al.,  2016). The garden 
residue- based biochar was made from municipal garden 
residues, primarily shrubs and branches (hereafter re-
ferred to as “garden” feedstock) provided by a municipal 
company (Telge, Södertälje, Sweden). We sieved both bio-
char types to 4–10 mm to homogenize the material and to 
exclude the effect of various particle sizes of biochar in 
the adsorption process (Saarela et al., 2020); afterward, the 
biochar was dried for 12 h at 60°C. We collected 100 g of 
biochar from each feedstock to analyze for difference in C, 
N, and P contents in the biochar.

We conducted the laboratory incubation using the two 
biochars described above, with two different doses (3 and 
12 g) to determine the effect of biochar dose on the adsorp-
tion rate and capacity and two different initial nutrient 
concentration in the water. Each treatment was replicated 
four times. In order to get two different initial nutrient 
concentration in water for the laboratory experiment, we 
collected samples from ditches draining two catchments 
with different landscape characteristics; one water source 
was a former forested, clear- cut catchment and the other 
was a drained peatland 1 km from TEA. After collection, 
the water samples were refrigerated and transported to the 
laboratory, upon which it was frozen until further process-
ing. Due to a delay in the garden residue biochar delivery, 
the collection of runoff water was done in two different 
sampling occasions, May and August 2021, unfortunately 
resulting in slightly different initial concentrations be-
tween the wood and garden residue experimental setup. 

In both catchments, the average initial nutrient concen-
tration was slightly higher in May (e.g., 6 ± 0.5 μg L−1 PO4, 
1 ± 0.01 mg L−1 TDN and 50 ± 0.2 mg L−1 DOC) than in 
August (e.g., 4 ± 0.3 μg L−1 PO4, 0.5 ± 0.02 mg L−1 TDN, and 
30 ± 0.2 mg L−1 DOC). Upon the start of the experiment, 
water was thawed, allowed to stabilize at room tempera-
ture (+20°C), standardized mixed among replicates, and 
kept at constant temperature throughout the experiment. 
We then added either 3 or 12 g biochar into 2000 mL glass 
jars, with four replications of each biochar dose for the 
two different water types. In addition, four glass jars 
contained only water without biochar as blank controls. 
Thereafter, 1500 mL of water from the field site was added 
to each jar and 35 mL of water was taken to measure the 
initial element concentration in each jar. Jars were cov-
ered with aluminum foil and placed on a platform shaker 
at 105 rpm for 10 days. Subsequently, 35 mL of water was 
sampled from each jar at the following time points: 1, 2.33, 
5.5, 25, 28, 46, 49, 70, 145, 169, 196, and 215 h from the be-
ginning of the experiment (Saarela et al., 2020). After sam-
pling, water was filtered (0.45 μm Millipore) immediately 
after collection and stored in acid- washed high- density 
polyethylene (HDPE) bottles. Samples for DOC and TDN 
were refrigerated (+4°C) and analyzed within 3 days after 
collection. Samples for PO4- P were frozen (−20°C) imme-
diately after subsampling and stored for later analysis.

DOC, TDN, and PO4 concentration change in water was 
measured to determine the adsorption of nutrients onto 
the biochar, calculated as follows (Saarela et al., 2020):

where Adst is the cumulative adsorption of the nutrient 
(mg g−1 biochar), Cini is the initial concentration of the nu-
trient (mg L−1 or μg L−1), Vini is the water initial volume (L), 
Ct is the concentration of the nutrient in time t (mg L−1 or 
μg L−1), Vt is water volume at time t, Ck is the concentration 
of the nutrient in previous sampling occasion at time k, 
Vsample is the volume of water sample in each sampling occa-
sion (35 mL), and mbiochar is the biochar mass (g). Moreover, 
cumulative adsorption was calculated for each time step 
during the experiment.

2.2.2 | Experiment 2: Biochar adsorption 
potential in field conditions

After evaluating the biochar feedstock for nutrient ad-
sorption in the laboratory, the biochar that adsorbed the 
most nutrients was chosen to upscale the experiment to 
field conditions. The biochar was placed in jute sacks 
(Granngården AB, Malmö, Sweden) and placed in the 

Adst =

�

CiniVini − CtVt
�

−

∑t
k=ini

�

CkVsample
�

mbiochar

,
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ditches that drain the four experimental catchments 
(i.e., DC1, DC2, DC3, and DC4, n = 4). We expected dif-
ferent solute concentration in the runoff from the catch-
ments with ditch cleaning and the catchments without 
ditch cleaning (Nieminen et al., 2018), therefore testing 
the effectiveness of biochar adsorption with different 
nutrient concentrations in field conditions. Sacks were 
filled with approximately 100 L of biochar and 4–5 sacks, 
depending on flow and geomorphology, were placed in 
each catchment outlet aimed to direct the ditch water 
flow through the biochar and to avoid bypass flow 
around and under the sacks. Water sampling points in 
the ditch were established at the weir above the biochar 
(inlet) and ~1 m below the biochar (outlet). Water sam-
ples were taken daily for the first 2 weeks after ditch 
cleaning operations (September 27–October 10) and 
twice a week until ditch water froze (November 3). All 
samples were collected in acid- washed high- density 
polyethylene (HDPE) bottles, filtered in the laboratory 
(0.45 μm Millipore) within 24–48 hours, and stored as 
described before for further analysis.

2.3 | Laboratory analyses

In both experiments, water quality variables were meas-
ured to determine the nutrient recovery from the runoff 
water. DOC and TDN concentrations were determined 
using the combustion catalytic oxidation method on a 
Shimadzu TOC VCPH analyzer (Shimadzu, Duisburg, 
Germany; Blackburn et  al.,  2017). PO4

3− was accounted 
as the dissolved inorganic phosphorus (DIP) and was 
quantified colorimetrically using a Seal Analytical 
Autoanalyzer 3 HR and following method G- 297- 03 
(SEAL Analytical, 2023). Water pH was measured with a 
pH meter (Mettler Toledo MP220). In addition, the C, N, 
and P concentrations in the biochars were analyzed using 
a Leco TruMac CN analyzer.

2.4 | Statistical analyses

All statistical analyses were conducted in R (R Core 
Team, 2022) and significance levels were set at p < 0.05 
for all tests. Response variables for both experiments 
consisted of dissolved nutrient concentration in water 
(mg L−1 TDN and DOC and μg L−1 PO4- P) and available 
nutrient concentration in biochar (% of Tot- C and Tot- 
N, and mg kg−1 of Tot- P). Water quality data in the labo-
ratory experiment were first evaluated for assumption 
of normality and data were logarithmic transformed 
when necessary to meet this assumption. First, a two- 
way multivariate analysis of variance (MANOVA) was 

used to test the effect of biochar, initial nutrient con-
centration in water, dose, and their interactions on dis-
solved nutrient concentration in water. Wilk's Lambda 
was used in the MANOVA to assess the significance of 
these main factors. Afterward, data were analyzed using 
a one- way analysis of variance (ANOVA), and where 
significance was found, Tukey's Honestly Significant 
Differences (HSD) post hoc comparison was used to 
explore differences among means in the agricolae pack-
age (Mendiburu, 2020). Furthermore, pH data from the 
laboratory experiment and Tot- N, Tot- C, and Tot- P ex-
tracted from the biochar from both experiments could 
not be transformed to meet the normality assump-
tion; thus, these variables were instead analyzed with 
a Kruskal–Wallis nonparametric rank sum test and 
using Fisher's least significant difference (LSD) for the 
post hoc nonparametric test in the agricolae package 
(Mendiburu, 2020).

For the field experiment, we used a linear mixed- effect 
model (LMM) to analyze differences in the concentration 
of PO4, DOC, and TDN between the inlet and the out-
let. The analysis was performed using lme model from 
the nlme package (Pinheiro et al.,  2022). The LMM pro-
vided a nonparametric approach to explain variability in 
the response variables by fixed effects (factors that were 
included in the study design) and random effects, which 
accounted for factors that were not part of the study de-
sign, but possibly affected variability in the concentration 
of PO4, DOC, and TDN between the inlet and the outlet. 
The fixed effects considered in this study were the biochar 
treatment (inlet–outlet) and sampling time (i.e., day num-
ber); the random effects included were catchment ID and 
sampling time to account for repeated measures.

3  |  RESULTS

3.1 | Laboratory experiment: Biochar 
adsorption potential in a controlled 
environment

The initial concentration of total C, N, and P in the two bio-
chars showed significant (p < 0.05) differences (Figure 2). 
The garden residue biochar had higher concentrations 
of N (0.5 ± 0.01%) and P (1288.6 ± 4.1 mg kg−1), but lower 
concentration of C (73.2 ± 2.4%) compared with the wood 
biochar (0.09 ± 0.003% of N, 55.5 ± 11.5 mg kg−1 of P and 
85.7 ± 0.5% of C).

In the laboratory experiment, the results of the mul-
tivariate analysis of variance showed that there was 
a statistically significant effect of biochar feedstock 
(p < 0.01) and initial nutrient concentration (p < 0.01) on 
the combined nutrient variables (PO4, TDN, and DOC). 
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Specifically, the wood biochar significantly (p < 0.05) 
decreased the concentrations of TDN and DOC of the 
ditch water, while the garden residue biochar did not 
significantly decrease (p > 0.05) the TDN concentration 
and even released DOC (p < 0.05) to the ditch water. 
Conversely, both the wood and garden residue biochars 
increased (p < 0.05) the PO4 in the water (Figure 3). By 
the end of the experiment, the higher dose (i.e., 12 g) 
of wood biochar significantly decreased (p < 0.05) 
the concentration of DOC and TDN in ditch water 
(Figure 3b,c,f,g), on average by 8% and 15%, respectively. 
A lower dose of wood biochar (i.e., 3 g) significantly re-
duced the TDN concentration when the initial N con-
centration was higher (Figure  3b); however, it did not 
significantly affect (p > 0.05) the concentration of other 
elements in the water (Figure 3c,e–g). Here, the reduc-
tion in TDN concentration was slightly higher when 
the initial N concentration in water was higher and for 
DOC the stronger decrease occurred when the initial C 
concentration in the water was lower. The higher dose 
(i.e., 12 g) of garden residue biochar adsorbed C and 
reduced the concentration of DOC (p > 0.05) by 17% in 
ditch water when the initial C concentration was higher 
(Figure  3k) but significantly released DOC when the 
initial C concentration was lower (Figure  3o). Neither 
doses of garden residue biochar significantly changed 
the concentration of TDN (Figure 3j,n). In addition, the 
higher dose of the wood biochar released PO4 into the 
water, significantly increasing (p < 0.05) the concentra-
tion of PO4 from 2.2 to 11 μg P L−1 when the initial P 
concentration in the ditch water was higher (Figure 3a). 
Likewise, the garden residue biochar released P into the 
ditch water and increased (p < 0.05) the concentration of 
PO4 by 111 and by 289 μg P L−1 when the initial concen-
tration of P was low and high, respectively. It is worth 
highlighting that the increase in PO4 concentration in 
water was much higher from the garden residue biochar 
compared with the wood biochar. Finally, the addition 

of both wood and garden residue biochar increased 
(p < 0.05) the pH of the ditch water, for both high and 
low doses. Yet again, the garden residue biochar had 
a larger effect, increasing pH from 5.0 to 7.0, with the 
lower biochar dose and up to 8.0 with the higher dose 
of biochar (Figure 3l,p). The wood biochar reached pH 
of 5.5 and 5.8 with the higher biochar dose, respectively 
(Figure 3d,h).

Regarding temporal responses to biochar addition 
in the laboratory experiment, our results show that, 
for all elements, with a higher initial solute concentra-
tion in water and the addition of a lower wood biochar 
dose, the cumulative adsorption is higher, being the 
highest 2.5 mg C g biochar−1, 0.05 mg N g biochar−1 and 
1.1 μg P g biochar−1, for DOC, TDN and PO4, respec-
tively (Figure  4). However, for PO4 and in some time 
steps for TDN, solutes were released from biochar to the 
water when we added a high wood biochar dose and 
the initial concentration was higher. Both for the wood 
and garden residue biochar, the cumulative adsorption 
of DOC was higher when the lower dose was added, 
reaching the peak adsorption at 145 h after the start of 
the experiment for the wood biochar (Figure 4c,f) and 
at 169 for the garden residue biochar (Figure  4i). For 
the garden residue biochar, the release of all solutes 
happened at some or multiple points with all treat-
ments, showing a strong release pattern for PO4 and 
TDN when the initial solute concentration was higher 
and for DOC when the initial C concentration was 
lower. Specifically, the garden residue biochar released 
between 9.2 and 29.8 μg P g biochar−1 of PO4, between 
0.01 and 0.05 mg N g biochar−1 of TDN, and between 0.1 
and 2.7 mg C g biochar−1 for DOC. Furthermore, both 
the wood and garden biochar adsorbed and released N 
when the initial N concentration was lower. Note that 
unfortunately, due to sampling difficulties, we did not 
have a high initial concentration for TDN when the gar-
den residue biochar was tested.

F I G U R E  2  P (a), N (b), and C (c) concentrations in wood and garden residue biochar. Letters indicate significant differences between 
nutrient concentrations of the different biochars (p < 0.05, n = 4).

(a) (b) (c)
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Overall, the wood biochar demonstrated the highest 
potential to adsorb nutrients from stream water, spe-
cifically, for TDN and DOC removal. Our results also 
showed that the adsorption capacity increased when 
the initial nutrient concentration in water was higher. 

In contrast, nutrient release from the garden biochar 
into the stream water was higher (i.e., PO4 and DOC). 
These differences justified the use of wood biochar for 
the second experiment, where biochar was tested at the 
catchment level in the field.

F I G U R E  3  Effect of different doses of two different biochar feedstock in water with low and high solute concentration in laboratory 
conditions. Wood biochar (a–h) in higher initial solute concentration (a–d) and lower initial solute concentration (e–h) and garden residue 
biochar (i–p) in higher initial solute concentration (i–l) and lower initial solute concentration (m–p). Letters indicate significant differences 
between biochar doses (p < 0.05). Colors represent the different biochar doses added (control = 0 g, low = 3 g, high = 12 g). The solid line in 
box plots is the median value, box extents are the interquartile range (IQR), and whiskers show the minimum and maximum data points. 
Note that the scales for the y- axes show different magnitudes of concentrations.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

(p)
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3.2 | Field experiment: Biochar 
adsorption potential in field conditions

The efficiency of wood biochar to remove DOC and TDN 
in the field was dependent on the initial concentration of 
the incoming water (p < 0.05), suggesting that the higher 
the concentration of DOC and TDN in the inlet, the higher 
the removal. Experimental catchment DC4 had the high-
est inlet concentration of TDN (2.6 mg N L−1) and DOC 
(95.6 mg C L−1) and was the only site where the water col-
lected at the outlet (downstream) of the biochar filter had a 
significantly lower mean concentration (p < 0.05, Table 1) 
compared with the inlet (Figure 5b,c). For DC4, the mean 
percent of removal over the length of the experiment was 
7% for TDN and 6% for DOC, with a maximum removal of 
20% and 15%, respectively. In DC1- 3, sites with lower inlet 
solute concentrations, the biochar did not significantly 

reduce TDN or DOC. Furthermore, there was no statisti-
cal difference (p > 0.05) between the inlet and outlet con-
centration for PO4 in any of the experimental catchments; 
thus, the biochar filter did not remove PO4. In fact, at DC4, 
there was an average increase in PO4 concentration after 
the biochar filter of 2.4% (Table  1). Finally, the biochar 
filters did not significantly change the water pH (p > 0.05) 
in any of the experimental catchments, remaining on av-
erage acidic (i.e., 4–5).

Furthermore, we analyzed the nutrient content of 
the wood biochar before and after the field experiment 
(Figure 6) and found that the N content of the biochar had 
increased (p > 0.05) from 0.1% (±0.01) before the biochar 
filters were placed in ditches to 0.14% (±0.03) after they 
had been in ditches for 2 months, with no statistical dif-
ference between catchments (p > 0.05). Thus, there was an 
average increase of 45% in the N content of the biochar. 

F I G U R E  4  Cumulative adsorption by two doses of two biochar feedstock in the laboratory experiment that included water with low 
and high solute concentrations. The left side of the figure includes adsorption in wood biochar (a–f) in higher initial solute concentration 
(a–c) and lower initial solute concentration (d–f) and (g–l). The right side of the figure shows adsorption in garden residue biochar in higher 
initial solute concentration (g–i) and lower initial solute concentration (j–l). Colored numbers indicate the time step and highest adsorption 
capacity. Colored circles represent the average between replicates and shadowed area is the standard error. Values over zero indicate 
adsorption, while values below zero indicate release.
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However, the percent of C and P in the biochar did not 
change over the course of the field experiment (p > 0.05).

4  |  DISCUSSION

We tested different feedstocks of biochars, both in the lab-
oratory and in the field conditions as a method to reduce 
nutrient exports to water courses from managed forested 
catchments. Forest management activities such as clear- 
cut, commonly occur across high- latitude landscapes and 
typically affect DOC, N, and P exports affecting trends of 
brownification and eutrophication downstream.

4.1 | Adsorption capacity of two 
feedstock biochars in a controlled 
environment

Our results from the controlled laboratory experiment 
showed that higher doses of wood biochar effectively ad-
sorbed TDN and DOC, although with lower cumulative 
adsorption, and released PO4. The garden residue biochar 
also released PO4 and was not efficient in the adsorption 
of any nutrient. Our results support previous studies, 
where feedstock is one of the key parameters controlling 
the adsorption properties (Ahmad et al., 2014) and nutri-
ent adsorption capacity (Gai et al., 2014). The reduction 
in DOC and TDN concentration in solution could be ex-
plained by a wood biochar with large specific surface area, 

high porosity, and active sites on the adsorbent surface 
interacting with the arriving organic molecules from DOC 
and the organic part of TDN (i.e., dissolved organic nitro-
gen DON) (Lee et al., 2018). TDN reduction can also be 
explained by the capacity of the biochar to adsorb ammo-
nium (NH4

+) and nitrate (NO3
−), as TDN is a combined 

measure of the inorganic (i.e., NH4
+ and NO3

−) and the 
organic fraction of N (i.e., DON). Specifically, biochars 
are known to be an effective adsorbent for NH4 (Yin 
et  al.,  2017) because of its negative surface charges due 
to carboxylate and phenolate groups (Liang et al., 2006), 
which enhances the ability to adsorb and retain cations 
(Gai et al., 2014; Novak et al., 2009). However, the NO3

− 
adsorption capacity of biochar is less clear, with compara-
ble studies showing somewhat opposite effects, such as 2 
out of 13 biochars absorbing NO3 (Yao et al., 2012), none 
of the biochar types being able to adsorb NO3 (Hollister 
et al., 2013) or even release of NO3

−from the biochar to 
solution (Gai et  al.,  2014). Nevertheless, Kakaei Lafdani 
et  al.  (2021) found NO3

− adsorption by wood biochar 
from clear- cut boreal forest runoff, arguing that the dis-
crepancy in results could be explained by pyrolysis con-
ditions and different initial N concentrations (Gundale 
& DeLuca,  2006). Furthermore, our results showed that 
for both biochar feedstocks, PO4

3− was not only not ad-
sorbed, but showed a net release back to the water. This 
may be attributed to the solubilization of ash residue en-
riched with P, given that the pyrolysis temperature for 
the preparation of both biochar samples was lower than 
the required 700–800°C temperature for P volatilization 

Mean inlet 
concentration ± SE

Mean outlet 
concentration ± SE

Mean 
removal p- value

PO4 (μg P L−1) (μg P L−1) (%)

DC1 17.9 ± 1.3 17.5 ± 1.4 −2 n.s.

DC2 31.7 ± 3.1 30.8 ± 3.3 −3 n.s.

DC3 12.5 ± 1.1 11.6 ± 1.2 −7 n.s.

DC4 10.7 ± 0.8 11.0 ± 0.9 +2 n.s.

TDN (mg N L−1) (mg N L−1) (%)

DC1 0.9 ± 0.04 0.9 ± 0.04 0 n.s.

DC2 1.9 ± 0.08 1.8 ± 0.08 −1 n.s.

DC3 1.3 ± 0.06 1.3 ± 0.05 −2 n.s.

DC4 2.6 ± 0.03 2.4 ± 0.02 −7 <0.01

DOC (mg C L−1) (mg C L−1) (%)

DC1 35.3 ± 1.0 34.9 ± 1.1 −1 n.s.

DC2 69.0 ± 1.6 68.0 ± 1.2 −1 n.s.

DC3 41.5 ± 1.3 40.8 ± 1.2 −2 n.s.

DC4 95.6 ± 1.4 89.7 ± 1.7 −6 <0.01

Note: Percent removal is calculated in each time step and averaged. Negative values represent removal 
and positive values represent release. p- value is based on linear mixed- effect model for PO4, DOC, and 
TDN. The bold values show the significance level, p < 0.01.

T A B L E  1  Average inlet concentration 
of PO4, TDN, and DOC for all 
experimental catchments at TEA.
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(Deluca et al., 2015). However, Yao et al. (2011) did find 
the removal of PO4

3− from aqueous solution by biochar 
converted from anaerobically digested sugar beet. Both 
types of biochar used in our study, in higher and lower 
doses, increased pH significantly, turning the solution 
basic, and therefore, potentially improving further the 
adsorption of organic nutrients into the biochar (Ahmad 
et al., 2014) by increasing the net negative charge on the 
surface due to the dissociation of phenolic- OH group (Xu 
et al., 2011).

The laboratory experiment also showed that wood 
biochar has the potential to mitigate the environmental 
impact of forestry by removing organic C and N from run-
off waters. Specifically, the reduction in DOC is gaining 

more importance in boreal freshwater ecosystems due to 
an ongoing brownification trend, with implications to the 
structure and function of aquatic ecosystems (Kritzberg 
et  al.,  2020). Furthermore, the reduction in N export 
would decrease the risk of eutrophication of freshwater 
ecosystems, as N and P are the main limiting elements 
to regulate aquatic productivity and accompanied algal 
bloom (Smith & Schindler, 2009). However, we also found 
that the novel garden residue biochar has the potential to 
increase the concentration of P in solution, consequently 
becoming a risk to freshwater ecosystems, by increasing 
the concentration of a main limiting nutrient (P) that 
could trigger eutrophication processes in receiving water-
ways. Therefore, to upscale a specific novel feedstock to 
field conditions as a mitigation tool for nutrient leaching 
from anthropogenic activities it is of utmost importance to 
consider an array of possible collateral effects.

4.2 | Biochar to adsorb nutrients in 
field conditions

In the field experiment, we found that our biochar filter 
was only effective at the removal of TDN and DOC when 
there was a high initial solute concentration. This is likely 
due to an increase in adsorption in response to the in-
creased N availability in the water which improves the 
adsorption of nitrogen compounds onto biochar surfaces 
(Saarela et al., 2020). These results are consistent with our 
laboratory experiment results and results obtained by oth-
ers (Kakaei Lafdani et al., 2021; Saarela et al., 2020), where 
in controlled environments, the higher adsorption rate 
was found when the solute initial concentration in water 
was higher. Yet, even in the catchment with the higher 
solute concentration, the percentage of N removed was 
low (7%) compared with other studies, where the biochar 
was shown to reduce 58% of the TN concentration (Kakaei 
Lafdani et al., 2020). Or, even compared with the increase 
in DOC and TN after clear- cut (i.e., an average increase 
of 42% ± 8 and 56% ± 12, respectively) in our study sites 
(Laudon et al., 2023). However, the observed low adsorp-
tion capacity might be an artifact of our filter setup, par-
ticularly when compared with other configurations such 
as horizontally oriented columns with longer residence 
time (Kakaei Lafdani et al., 2020). Moreover, contrary to 
our results in the laboratory experiment, the biochar fil-
ters did not change the pH of the water flow in any of the 
experimental catchments. This discrepancy suggests that 
a biochar filter design with a longer residence time could 
be beneficial in enhancing pH levels and increasing nutri-
ent adsorption capacity.

Finally, our results agree with other studies that estab-
lish the potential of wood biochar as a water protection 

F I G U R E  5  Nutrient concentrations of water from the inlet 
and outlet of the biochar filter for each experimental catchment. 
Solid lines represent a significant difference between inlet (red) and 
outlet (purple) over time of the experimental catchments according 
to the LMM (p < 0.5). The dotted lines represent non- significant 
relationships. Shape of the points identifies catchments, where 
circle is DC4, triangle DC1, square DC2, and cross DC3.

(a)

(b)

(c)
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tool, specifically for the retention of soluble nutrients (Lee 
et al., 2018; Zhang et al., 2020). However, using the wood 
biochar on- site with a simple setup for the removal of C, 
N, and P from runoff water in managed peatland forests 
could be challenging if the initial solute concentration 
leaching from the catchment is not high enough and dis-
charge fluctuates over time. Yet, further efforts could be di-
rected toward designing a better biochar filter with longer 
residence times. Ultimately, our study supports previous 
findings that a biochar filter in field conditions could be a 
feasible method for purifying runoff water with elevated 
nutrient concentration (Kaetzl et al., 2019; Perez- Mercado 
et al., 2019), with the potential for the most benefit in re-
mediation of forestry outflows with higher nutrient con-
centrations or in agricultural and wastewater outflows 
with considerably higher concentrations. However, fur-
ther development is needed to optimize the system and 
achieve greater reduction in dissolved nutrients.

4.3 | Closing the nutrient cycle

It is well established that biochar addition to soils 
can promote soil fertility and improve soil properties, 
which ultimately may enhance the growth of plants and 
trees (Biederman & Harpole, 2013; Jeffery et al.,  2011; 
Palviainen et  al.,  2020). Pingree et  al.  (2022) suggests 
that the increase in plant growth in boreal environments 
after biochar addition is likely due to direct nutrient 
supply from biochar, hence a higher biochar nutrient 
content could be beneficial. Our results showed that the 
biochar N content increased significantly after 2 months 
of functioning as adsorption- based water purification. 
Therefore, by filtering ditch water, the biochar has the 

potential to become a soil amendment in boreal ecosys-
tems with widespread terrestrial N limitation (Högberg 
et al., 2017); as nutrients (i.e., N) adsorbed onto the bio-
char are easily available for plants when placed in soil 
(Taghizadeh- Toosi et  al.,  2012). This would promote 
a closed nutrient cycle in boreal forest management, 
where nutrients leached from the catchment due to for-
est management activities such as clear- cut could be 
reincorporated to soils in the catchment and enhance 
forest productivity (Gundale et al., 2016). In summary, 
undesirable contaminants in aquatic ecosystems (i.e., 
C and N) can be transformed into desirable nutrients 
in the forest system, which could be used to promote 
growth and therefore C capture. Nevertheless, even 
though our field results revealed that our biochar filter 
reduces TDN and DOC concentration from outflows, 
the percentage decrease is dependent on initial concen-
trations of nutrients in water and could be considered 
low. Therefore, further research is needed to design an 
improved biochar filter to mitigate the impact of forest 
management on boreal aquatic ecosystems. Finally, al-
though not suited for use in cleaning ditch water, the 
garden residue biochar used in the laboratory experi-
ment could also present potential as a soil amendment, 
since it has relatively high levels of N and P as well as 
released PO4, TDN, and DOC back to the solution. Yet, 
more research should be done to establish the desorp-
tion capacity of garden residue biochar in soils.
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