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A B S T R A C T   

Monitoring of plant populations has become more and more important, especially in the current context of 
environmental change. In this paper, we propose methods to estimate plant density from presence/absence 
surveys, wherein the presence or absence of each species is recorded on sample plots. Presence/absence sampling 
is a useful and relatively simple method for monitoring state and change of plant communities. Moreover, it has 
advantages compared to traditional plant cover assessment, the latter being more prone to observer bias. We 
present a hybrid estimation framework, that combines model- and design-based inference features, in which a 
generalised linear model (for binary presence/absence data) and an inhomogeneous Poisson model (for plant 
locations) are used to estimate plant density in a region of interest. We look at two different cases, the first one 
with a known area and the second one where the area is unknown and must be estimated. Our methods are 
applied to real data on Vaccinium vitis-idaea from the Swedish National Forest Inventory as well as simulated data 
to assess the performance of our estimators of plant density and corresponding variance estimators. The results 
obtained are promising and indicate that this method has a potential to add considerable analytic strength to 
monitoring programmes that collect presence/absence data.   

1. Introduction 

Collecting data on ground vegetation in forests is an important part 
of environmental monitoring, e.g., as part of initiatives for assessing 
trends in biodiversity (e.g., Pain et al. 2020; CBD 2002) or reporting 
within international agreements, such as the EU’s Habitats Directive 
(Commission of the European Communities 2003). The demands for 
such monitoring programmes are currently increasing (e.g. O’Connor 
et al. 2020). However, monitoring plant populations is far from trivial. 
The methods applied should preferably be cost-efficient, easy to apply, 
and use protocols that avoid assessment errors. Methods based on 
assessing plant cover fulfil the first two requirements, but they tend to be 
prone to observer bias and variability due to phenology (e.g., Gallegos 
Torell & Glimskär 2009; Futschik et al. 2020; Kennedy & Addison 1987; 
Kercher et al. 2003). 

In some cases, especially if the sample plots are not too large, 
methods based on presence/absence (P/A) sampling are less prone to 
errors of the kinds mentioned above (e.g., Ringvall et al. 2005; Kercher 

et al. 2003), since only the presence or absence of target species within 
plots needs to be registered. Some studies also suggest that P/A-data 
could be more useful than cover data in characterizing plant commu-
nities (e.g., Bastow Wilson 2012). On the other hand, whereas state and 
change in terms of vegetation cover or plant density are straightforward 
to interpret, state and change in terms of presence or absence fre-
quencies are vaguer measures, which depend on sample plot size (e.g., 
Ståhl et al. 2017). However, if plant spatial occurrences are modelled, 
large-area estimates in terms of state and change of plant density or 
vegetation cover can be derived from P/A data (Ekström et al. 2020; 
Ståhl 2003) through application of model-based inference (e.g., Cassel 
et al. 1977; Warton et al. 2015). In addition, if a model for the proba-
bility that at least one plant will occur on a given plot (or pixel) depends 
on one or more auxiliary variables, then the model-based inferential 
framework assumes the availability of wall-to-wall auxiliary variables 
(cf. Fortin et al. 2023). 

Auxiliary information is becoming increasingly available through 
different remote sensing techniques (e.g., Olsson 2020; Baena et al. 
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2018; Dubayah et al. 2022) and so are data about presence of species 
through citizen science data collection programs (e.g., the Species 
Observation System in Sweden (Artdatabanken 2022) or the Atlas of 
Living Australia and its citizen science data portal (Belbin 2011)), which 
can be combined with P/A data (Fithian et al. 2015). Thus, opportunities 
for modelling plant occurrence are much better today compared to some 
decades ago. This type of modelling, with the availability of wall-to-wall 
auxiliary information from, e.g., remote sensing, can offer information 
in terms of both estimates and maps. Estimates are needed, e.g., for trend 
analysis and reporting to agreements such as the Habitats Directive 
mentioned above. Maps are useful for implementing management plans 
related to preserving threatened species (Baena et al. 2018) or limiting 
the impact of invasive species. 

As the degree of detail in the auxiliary data increases, it will be 
possible to develop better models for plant occurrences, thus facilitating 
model-based estimation of plant density with higher precision. 
Dense networks of field plots from National Forest Inventories (NFI, 
e.g., Fridman et al. 2014; Tomppo et al. 2010) could provide such 
auxiliary data, because very detailed descriptions of biotic and abiotic 
conditions, including soil variables, are made on such plots. However, 
with sample plot data alone, i.e. without wall-to-wall data, it is not 
possible to apply the standard theory of model-based inference. Instead, 
hybrid inference can be an alternative (e.g., Corona et al. 2014; Ståhl 
et al. 2016), where features of model-based and design-based inference 
are combined. 

Examples of applications of hybrid inference include biomass sur-
veys based on LiDAR sample data in Norway (Ståhl et al. 2011) and 
North America (Margolis et al. 2015), biomass prediction for temperate 
and pan-tropical regions in the context of the Global Ecosystem Dy-
namics Investigation project (Saarela et al. 2022), comparison of forest 
biomass estimates based on coarse and fine resolution data in the USA 
(McRoberts et al. 2019), and estimation of growing stock volume in Italy 
(Corona et al. 2014), Finland (Saarela et al. 2015), and Spain (Condés 
and McRoberts 2017). It has been applied to a broad variety of models, 
such as mixed-effect models (Fortin et al. 2016) and more complex 
models where variance estimation requires resampling methods such as 
the parametric bootstrap (Fortin et al. 2018). 

Using conventional model-based inference, Ekström et al. (Unpub-
lished results) investigated the use of P/A data for regional estimation of 
plant density for a selection of plant species occurring mainly in forests. 
The main components of the study were inhomogeneous Poisson point 
processes for modelling the spatial locations of plants and generalised 
linear models (GLMs) with a complementary log-log link function for 
associating P/A data with the intensity of the point process, taking 
auxiliary remotely sensed data into account. As will be described in 
detail later, a similar modelling approach is used in the present study, 
with the important difference that auxiliary data were obtained from a 
large probability sample rather than from wall-to-wall remote sensing. A 
GLM with a complementary log-log link function for modelling P/A data 
has also been used in other studies, such as Yee & Mitchell (1991), Royle 
& Dorazio (2008), Lindenmayer et al. (2009), Baddeley et al. (2010) or 
Fithian et al. (2015). However, contrary to these articles, which focus on 
pixel-wise estimation for, e.g., producing maps, our study focuses on 
obtaining large-area estimates of plant density based on data collected 
exclusively from sample plots. To our knowledge, no previous studies 
that make use of hybrid inference have been conducted based on GLMs. 

A complementary log-log link function has also been used for 
modelling of presence-only data (e.g., Phillips et al. (2017); Wan et al. 
(2017); Sreekumar & Nameer (2022)), although none of them make use 
of hybrid inference. In addition, it should be mentioned that the stan-
dard logit link is frequently used in studies analysing P/A data of species 
occurrences (e.g., Foody 2008; Ekström et al. 2018; Esseen et al. 2022; 
Esseen & Ekström 2023). However, for the case where the locations of 
plants are regarded as a realisation of an inhomogeneous Poisson point 
process, Baddeley et al. (2010) provide an explanation of why the 
complementary log-log link function should be preferred for modelling 

P/A data. 
The objective of this study is to assess the usefulness of hybrid 

inference for estimating plant density, where GLMs estimated from a 
small sample of P/A data (and auxiliary data) were applied to a large 
sample of auxiliary data from the Swedish NFI. An important part of the 
study is to develop formal plant density estimators, variances, and 
variance estimators for this approach, because no previous studies are 
available where hybrid inference has been applied in this modelling 
context. The performance of our estimators and corresponding variance 
estimators was examined through Monte Carlo simulations and the use 
of empirical NFI data on a common dwarf shrub, Vaccinium vitis-idaea. 

We choose to focus our study on estimating the expected plant 
density (we refer to (13) for a precise definition) rather than on pre-
dicting the actual plant density (which is a random quantity in our study 
setting). The main reason is that this approach simplifies the analyses to 
some extent meanwhile, for large-area surveys, the relative difference 
between actual plant density and its expected value is very small, if the 
models used are approximately correct (cf. Ståhl et al. 2016). The 
motivation for studying plant density rather than the absolute number of 
plants is that density is a more relevant measure for plants with large 
populations (in contrast to many animals), and because the measure 
allows for comparison between regions of different size. 

2. Methods 

In this section, we first explain the necessary basis for our deriva-
tions, then propose estimators of the expected number of plants in a 
region of interest U, where U can be, e.g., a municipality, a province or a 
country. Furthermore, we develop variance formulas and corresponding 
variance estimators. The estimator of the expected density, defined as 
the expected number of plants per unit area, is thereafter obtained via 
the estimator of the expected number of plants and is presented for two 
cases: one with known area aU of U and one with unknown area. We also 
look at the case where we want to estimate the expected density for a 
specific domain within U, for example the forested part of U. Two 
different sampling designs are considered. In the first design, plot cen-
tres are sampled according to some joint probability density function on 
U, or rather the union of U and a so-called “buffer” for handling edge 
effects (Subsections 2.2–2.4). In the second design, centres of clusters of 
plots are sampled rather than individual plot centres (Subsection 2.5). 

2.1. Models 

Assume that the plant population is generated by an inhomogeneous 
Poisson point process with intensity 

λβ(u) = exp
(
βTx(u)

)
,u ∈ U⊂ ℝ2 (1)  

(Baddeley et al. 2010), where β ∈ ℝq denotes the vector of model pa-
rameters and x(u) denotes a covariate vector (of length q) at point u. The 
expected number of plants in U is then given by 

Λ(β) =
∫

U
λβ(u)du. (2)  

We consider plots C(ui), where index i designates plot i, and where the 
plot centres {ui} are selected according to some specified sampling 
design. Let Ni denote the number of plants in C(ui) ∩ U. Our assumptions 
imply that Ni is Poisson distributed, and then 

E(Ni) =

∫

C(ui)∩U
λβ(u)du =

∫

C(ui)∩U
exp
(
βTx(u)

)
du.

Unless stated otherwise, we assume, as an approximation, that x(u) is 
constant in a sample plot, and thus x(u) = x(ui) = xi for all u ∈ C(ui), and 

E(Ni) = aiexp
(
βTxi

)
, (3) 
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with ai being the area of the intersection of plot C(ui) and the region of 
interest U (cf. Baddeley et al. 2010). Since Ni is Poisson-distributed, the 
probability of presence can be expressed by 

pi = 1 − P(Ni = 0) = 1 − exp
(
− aiexp

(
βTxi

) )
(4)  

so that the loglikelihood for the binary response variables (i.e. P/A data 
from C(ui) ∩ U) becomes the loglikelihood of a complementary log-log 
regression with an offset equal to the log of the plot area, i.e. of the 
binary regression model given by 

g(pi) = log(ai)+ βTxi, where g(p) = log( − log(1 − p) ). (5)  

According to Baddeley et al. (2010), the corresponding likelihood may 
be regarded as an approximation of the likelihood that would have been 
obtained without the assumption of constant covariate data in a plot. 

2.2. Estimation of the expected number of plants in U 

Hybrid inference can be used when covariate information is not 
available everywhere in the region of interest but only at sample plot 
level, for example for budgetary reasons (Ståhl et al. 2016). As stated in 
the introduction, this hybrid method includes aspects of both design- 
based and model-based inference. As in, amongst others, the papers by 
Ståhl et al. (2011), Nelson et al. (2012), Corona et al. (2014), Saarela 
et al. (2015) or Saarela et al. (2022) on hybrid inference, we utilise two 
samples that are readily available, for instance in monitoring pro-
gramme databases. Our first sample S1 of size n1 contains plot centre 
locations for plots with both binary response data and covariate data, 
while our second sample S2 of size n2 contains plot centre locations for 
plots with only covariate data. Typically, n2 is much larger than n1. 
Sample S1 is used only to establish a model and estimate the vector of 
model coefficients in a GLM (as opposed to, e.g., Ståhl et al. (2011), 
where a standard linear model is used). Thereafter, the fitted GLM and 
covariate information from S2 are used to predict expected numbers of 
plants on all plots with centres in S2, and subsequently the expected 
plant density in the region of interest, using design-based estimation and 
Horvitz-Thompson-like estimators. Sample plots with centre locations in 
S1 and S2 do not necessarily need to have the same size, and the sam-
pling designs used to obtain the data in S1 and S2 are allowed to differ. 

When sampling from a finite population, the well-known Horvitz- 
Thompson estimator (Horvitz & Thompson 1952) is often used for 
obtaining estimates of population parameters. However, in our case the 
population is not finite but a continuous set of locations, and therefore 
we use Cordy’s continuous analogue of the Horvitz-Thompson estimator 
(Cordy 1993), which we introduce next. 

Let f be the joint probability density function (pdf) for sample S2 =

{u1, u2,⋯, un2}, and fi(u) the marginal pdf for point ui. The inclusion 
density function is 

π(u) =
∑n2

i=1
fi(u), (6)  

and it can intuitively be considered as a local measure of the number of 
sample points to be selected per unit area (Cordy 1993). If, for example, 
the points in S2 are independent and identically distributed (iid), this 
means that π(u) = n2 f1(u). 

The inclusion zone for a point u ∈ U consists of all points in the frame 
that would result in the inclusion of u if they were selected to the sample. 
It may be formally written as K(u) = {u′ ∈ U : u ∈ C(u′) }, where C(u′) is 
a plot centred around point u′. For simplicity purposes, we assume from 

here on that all plots C(ui), i ∈ S2, are circular and have the same area a. 
The area of the inclusion zone of u ∈ U is ãu =

∫

U I(u ∈ C(u′) )du′. If point 
u is sufficiently into the interior of U, then its inclusion zone will have 
the same shape and size as each of the circular plots. On the other hand, 
if u is close enough to the boundary of U, then its inclusion zone will 
have a smaller size than a. The Horvitz–Thompson-type estimator pre-
sented below has the ability to take this into account, but would require 
the inclusion zone area to be determined for each point ui ∈ S2 near the 
edge (cf. Gregoire & Valentine 2007). A less labour-intensive way to 
solve this problem is to use the so-called buffer method, which applies to 
both the single-plot and cluster-plot designs. Thus, we suppose that a 
buffer at least as large as the plot radius is used around U (Gregoire & 
Valentine 2007). This allows sample points ui to fall outside U, i.e. in 
some larger region U•, defined as the union of U and the buffer. The use 
of a buffer impacts the definitions of ãu and K(u), in which U needs to be 
replaced by U•. The introduction of a buffer implies that all points in U 
have the same inclusion zone area, and thus ãu = au = a for all u ∈ U, 
where au denotes the area of C(u). In this setting, we set λβ(u) = 0 for all 
u ∈ U (cf. Gregoire & Valentine 2007). 

The “generalised” Horvitz-Thompson estimator of the expected 
number of plants in U is then given by 

Λ̂(β) =
∑n2

i=1

λ(ui)

π(ui)
, (7)  

where π(u) is given by (6) and 

λ(u) =
∫

C(u)

λβ(u′)

au′
du′,u ∈ U•,

is the average intensity over C(ui), where au′ = a by our assumptions 
(Cordy 1993, Grafström et al. 2017). Note that 
∫

U•

λ(u)du =

∫

U•

∫

C(u)

λβ(u′)

au′
du′du =

∫

U•

λβ(u′)

au′

∫

U•

I(u′ ∈ C(u) )dudu′

=

∫

U

λβ(u′)

au′

∫

U•

I(u′ ∈ C(u) )dudu′ =

∫

U
λβ(u′)du′ = Λ(β)

(8)  

and, according to Theorem 1 in Cordy (1993), this implies that the 
Horvitz-Thompson estimator of Λ(β) is unbiased if π(u) > 0 for all 
u ∈ U•. Hence, with a buffer for handling edge effects, we obtain an 
unbiased estimator of Λ(β). The price to be paid is that the buffer method 
tends to inflate the variance of the estimator (Gregoire & Valentine 
2007). If the area of the buffer is small relative to the area of U, this 
increase in variance can be expected to be small. Using (3), λ(ui) can be 
rewritten as 

λ(ui) =

∫

C(ui)∩U

exp
(
βTx(u)

)

au
du =

ai

a
exp
(
βTxi

)
= riexp

(
βTxi

)
= λ̃β(ui),

where ri is the ratio of the area ai of C(ui) ∩ U and the area of C(ui). With 
λ̃β(ui) defined as above, note that if C(ui) ⊆ U, then ̃λβ(ui) = λβ(ui). This 
implies that 

Λ̂(β) =
∑n2

i=1

λ̃β(ui)

π(ui)
=
∑n2

i=1

riexp
(
βTxi

)

π(ui)
.

Λ̂(β) can also be regarded as a natural predictor of the actual number of 
plants, given the available information and in the context of the inho-
mogeneous Poisson point process. As β is usually unknown, we will use 
Λ̂(β̂) as our estimator of the expected number of plants, where β̂ is an 
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estimator of β obtained using model (5) based on data from S1. 

2.3. Variance estimation 

To estimate the variance of the estimator Λ̂(β) of Λ(β), we use the 
Sen-Yates-Grundy variance formula defined in Cordy (1993), 

Var(Λ̂(β) ) =
1
2

∫

U•

∫

U•

Δ(u,u′)

(
λ(u)
π(u) −

λ(u′)

π(u′)

)2

dudu′,

where 

Δ(u, u′) = π(u)π(u′) − π(u, u′) and π(u,u′) =
∑

i∈In

∑

j∈Jn,i

fij(u, u′), (9)  

the latter being the pairwise inclusion density function with In =

{1,…, n2}, Jn,i = {1,…, n2}\{i}, and fij the joint marginal pdf of ui and 
uj. As advised by, e.g., Tillé (2006), the Sen-Yates-Grundy formula 
should be used in case a fixed sample size is used. By Cordy (1993), if 
π(u) and π(u,u′) are strictly positive for all (u, u′) ∈ U•, an unbiased 
estimator of the Sen-Yates-Grundy variance is given by 

V̂ar(Λ̂(β) ) =
1
2
∑

i∈In

∑

j∈Jn,i

Δ
(
ui, uj

)

π
(
ui,uj

)

(
λ(ui)

π(ui)
−

λ
(
uj
)

π
(
uj
)

)2

=
1
2
∑

i∈In

∑

j∈Jn,i

Δ
(
ui,uj

)

π
(
ui,uj

)

(
riexp

(
βTxi

)

π(ui)
−

rjexp
(
βTxj

)

π
(
uj
)

)2

,

(10)  

and that is in effect the part of the variance due to sampling of the plot 
centres in S2, treating the model coefficients as known. With unknown β, 
i.e. where β needs to be estimated by β̂, an estimate of the variance of 
Λ̂(β̂) can be expressed as 

V̂ar(Λ̂(β̂) ) =
1
2
∑

i∈In

∑

j∈Jn,i

Δ
(
uiuj

)

π
(
uiuj

)

(
riexp

(
β̂Txi

)

π(ui)
−

rjexp
(

β̂Txj
)

π
(
uj
)

)2

+
∑q

k=1

∑q

l=1
ĈovS1 (β̂k β̂l)v̂k v̂l,

(11)  

with 

v̂k =
∑n2

i=1

1
π(ui)

λ̃
(k)
β̂ (ui), (12)  

where β̂k denotes the kth component of the β̂ vector, and 

λ̃
(k)
β̂ (ui) =

∂λ̃β̂(ui)

∂β̂k
= rixikexp

(
β̂Txi

)

with xik denoting the kth component of xi. The different ĈovS1 (β̂k, β̂ l)

terms can be obtained from statistical software, for example using the 
glm function in R. The derivation of (11) can be found in Appendix A. 
Another case, where S2 is a sample of centres of plot clusters, is 
considered in Subsection 2.5. 

2.4. Estimation of the expected plant density 

In this section, we utilise our estimator of the total number of plants 
for estimating the expected plant density. First, we assume that the area 
of the region of interest is known. In this case, the expected density R(β)
is defined as the expected number of plants in the region divided by the 
area aU of U, 

R(β) =
Λ(β)
aU

, (13)  

where Λ(β) is defined in (2). This quantity can be estimated by 

R̂(β̂) =
Λ̂(β̂)

aU
, (14)  

where Λ̂(β) is defined in (7). Its corresponding variance estimator is 
given by 

V̂ar(R̂(β̂) ) =
V̂ar(Λ̂(β̂) )

aU
, (15)  

where V̂ar(Λ̂(β̂) ) is the same as in (11). 
However, information about the area of the region of interest may 

not be available, or we may wish to estimate expected plant density in a 
subregion of unknown area, for example in the forested area of a region. 
In such cases, the area has to be estimated. Thus, Λ(β) needs to be 
modified as 

Λ⋆(β) =
∫

U
λβ(u)Iudu,

with Iu being an indicator function taking the value 1 if u is situated in 
the target part of the landscape and 0 otherwise; Iu is set to 0 outside of 
U. The area of the target part of the landscape in U can be written as 

A =

∫

U
Iudu  

and the expected plant density in the area of interest is given by 

R⋆(β) =
Λ⋆(β)

A
. (16)  

This quantity can be estimated by 

R̂⋆(β) =
Λ̂⋆(β)

Â
, (17)  

where Λ̂⋆(β) is defined as 

Λ̂⋆(β) =
∑n2

i=1

λ⋆(ui)

π(ui)
, (18)  

where 

λ⋆(ui) =

∫

C(ui)

λβ(u)Iu

au
du,

and 

Â =
∑n2

i=1

z(ui)

π(ui)
(19)  

is an estimator of the area A, with 

z(ui) =

∫

C(ui)

Iu

au
du.

Note that, if we adopt a reasoning similar to the one in (8), Â is an 
unbiased estimator of A if π(u) > 0 for all u ∈ U• (Cordy 1993). 

In Appendix A, the following estimator of the variance of R̂⋆(β̂) is 
derived: 
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where 

λ̂⋆(ui) =

∫

C(ui)

λβ̂(u)Iu

au
du,

d̂1,k(ui) =

∫

C(ui)

Iu

au
λ(k)β̂ (u)du, d̂2,k =

∑n2

i=1

Iui λ
(k)
β̂ (ui)

π(ui)
, (21)  

and 

λ(k)β̂ (ui) =
∂λβ̂(ui)

∂β̂k
= xikexp

(
β̂Txi

)
.

It can happen that sample plots are divided into several parts, for 
example if one part of the plot is in forests and other parts are in other 
landscape categories. In such cases, some adjustments of the above es-
timators of the expected plant density and variance are needed. See 
Appendix B. 

2.5. Cluster sampling case 

It is also of interest to consider the case where S2 is a sample of 
centres of clusters (sometimes called tracts) of plots rather than a sample 
of centres of individual plots. Indeed, this sampling procedure is used in, 
e.g., the Swedish NFI (Anon 2014). In this case, C

(
uj
)

denotes a cluster j 
of kj plots centred around uj, and we denote the area of the plots within 
the cluster by auj = kjs, where s is the area of a single plot (all plots are 
assumed to have the same area). A buffer is also used in this case, 
although it will be larger (at least as large as the radius of the tract, see 
Grafström et al. 2017). We can still use the Horvitz-Thompson estimator 
(7) to get our estimator of the expected number of plants in U; the 
resulting expression will just be slightly different. 

Using approximation (3) and if no plot is divided, 

λ
(
uj
)
=

∫

C(uj)∩U

exp
(
βTx(u)

)

au
du =

1
kj

∑kj

i=1
riexp

(
βTxj

i
)
, (22)  

where xj
i denotes the (constant) covariate information in plot i of cluster 

j, and ri is the ratio of the area of the intersection of plot i n cluster j and U 
to the area of a single plot. Then, the Horvitz-Thompson estimator Λ̂(β)
may be written as 

Λ̂(β) =
∑

j∈In

λ
(
uj
)

π
(
uj
) =

∑

j∈In

1/kj
∑kj

i=1
riexp

(
βTxj

i
)

π
(
uj
) . (23)  

Using the same reasoning that led us to (11), we obtain the following 
variance estimators for Λ̂(β̂);  

with 

v̂k =
∑

j∈In

1
π
(
uj
)

1
kj

∑kj

i=1
rixj

ikexp
(

β̂Txj
i
)
,

where xj
ik denotes the kth component of vector xj

i. Similar changes are 
made in case we want to estimate expected plant density in (sub)regions 
with unknown area. 

2.6. Statistical testing 

The estimates of the expected plant density and corresponding 
variance estimators rely on the condition that the binary regression 
model (5) is realistic. For this reason, it is of importance to assess 
whether said model, used to estimate β, holds true. In order to do that, 
we use a parametric bootstrap test suggested by Ekström et al. (Un-
published results). It should be noted that if model (5) is incorrect, then 
so is the underlying Poisson model assumption. Details on how to 
perform the test are given in Appendix C. 

3. Real data study 

The Swedish NFI (Fridman et al. 2014) is a field sample plot in-
ventory of Swedish forests that consists of both temporary and perma-
nent tracts, each composed of several plots. The temporary plots (which 
have a radius of 7 m) are only inventoried once, while the permanent 
plots are inventoried once every 5 years. Moreover, the permanent tracts 
are separated into two subcategories, “C1”, where both terrain and 
vegetation inventories are conducted, and “C2”, which denotes all other 
tracts. At each permanent “C1” plot, P/A data for a set of plant species 
are recorded on each of two small circular “vegetation plots”; those 
small vegetation plots have an area of 0.25 m2 each and are separated 
by 5 m and located 2.5 m from the main plot centre, the main plot having 
a radius of 10 m. Those registrations are not made during each visit, but 
rather once every two visits (i.e. every tenth year). Vegetation 

V̂ar(R̂⋆(β̂) ) =
1

2Â2

∑

i∈In

∑

j∈Jn,i

Δ
(
ui,uj

)

π
(
ui,uj

)

(
λ̂⋆(ui) − R̂⋆(β̂)z(ui)

π(ui)
−

λ̂⋆( uj
)
− R̂⋆(β̂)z

(
uj
)

π
(
uj
)

)2

+
1
Â2

∑q

k=1

∑q

l=1
ĈovS1 (β̂k, β̂l)

∑

i∈In

d̂1,k(ui) − z(ui)d̂2,k
/

Â
π(ui)

∑

j∈In

d̂1,l
(
uj
)
− z
(
uj
)

d̂2,l
/

Â
π
(
uj
)

+
2
Â2

∑q

k=1

∑q

l=1
ĈovS1 (β̂k, β̂l)d̂2,l

∑

i∈In

d̂1,k(ui)

π(ui)
−

1
Â2

∑q

k=1

∑q

l=1
ĈovS1 (β̂k, β̂l)d̂2,k d̂2,l,

(20)   

V̂ar(Λ̂(β̂) ) =
1
2
∑

j∈In

∑

j′∈Jn,i

Δ
(
ui,uj

)

π
(
ui,uj

)

(
1

π
(
uj
)
kj

∑kj

i=1
riexp

(
β̂Txj

i
)
−

1
π
(
uj′
)
kj′

∑kj′

l=1
rlexp

(
β̂Txj′

l

)
)2

+
∑p

k=1

∑p

k′=1

ĈovS1 (β̂k, β̂k′)v̂k v̂k′, (24)   
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registrations are not made on temporary plots. The covariates are 
registered at main plot level for both temporary and permanent plots. 
Thus, values of the covariates are always the same in each pair of small 
vegetation plots. The registrations are performed by experienced field 
workers on plots for which the positions are defined in advance ac-
cording to the given sampling design. 

We chose to study Lingonberry (Vaccinium vitis-idaea) data in the 
Norrbotten Lappmarken region (in northern Sweden) during the years 
2008–2012. According to the Swedish NFI, region Norrbotten Lapp-
marken has a known area of 7,785,748 ha. The particular landscape 
category we chose for the estimation of R⋆ and its corresponding vari-
ance is productive forestland (i.e. land that can produce on average at 
least 1 m3 of wood per hectare and per year and that is not significantly 
used for other purposes, according to Anon (2014)), whose area is 
unknown. 

Sample S1 consists of the centres of the small vegetation plots 
included in permanent “C1” plots, in Norrbotten Lappmarken during 
2008–2012. Sample S1 has size n1 = 724, corresponding to 362 pairs of 
vegetation plots that were used for the parametric bootstrap test. Cluster 
sampling was used to obtain sample S2. It originally consists of the 
centres of the tracts of temporary circular plots. This sample has a size of 
n2 = 111 tract centres, which corresponds to 1132 sample plots in total. 
There are one to twelve plots with available data in each (quadratic) 
tract, and the plots are separated by at least 600 m (Anon 2014). 

In Table 1, the fitted binary regression model for Vaccinium vitis-idaea 
is presented for productive forestland in Norrbotten Lappmarken for 
years 2008–2012. The model was not rejected by the parametric boot-
strap test (p-value= 0.184). Its explanatory variables are a trans-
formation of the number of tree stems per hectare, multiplied by 100, 
and an indicator variable stating whether the soil is humid/wet. It can be 
seen that Vaccinium vitis-idaea seem less likely to be found on humid/wet 
soil, compared to dry soils. On the other hand, the model suggests that 
the more tree stems per hectare, the higher the probability of presence of 
Vaccinium vitis-idaea. 

Table 2 contains estimated expected densities in two different cases. 
The first case is cluster sampling, where centres of clusters of plots were 
assumed to be sampled independently and uniformly on U•. In the 

second case, the computations were made by (incorrectly) assuming that 
centres of individual plots were sampled rather than centres of clusters. 
The densities were estimated using two different estimators (expected 
density estimator with known area (14) and unknown area (17), and 
their cluster sampling case counterparts). The corresponding variance 
estimates, (15) and (20) respectively (as well as their cluster sampling 
case counterparts), are also given. In both cases, the variance estimate of 
the expected density estimator in productive forestland is almost twice 
as high as the variance estimate using the whole region. It can be 
explained by the relatively small amount of plots that are situated in 
productive forestland in Norrbotten Lappmarken in the Swedish NFI 
data (approximately 50% of the total). 

4. Monte Carlo study 

The aim of the Monte Carlo study was to evaluate our estimators of 
expected plant density and variance estimators and assess whether they 
performed well. The simulations, all performed in R (R Core Team 
2022), were conducted as follows.  

• We created a quadratic grid of 1024 cells that corresponds to our area 
frame U, as well as a buffer zone around U. Each grid cell had an area 
of 1 ha and artificial covariates.  

• The created covariates were based on the ones included in the model 
for Vaccinium vitis-idaea. The indicator variable stipulating whether a 
plot is humid/wet or not was built on actual data in the Norrbotten 
Lappmarken region between 2008 and 2012, which had approxi-
mately 16.85% of plots being considered as humid/wet. This 
particular covariate was created as realisations of a Bernoulli dis-
tribution with parameter p = 0.1685 in each cell. As for the number 
of stems per hectare, we used fitted Weibull distributions as 
described below. Two cases were considered:  
1. In the first case, we assumed that the whole grid was productive 

forestland, and the area of the area frame (the cell grid) was 
assumed to be known. In that case, we supposed that the number 
of stems per hectare varied only depending on whether the soil 
was humid/wet or dry. Based on Swedish NFI data in productive 
forestland, Weibull distributions were fitted using the fitdist 
function from the fitdistrplus package (Delignette-Muller & 
Dutang 2015). On humid/wet grid cells, the fitted distribution 
was a Weibull distribution with shape parameter k = 1.047 and 
scale parameter λ = 3898.3. For the dry grid cells, a two-step 
procedure was used since 4% of the original data had values 
equal to 0. Therefore, a random number between 0 and 1 was 
generated for each grid cell; if this number was smaller than 0.04, 
the number of stems per hectare for that grid cell was set to 0; 
otherwise it was a realisation of a Weibull-distributed random 
variable with parameters k = 0.903 and λ = 2076.5.  

2. In the second case, we created an indicator variable which was 
assigned the value 1 if the cell was in productive forestland, and 
0 otherwise. As 49.8% of the original sample plots are in pro-
ductive forestland, each cell was assigned the value 1 with a 
probability of 0.498. The number of stems per hectare was sup-
posed to vary according to both humidity of the soil and type of 
landscape (productive forestland or not), which means that four 
different subcases had to be considered. The area of productive 
forestland in the grid was estimated by (19). The covariates were 
generated exclusively for the cells that are situated in productive 
forestland (which means in two of the subscases), and in such case 
were generated exactly as in case 1.  

• Each Monte Carlo simulation consisted of 2000 replicates; P/A data 
were generated from an inhomogeneous Poisson point process with 
the rpoispp function from the spatstat package (Baddeley et al. 2016) 
in each replicate; plot centres in S2 were sampled independently 
according to a uniform distribution over U•, while a two-step gen-
eration procedure was used for S1: first, plot centres for the 

Table 2 
Estimated expected plant densities in m− 2 and corresponding estimates of 
variance for Vaccinium vitis-idaea in Norrbotten Lappmarken. Two cases were 
considered: one where the computations were made assuming cluster sampling 
and another where it was (incorrectly) assumed that single plots were sampled. 
R̂(β̂) and V̂ar(R̂(β̂) ) are computed for the whole Norrbotten Lappmarken re-
gion, while R̂⋆(β̂) and V̂ar(R̂⋆(β̂) ) are computed for the productive forestland 
area of Norrbotten Lappmarken only.  

Case R̂(β̂) R̂⋆(β̂) V̂ar(R̂(β̂) ) V̂ar(R̂⋆(β̂) )

Tracts 7.61 9.72 0.205 0.406 
Single plots 7.49 9.73 0.209 0.411  

Table 1 
Estimated model coefficients β̂ for Vaccinium vitis-idaea in productive forestland 
in Norrbotten Lappmarken. The intercept was offset-adjusted. 1wet is an indicator 
variable stipulating whether a plot is humid/wet or not. 
((No.stems/ha + 0.6)/1000 )

− 0.5 is a non-linear transformation of the “number 
of tree stems per hectare” (in hundreds per hectare) covariate, found by using 
the mfp R package (Ambler & Benner 2015), which applies multivariable frac-
tional polynomials (Sauerbrei & Royston 1999).  

Species Estimated parameters (β̂) 

Vaccinium vitis-idaea Offset-adjusted Intercept 2.423 
(Lingonberry) 1wet − 0.667  

((No.stems/ha + 0.6)/1000 )
− 0.5 − 0.025  
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permanent plots were sampled independently according to a uniform 
distribution over U, and then the small vegetation plots in S1 were 
created for each permanent plot as described in Section 3. The value 
of the vector of coefficients β was set equal to the one from the fitted 
model for Vaccinium vitis-idaea in Norrbotten Lappmarken in years 
2008–2012 (Table 1). Estimated model coefficients ̂β were computed 
for every replicate using the S1 data, while the estimated expected 
plant density and its corresponding variance estimate were 
computed for every replicate using the S2 data. The sample sizes 
were n1 = 1500 and n2 = 1500. The same plot radii as in the 
Swedish NFI were used (see Section 3). The plots in S2 were divided 
when they overlapped different grid cells (see details in Appendix B). 
In accordance with the Swedish NFI (Jonas Dahlgren, personal 
communication), the small vegetation plots within S1 were not 
divided. 

The results for the simulation study are presented in Table 3. The 
estimator R̂(β̂) was used for Case 1 and R̂⋆(β̂) was used for Case 2. In 
Case 1, the estimator R̂(β̂) was on average close to but a little lower than 
the real expected plant density. In Case 2, the estimator R̂⋆(β̂) was even 
closer to the true value, but even in that case a slight negative bias 
occurred. The two variance estimators seem to have a very small bias 
and have low values. Based on these observations, we can conclude that 
our estimators performed quite well. 

5. Discussion 

In this study, we show how P/A data can be used for modelling and 
monitoring plant population densities. We argue that this approach of-
fers advantages over methods based on visual assessment of vegetation 
cover, since studies indicate that P/A sampling may not be as prone to 
observer bias as methods based on assessing vegetation cover, and since 
P/A sampling is a rapid and thus cheap method to apply (e.g., Ringvall 
et al. 2005). 

Since the auxiliary modelling data are available for both considered 
samples, but the binary response data are available for only one sample, 
we apply methods from hybrid inference (e.g., Corona et al. 2014) for 
estimating the expected value of plant density and the corresponding 
variance. This concerns taking into account both modelling and sam-
pling uncertainty, and to our knowledge, our study is the first one that 
involves GLMs in hybrid inference. This type of inference is important in 
this context since, in many cases, detailed descriptions of environmental 
conditions, needed for the modelling, may not be available wall-to-wall 
but only from sampling locations, e.g., from sample plots within envi-
ronmental monitoring programmes. In this article, we extend the 
already existing theory on hybrid inference to GLMs with binary 
response data. 

Our method is most suitable when n2, the sample size of S2, is much 
larger than n1, the sample size of S1. Indeed, the main purpose in 
applying this method is to gather a minimum of information to develop a 
reliable model on the smallest sample possible (principally due to 
budgetary reasons), to then apply this model in connection with cova-
riates that come from a larger sample whose units do not contain the 
desired response data. However, with our available data, n2 was only a 
little larger than n1. This shows that our method works even in that 

particular case. 
In regions with high perimeter-to-area ratios, a large or very large 

proportion of the sampling plots will extend beyond the region’s 
boundary. In such cases, our suggested methodology, which uses a 
“buffer” to address edge effects, may be unsuitable and could result, for 
example, in estimators with larger variances than desired. 

An important part of the study involves making the proposed hybrid 
inference framework available for practical application in monitoring 
programmes, in which case we need to take into account that sample 
plots are often allocated in clusters and that the area of the domain of 
study is unknown (e.g., Fridman et al. 2014). This introduces several 
additional details to the general framework, which are important for the 
usefulness of the framework in practice. 

The Monte Carlo simulations we performed show that our framework 
for estimating the expected plant density provides accurate estimates 
when the modelling assumptions are valid. In the study based on 
empirical data from the Swedish NFI, we obtained estimates of expected 
Lingonberry (Vaccinium vitis-idaea) densities in Northern Sweden that 
appear to be realistic, although we cannot check them since no reference 
data are available. 

For the sake of simplicity, we assumed that the sampling design of S1 
was non-informative (see Appendix A), i.e. the design was not taken into 
account during model parameter estimation. Ignoring an informative 
sampling design may yield biased estimates of regression coefficients. 
For handling informative designs, methods using probability weighting 
may be used (e.g., Heeringa et al. 2010; Ekström et al. 2018). 

It is possible to generalise the considered hybrid inference frame-
work to other types of GLMs. Instead of P/A data as a response variable, 
one could use a continuous variable (such as biomass) or a discrete 
variable such as a count variable (number of trees, birds etc.). The main 
requirement is to have two samples; one to estimate model coefficients, 
with both covariate and response data, and another one, with only co-
variate data, for estimation of, e.g., expected biomass per hectare or 
expected plant density based on the estimated model coefficients. As 
long as this requirement is met, then hybrid inference should work, in 
principle, with any kind of response variable. The statistical de-
velopments would, however, be different from the ones derived in the 
present paper; although with counts instead of P/A, the difference would 
not be that significant (in both cases, it would be possible to use an 
inhomogeneous Poisson model). With count data that are not subject to 
too many errors, it should be possible to obtain better estimators than 
the ones obtained from P/A data. However, the survey would be more 
expensive to conduct. 

There is one key condition for the developed technique to be appli-
cable; the underlying point process should be, at least approximately, an 
inhomogeneous Poisson point process. We estimate models that utilise a 
combination of P/A and auxiliary data to estimate expected plant den-
sity, assuming that the spatial distribution of plants follow an inhomo-
geneous Poisson process, i.e. the plant densities vary due to the 
environmental conditions. In the article, we check the suitability of the 
binary regression model implied by the underlying inhomogeneous 
Poisson point process through a statistical test specifically developed for 
the purpose (cf. Appendix C). Recognising that plants can occur in 
clustered spatial patterns, extensions from inhomogeneous Poisson 
point processes to inhomogeneous cluster point processes serve as an 

Table 3 
Actual expected plant densities R(β) (resp. R⋆(β)), estimated mean values of the estimated expected densities Ê(R̂(β̂) ) (resp. Ê(R̂⋆(β̂) )), estimated mean value of the 
variance estimates Ê(V̂ar(R̂(β̂) ) ) (resp. Ê(V̂ar(R̂⋆(β̂) ) )) and s2, the sample variance of the R̂(β̂) (resp. R̂⋆(β̂)), for simulated Vaccinium vitis-idaea data in a grid of 1024 
cells, each cell having an area of 1 ha. In the known area case, the area is aU, the area of the grid. In the unknown area case, the area is estimated according to (19). The 
variances were estimated using formulas (15) and (20). “/” means that the formula does not apply to the specific case.  

Case R(β) R⋆(β) Ê(R̂(β̂) ) Ê(R̂⋆(β̂) ) Ê(V̂ar(R̂(β̂) ) ) Ê(V̂ar(R̂⋆(β̂) ) ) s2 

Known area 9.740 / 9.606 / 0.191 / 0.196 
Unknown area / 9.715 / 9.657 / 0.187 0.189  
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important topic for further studies. However, if we would like to use a 
similar methodology as in Ekström et al. (2020), we would need to 
gather data on more than two subplots for each main plot. 

In our paper, the intensity of the inhomogeneous Poisson point 
process is determined via a log-linear model that involves a number of 
covariates. This model cannot be fitted directly, since no observed point 
pattern or observed values of counts of points in plots are available. This 
problem is circumvented by making use of observable P/A variables. 
Given that the pattern is a realisation of an inhomogeneous Poisson 
point process (whose intensity on the ith cell is given by (1)), it follows 
that the P/A variables satisfy a binary GLM, with complementary log-log 
link and an offset, with the same parameter vector as that which appears 
in the intensity of the inhomogeneous Poisson point process. Thus, for 
extending the current approach to other inhomogeneous point processes 
than the Poisson, the parameters of their intensities must be estimable 
from P/A data and corresponding covariate data at plot level. In addi-
tion, estimates of covariance matrices of estimators of parameters are 
also needed. One possibility to achieve this is to extend the intensity 
estimator in Ekström et al. (2020) from homogeneous cluster point 
processes such as the Matérn and Thomas processes to corresponding 
heterogeneous processes, whose intensities are functions of on one or 
more covariates (Waagepetersen 2007). 

When the point pattern is generated by an inhomogeneous Poisson 
point process, the binary GLM model in (5) will have independent binary 
(P/A) response variables conditional on the covariates. For other point 
processes, responses cannot be expected to fulfill this property of con-
ditional independence. Then, instead of using a standard GLM, other 
estimation methods such as generalised estimating equations (Albert & 
McShane 1995; Gotway & Stroup 1997) and a composite likelihood 
approach for spatial binary data (Heagerty & Lele 1998) can be used. 
However, as mentioned, this is not enough for extending the current 
approach to more general point processes. Most importantly, the esti-
mable unknown parameters in the regression model for the P/A data 
must also include all unknown parameters in the intensity function of 
the point process model. 

For a Poisson point process with a homogeneous intensity λ, the 
species abundance N in a plot C of area a follows a Poisson distribution 
with mean aλ, and the probability of presence of at least one plant in the 
plot C equals p = 1 − exp( − aλ). Rearranging this equation, we can 
estimate the intensity (plant density) λ from the proportion p̂ of plots 
with plant occurrences, i.e., by λ̂ = − a− 1log(1 − p̂) (e.g., Ståhl et al. 
2017). A homogeneous spatial Poisson process is synonymous with 
complete spatial randomness. However, in nature, individuals of many 
species are typically aggregated (Pielou 1977; He & Gaston 2000). For 
plot abundance N, the model most commonly used to describe such 
aggregation is the negative binomial distribution (He et al. 2002), which 
implies the following relationship between the presence probability p 

and plant density λ, p = 1 −
(

1 + k− 1λ
)− k

, where k is referred to as a 

“clumping” parameter, with small k > 0 representing strong aggregation 
(Wright 1991; He & Gaston 2000; He et al. 2002). Under this model, 
Conlisk et al. (2007) specify the likelihood function and conclude that 
the clumping parameter cannot be estimated from P/A data, i.e., that it 

must be specified from outside the model. The suitability of the negative 
binomial distribution has also been much debated (Holt et al. 2002; 
Gaston et al. 2011) and only two known homogeneous point processes 
give the negative binomial distribution for plot abundances, and both 
are extreme cases (Daley & Vere-Jones 2003). For some further de-
velopments of the negative binomial distribution model, we refer to 
Solow & Smith (2010), Hwang & Huggins (2016), Huggins et al. (2018), 
Hwang et al. (2022), and Stoklosa et al. (2022). For other suggested 
models than those based on the Poisson and the negative binomial dis-
tributions for describing the relationship between the presence proba-
bility p and plant density λ, see, e.g., Holt et al. (2002), He et al. (2002), 
and the references therein. Extensions of the negative binomial model 
and other related models to an inhomogeneous setting would be useful 
for extending the approach presented in the current article to more 
general settings. 

Many monitoring and citizen science programmes already have large 
amounts of P/A data in their databases (e.g., the Norwegian Biodiversity 
Information Center in Norway (Hoem 2022); the Global Biodiversity 
Information Facility GBIF (GBIF 2022)). Therefore, the techniques and 
estimators developed in the present study can be applied to already 
available data, especially since new fine-scaled covariate data are 
becoming increasingly common in such databases. Promising results 
were obtained in this study, which means that the proposed framework 
for monitoring plant population density through P/A sampling and 
modelling holds promise for future practical application, e.g., in na-
tional reporting of trends in declining species. 
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Appendix A. Theoretical developments in the case of single plots 

A.1. Case with known area 

For simplicity, we assume that the sampling design of S1 is non-informative, i.e. the vector of model parameters is estimated without taking this 
sampling design into account. Under this assumption, for large samples and under mild conditions (see for example Sen & Singer 1993), 
̅̅̅̅̅
n2

√
(β̂ − β) ∼ N

(
0, I − 1(β)

)
, (A.1)  

where I(β) denotes the Fisher information matrix and can be estimated by 
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Î(β̂) =
1
n2

∑

i∈In

1
[g′(pi(β̂) ) ]2vi(β̂)

xix′
i, (A.2) 

with β̂ being the estimate of β, g defined by (5), pi defined by (4), and vi(β) = Var(Yi) = pi(1 − pi), where Yi = 1 if there is presence of plants in plot i, 
and Yi = 0 otherwise. 

Using a similar reasoning as in [Ståhl et al. 2011], we start with the decomposition 

Λ̂(β̂) − Λ(β) =
∑

i∈In

λ̃β̂(ui)

π(ui)
− Λ = D1 +D2, (A.3)  

where 

D1 =
∑

i∈In

λ̃β(ui)

π(ui)
− Λ and D2 =

∑

i∈In

λ̃β̂(ui) − λ̃β(ui)

π(ui)
.

Our objective is to compute the variance 

Var(D1 +D2) = Var(D1)+Var(D2)+ 2 Cov(D1,D2).

Using the Sen-Yates-Grundy formula presented in Cordy (1993), an unbiased estimator of Var(D1) is given by (10). If β is unknown, we estimate this 
variance with 

V̂ar(D1) =
1
2
∑

i∈In

∑

j∈Jn,i

Δ
(
ui,uj

)

π
(
ui, uj

)

(
riexp

(
β̂Txi

)

π(ui)
−

rjexp
(

β̂Txj
)

π
(
uj
)

)2

. (A.4)  

The law of total variance is used in order to compute Var(D2), i.e 

Var(D2) = VarS2 [ES1 (D2|S2) ] + ES2 [VarS1 (D2|S2) ]. (A.5)  

For non-linear models, a Taylor approximation can be applied, i.e. 

λ̃β̂(u) ≈ λ̃β(u)+
∑q

k=1
(β̂k − βk)λ̃

(k)
β (u), (A.6)  

where 

λ̃
(k)
β (ui) = rixikexp

(
βTxi

)
.

Then, 

D2 ≈
∑

i∈In

∑q

k=1

(β̂k − βk)

π(ui)
λ̃
(k)
β (ui) =

∑q

k=1
(β̂k − βk)vk,

where 

vk =
∑

i∈In

1
π(ui)

λ̃
(k)
β (ui)

and q being the number of model coefficients. Conditioned on S2, vk is a constant. Then, by (A.1), ES1 (D2|S2) ≈
∑q

k=1ES1 (β̂k − βk|S2)vk ≈ 0 for large 
samples, and thus VarS2 [ES1 (D2|S2) ] ≈ 0. Furthermore, 
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VarS1 (D2|S2) ≈ VarS1

(
∑q

k=1
(β̂k − βk)vk |S2

)

≈
∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)vkvl

=
∑

i∈In

∑

j∈In

1
π(ui)π

(
uj
)
∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)ri rj xik xjl exp

(
βT( xi + xj

) )

=
∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∑

i∈In

r2
i

π(ui)
2xikxilexp

(
2βTxi

)

+
∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∑

i∈In

∑

j∈Jn,i

rirj

π(ui)π
(
uj
)xik xjl exp

(
βT( xi + xj

) )
.

From the arguments in the proof of Theorem 2 in Cordy (1993), we get 

Var(D2) ≈ ES2 [VarS1 (D2|S2) ]

=
∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∫

U•

r2
u

π(u)x
k(u)xl(u)exp

(
2βTx(u)

)
du

+
∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∫

U•

∫

U•

π(u, u′)

π(u)π(u′)
ruru′xk(u)xl(u)exp

(
βT
(x(u) + x(u′) )

)
dudu′,

where xk(u) denotes the kth component of the x vector and ru is the ratio of the area of C(u) ∩ U and the area of C(u). Thus, Var(D2) can be estimated by 

V̂ar(D2) =
∑q

k=1

∑q

l=1
ĈovS1 (β̂k, β̂l)

∑

i∈In

r2
i

π(ui)
2 xikxilexp

(
2β̂Txi

)

+
∑q

k=1

∑q

l=1
ĈovS1 (β̂k, β̂l)

∑

i∈In

∑

j∈Jn,i

rirj

π(ui)π
(
uj
) xikxjlexp

(
β̂T( xi + xj

) )

=
∑q

k=1

∑q

l=1
ĈovS1 (β̂k, β̂l)

∑

i∈In

∑

j∈In

rirj

π(ui)π
(
uj
) xikxjlexp

(
β̂T( xi + xj

) )

=
∑q

k=1

∑q

l=1
ĈovS1 (β̂k, β̂l)v̂k v̂l,

(A.7)  

where v̂k is defined in (12). 
The next step is to compute the covariance between D1 and D2. According to the law of total covariance, 

Cov(D1,D2) = ES2 [CovS1 (D1,D2|S2) ] +CovS2 [ES1 (D1|S2) ,ES1 (D2|S2) ]. (A.8)  

It can be deduced that CovS2 [ES1 (D1|S2) , ES1 (D2|S2) ] ≈ 0 because, as argued before, ES1 (D2|S2) ≈ 0. Then, as the stochastic nature of D1 is determined 
by sample S2 and not by sample S1, ES1 (D1D2|S2) = D1ES1 (D2|S2) ≈ 0. Because of the latter, ES2 [CovS1 (D1,D2|S2) ] ≈ 0. Thus, Cov(D1,D2) ≈ 0 and we 
just need to add the variances of D1 and D2 to get an approximate variance of D1 + D2. As a result, setting (A.4) and (A.7) together, the estimate 
becomes 

V̂ar(Λ̂(β̂) ) = V̂ar(D1) + V̂ar(D2) + 2Ĉov(D1,D2)

=
1
2
∑

i∈In

∑

j∈Jn,i

Δ
(
ui, uj

)

π
(
ui,uj

)

(
riexp

(
β̂Txi

)

π(ui)
−

rjexp
(

β̂Txj
)

π
(
uj
)

)2

+
∑q

k=1

∑q

l=1
ĈovS1 (β̂k, β̂l)v̂k v̂l,

with v̂k defined in (12). 

A.2. Expected density estimator in a specific area of the landscape 

Suppose we want to estimate the number of plants exclusively in a certain landscape category, for example forests. Then, the parameter vector β 
will be estimated only from the plots that are situated in this landscape category. 

As in Result 5.6.2 in Särndal et al. (1992), for estimating the variance of R̂⋆(β) we use a Taylor linearisation by introducing R̂
⋆
0 (β), that is related to 

R̂⋆(β) by the relation 

R̂⋆(β) ≈ R̂
⋆
0 (β) = R⋆(β)+

1
A

∑

i∈In

λ⋆(ui) − R⋆(β)z(ui)

π(ui)
. (A.9)  
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Remember that the estimator of β, ̂β, is approximately normally distributed with mean β (see (A.1)). We estimate R⋆(β) with R̂⋆(β̂). The goal here is to 
derive an estimate of the variance of R̂⋆(β̂), or equivalently the variance of R̂⋆(β̂) − R⋆(β), which by the arguments in the proof of Result 5.6.2 in 
Särndal et al. (1992) is approximately the same as the one for 

D(β̂) = R̂
⋆
0 (β̂) − R⋆(β̂) =

1
A
∑

i∈In

λ̂⋆(ui) − R⋆(β̂)z(ui)

π(ui)
,

where 

λ̂⋆(u) =
∫

C(u)

λβ̂(u′)Iu′

au′
du′,u ∈ U•. (A.10)  

We can write 

R̂
⋆
0 (β̂) − R⋆(β) =

(
R̂

⋆
0 (β̂) − R⋆(β̂)

) )
+(R⋆(β̂) − R⋆(β) ) = D(β̂)+D*(β̂),

where D*(β̂) = R⋆(β̂) − R⋆(β). By the following Taylor approximation 

λβ̂(u) ≈ λβ(u)+
∑q

k=1
(β̂k − βk)λ

(k)
β (u), (A.11)  

where 

λ(k)β (u) =
∂λβ(u)

∂βk
,

we obtain 

E[R⋆(β̂) ] = ES1 [R
⋆(β̂) ] =

1
A

ES1 [Λ
⋆(β̂) ] =

1
A

∫

U
ES1 [λβ̂(u) ]Iudu

≈
1
A

∫

U
λβ(u)Iudu +

1
A
∑q

k=1
ES1 [β̂k − βk]

∫

U
λ(k)β (u)Iudu ≈

1
A

∫

U
λβ(u)Iudu = R⋆(β)

(A.12)  

and 

E
[
(R⋆(β̂) )2 ]

= ES1

[
(R⋆(β̂) )2 ]

=
1
A2ES1

[
(Λ⋆(β̂) )2 ]

=
1
A2

∫

U

∫

U
ES1 [λβ̂(u)λβ̂(u

′) ]IuIu′dudu′

≈
1
A2

∫

U

∫

U
λβ(u)λβ(u′)IuIu′dudu′ +

1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)d2,kd2,l

= (R⋆(β) )2
+

1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)d2,kd2,l,

where 

d2,k =

∫

U
Iuλ(k)β (u)du =

∂Λ⋆(β)
∂βk

.

Thus, 

E[D*(β̂) ] = ES1 [D*(β̂) ] ≈ 0 (A.13)  

and 

Var(D*(β̂) ) = VarS1 (D*(β̂) ) ≈
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)d2,kd2,l. (A.14)  

Let us go further with D(β̂). We have 

Var(D(β̂) ) = VarS2 [ES1 (D(β̂) |S2)] +ES2 [VarS1 (D(β̂) |S2)]. (A.15) 
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We see that 

ES1 (D(β̂) |S2) =
1
A

∑

i∈In

ES1 (λ̂⋆(ui) |S2) − ES1 (R⋆(β̂) |S2)z(ui)

π(ui)

and, by (A.11), we obtain 

ES1 [λ̂
⋆(u) |S2] =

∫

C(u)

1
au′

ES1 [λβ̂(u
′) ]Iu′du′

≈

∫

C(u)

1
au′

λβ(u′)Iu′du′ +
∑q

k=1
ES1 [β̂k − βk]

∫

C(u)

1
au′

Iu′λ(k)β (u′)du′

≈

∫

C(u)

1
au′

λβ(u′)Iu′du′ = λ⋆(u).

Thus, 

ES1 (D(β̂) |S2) ≈
1
A

∑

i∈In

λ⋆(ui) − R⋆(β)z(ui)

π(ui)
= R̂

⋆
0 (β) − R⋆(β) (A.16)  

and, from the Sen-Yates-Grundy formula presented in Cordy (1993), 

VarS2 [ES1 (D(β̂) |S2) ] ≈ VarS2

(
R̂

⋆
0 (β)

)

=
1

2A2

∫

U•

∫

U•

Δ
(
ui,uj

)
(

λ⋆(u) − R⋆(β)z(u)
π(u) −

λ⋆(u′) − R⋆(β)z(u′)

π(u′)

)2

.

(A.17)  

Then, we can look closer at 

VarS1 (D(β̂) |S2) = ES1

(
D2(β̂) |S2

)
− (ES1 (D(β̂) |S2))

2
,

which is a part of (A.15), where 

ES1

(
D2(β̂) |S2

)
=

1
A2

∑

i∈In

∑

j∈In

ES1

[(
λ̂⋆(ui) − R⋆(β̂)z(ui)

π(ui)

)(
λ̂⋆( uj

)
− R⋆(β̂)z

(
uj
)

π
(
uj
)

) ⃒
⃒
⃒
⃒
⃒
S2

]

. (A.18)  

From (A.11), we see that 

ES1 [λ̂
⋆(u)λ̂⋆(u′) ] ≈

∫

C(u)

∫

C(u′)
a− 1

v a− 1
v′ λβ(v)λβ(v′)IvIv′dv′dv

+
∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)d1,k(u)d1,l(u′)

= λ⋆(u)λ⋆(u′) +
∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)d1,k(u)d1,l(u′),

(A.19)  

where 

d1,k(u) =
∫

C(u)
a− 1

u′ Iu′λ(k)β (u′)du′ =

∫

C(u)
a− 1

u′ Iu′x(u′)kexp
(
βTx(u′)

)
du′,

and that 

ES1 [λ̂
⋆(u)R⋆(β̂) ] =

1
A

∫

C(u)
a− 1

v ES1 [λβ̂(v)Λ
⋆(β̂) ]Ivdv =

1
A

∫

U

∫

C(u)
a− 1

v ES1 [λβ̂(v)λβ̂(v
′) ]IvIv′dvdv′

≈
1
A

∫

U

∫

C(u)
a− 1

v λβ(v)λβ(v′)IvIv′dvdv′

+
1
A
∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∫

U

∫

C(u)
a− 1

v x(v)kexp
(
βTx(v)

)
x(v′)lexp

(
βTx(v′)

)
IvIv′dvdv′

= λ⋆(u)R⋆(β) +
1
A

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)d1,k(u)d2,l.

(A.20)  
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From (A.18), (A.19) and (A.20), we obtain 

ES1

[
D2(β̂) |S2

]
≈

1
A2

∑

i∈In

∑

j∈In

(
λ⋆(ui) − R⋆(β)z(ui)

π(ui)

)(
λ⋆( uj

)
− R⋆(β)z

(
uj
)

π
(
uj
)

)

+
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∑

i∈In

∑

j∈In

(
d1,k(ui) − z(ui)d2,k

/
A

π(ui)

)(
d1,l
(
uj
)
− z
(
uj
)
d2,l
/

A
π
(
uj
)

)

=
(

R̂
⋆
0 (β) − R⋆(β)

)2

+
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∑

i∈In

∑

j∈In

(
d1,k(ui) − z(ui)d2,k

/
A

π(ui)

)(
d1,l
(
uj
)
− z
(
uj
)
d2,l
/

A
π
(
uj
)

)

.

This, together with (A.16), gives 

VarS1 (D(β̂) |S2) ≈
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∑

i∈In

(
d1,k(ui) − z(ui)d2,k

/
A

π(ui)

)
∑

j∈In

(
d1,l
(
uj
)
− z
(
uj
)
d2,l
/

A
π
(
uj
)

)

=
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∑

i∈In

1
π(ui)

2

(

d1,k(ui) − z(ui)d2,k
1
A

)(

d1,l(ui) − z(ui)d2,l
1
A

)

+
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∑

i∈In

∑

j∈Jn,i

1
π(ui)π

(
uj
)

(

d1,k(ui) − z(ui)d2,k
1
A

)(

d1,l
(
uj
)
− z
(
uj
)
d2,l

1
A

)

.

It follows that 

ES2 [VarS1 (D(β̂) |S2) ] ≈
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∫

U•

1
π(u)

(

d1,k(u) − z(u)d2,k
1
A

)(

d1,l(u) − z(u)d2,l
1
A

)

du

+
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∫

U•

∫

U•

π(u, u)′

π(u)π(u′)

(

d1,k(u) − z(u)d2,k
1
A

)(

d1,l(u′) − z(u′)d2,l
1
A

)

dudu′.

(A.21)  

If we put (A.17) and (A.21) together, we obtain 

Var(D(β̂) ) = VarS2 [ES1 (D(β̂) |S2) ] + ES2 [VarS1 (D(β̂) |S2) ]

≈
1

2A2

∫

U•

∫

U•

Δ
(
uiuj

)
(

λ⋆(u) − R⋆(β)z(u)
π(u) −

λ⋆(u’) − R⋆(β)z(u’)

π(u’)

)2

dudu’

+
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∫

U•

1
π(u)

(

d1,k(u) − z(u)d2,k
1
A

)(

d1,l(u) − z(u)d2,l
1
A

)

du

+
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∫

U•

∫

U•

π(uu’)

π(u)π(u’)

(

d1,k(u) − z(u)d2,k
1
A

)(

d1,l(u’) − z(u’)d2,l
1
A

)

dudu’.

(A.22)  

Furthermore, 

Cov(D(β̂) ,D*(β̂) ) = CovS2 [ES1 (D(β̂) |S2) ,ES1 (D*(β̂) |S2) ]+ ES2 [CovS1 (D(β̂) ,D*(β̂) |S2) ].

From earlier calculations, we know that ES1 (D(β̂) |S2) ≈ R̂
⋆
0 (β) − R⋆(β) and ES1 (D*(β̂) |S2) ≈ 0, and thus CovS2 [ES1 (D(β̂) |S2) ,ES1 (D*(β̂) |S2) ] ≈ 0. In 

addition, using (A.16), 

CovS1 (D(β̂) ,D*(β̂) |S2) ≈ ES1 (D(β̂)D*(β̂) |S2) = ES1 (D(β̂)R⋆(β̂) |S2) − R⋆(β)ES1 (D(β̂) |S2)

≈ ES1 (D(β̂)R⋆(β̂) |S2) − R⋆(β)
(

R̂
⋆
0 (β) − R⋆(β)

)

and, from (A.12) and (A.20), 
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ES1 (D(β̂)R⋆(β̂) |S2) =
1
A

ES1

(
∑

i∈In

λ̂⋆(ui)R⋆(β̂) − (R⋆(β̂) )2z(ui)

π(ui)

⃒
⃒
⃒
⃒
⃒
S2

)

≈ R⋆(β)
1
A
∑

i∈In

λ⋆(ui) − R⋆(β)z(ui)

π(ui)

+
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∑

i∈In

1
π(ui)

d1,k(ui)d2,l

−
1
A3

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∑

i∈In

z(ui)

π(ui)
d2,kd2,l.

As a consequence, 

Cov(D(β̂) ,D*(β̂) ) ≈ ES2

(

R⋆(β)
(

R̂
⋆
0 (β) − R⋆(β)

)
+

1
A2

∑q

k=1

∑q

l=1
CovS1

(

β̂k, β̂l

)
∑

i∈In

1
π(ui)

d1,k(ui)d2,l

−
1
A3

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∑

i∈In

z(ui)

π(ui)
d2,kd2,l − R⋆(β)

(
R̂

⋆
0 (β) − R⋆(β)

)
)

=
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)ES2

(
∑

i∈In

1
π(ui)

d1,k(ui)d2,l

)

−
1
A3

∑p

k=1

∑p

l=1
CovS1 (β̂k, β̂l)ES2

(
∑

i∈In

z(ui)

π(ui)
d2,kd2,l

)

=
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)d2,l

∫

U•

d1,k(u)du −
1
A3

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)d2,kd2,l

∫

U
z(u)du

=
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)d2,l

∫

U•

d1,k(u)du −
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)d2,kd2,l. (A.23)

Finally, putting (A.22), (A.14) and (A.23) together, 

Var
(

R̂
⋆
0 (β̂) − R⋆(β)

)
= Var(D(β̂) ) + Var(D*(β̂) ) + 2 Cov(D(β̂) ,D*(β̂) )

≈
1

2 A2

∫

U•

∫

U•

Δ
(
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By using Theorem 1 and the variance estimator based on the Sen-Yates-Grundy formula in Cordy (1993), this variance can be estimated by 
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2Â2

∑

i∈In

∑

j∈Jn,i

Δ
(
ui, uj

)

π
(
ui, uj

)

(
λ̂⋆(ui) − R̂⋆(β̂)z(ui)

π(ui)
−

λ̂⋆( uj
)
− R̂⋆(β̂)z

(
uj
)

π
(
uj
)

)2

+
1
Â2
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Â2

∑q

k=1

∑q

l=1
ĈovS1 (β̂k, β̂l)d̂2,k d̂2,l

=
1

2Â2
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Â2

∑q

k=1

∑q

l=1
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Â
π
(
uj
)

+
2
Â2
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where d̂1,k and d̂2,k are as defined in (21). 

L. Gozé et al.                                                                                                                                                                                                                                    



Ecological Informatics 80 (2024) 102377

15

Appendix B. Case with divided plots 

It can happen that sample plots are divided into several parts, for example if one part of the plot is in forests and other parts are in other landscape 
categories, or if the plot overlaps borders between different regions, strata or forest stands (for example in the Swedish NFI, Anon. 2014). In such cases, 
the covariate information is not the same in different parts of the plot. Let us consider a case where we want to study expected plant densities in forests, 
and consider a particular plot C(ui). Then let Iu be equal to 1 if u is in a forested area in U, and 0 otherwise. If the plot is divided and no part of the plot is 
in a forested area in U, 

λ⋆(ui) =

∫

C(ui)

λβ(u)Iu

au
du = 0 and λ̂⋆(ui) = 0. (B.1)  

If only one part of the plot is in a forested area in U, and if we denote the area of this part by a(s)
i , 

λ⋆(ui) =

∫

C(ui)

λβ(u)Iu

au
du = λβ(u′

i)
a(s)

i

a
and λ̂⋆(ui) = λβ̂(u

′
i)

a(s)
i

a
, (B.2)  

where λβ̂(ui) = exp
(

β̂Tx(ui)
)
= exp

(
β̂Txi

)
and u′

i is an arbitrary point in the forested part of C(ui) ∩ U. If C(ui) has two parts that are in forests within U 

(with areas a(s1)
i and a(s2)

i respectively), then 

λ⋆(ui) = λβ(u′
i)

a(s1)
i

a
+ λβ(u″

i)
a(s2)

i

a
and λ̂⋆(ui) = λβ̂(u

′
i)

a(s1)
i

a
+ λβ̂(u

″
i)

a(s2)
i

a
(B.3)  

where u′
i is an arbitrary point in the first forest part of C(ui) ∩ U and u″

i is an arbitrary point in the second forest part of C(ui) ∩ U. And so on with three 
or more forest parts. Thus, the change of expression of ̂λ⋆(ui) will imply changes when applying formulas (16) and (A.24) for estimating the expected 
density and its variance estimator. Similar changes need to be done in the cluster sampling case presented in Section 2.5. 

Appendix C. Details of the proposed goodness-of-fit test 

Assume that there are two disjoint vegetation plots, Ai1 and Ai2, contained in each (main) plot i, where all Aij are of size aA, i = 1,…, n. Each 
vegetation plot Ai1 and Ai2 in a pair is separated by the same distance d. In each Aij, the presence or absence of the plant species of interest is registered. 
Let Mi be the number of plants in plot Ai, i = 1,…,n. Let Yij be 1 if presence in Aij, and 0 otherwise, i = 1,…,n, j = 1,2. In our case, the Mi are not 
observed, contrary to the Yij, hence the necessity to develop a test based on the latter. Based on the sample of Yij data and corresponding covariate data 
xi (assumed to be fixed in plot i), an estimator β̂ of the parameter vector β is obtained using a binary regression with a complementary log-log link 
function (5). Let Yi be 1 if there is at least one point in the union of Ai1 and Ai2, and 0 otherwise. Based on a binary regression with a complementary 
log-log link function, offset log(2aA), and the data {Yi, xi}, i = 1,…,n, another estimator of β is constructed, denoted by β̃ . 

If the inhomogeneous Poisson point process model assumption is correct, then so is the model for the Yij. The reverse is not necessarily true. 
However, if the model for the Yij is incorrect, then so is the Poisson model for the Mi. 

If the inhomogeneus Poisson point process model is correct, Yi1 and Yi2 will be independent conditional on the covariates, and binary regression 
model (5) implies the binary regression model based on the data {Yi,xi}. In this case, β̂ and ̃β will be close for large n. On the other hand, if Yi1 and Yi2 

are not independent conditional on the covariates, then this implication will not hold and ̂β and ̃β will likely differ even if n is large. Based on this idea, 
Ekström et al. (Unpublished results) suggested the test statistic 

S = ( β̂ − β̃)T Σ̂ − 1(β̂ − β̃), (C.1)  

where Σ̂ is an estimate of the covariance matrix of β̂ − β̃ given by 

Σ̂ = n
(

Î
− 1
1 (β̂ )+ Î

− 1
2 ( β̂) − 2 Î

− 1
1 ( β̂ )Ĉ (β̂ )Î

− 1
2 ( β̂ )

)
,

where 

Î1(β) =
1
n
∑n

i=1

2
[g′(qi1(β) ) ]2ti1(β)

xi xT
i ,

Î2(β) =
1
n
∑n

i=1

1
[g′(qi(β) ) ]2ti(β)

xi xT
i ,

Ĉ (β) =
2
n
∑n

i=1

1
g′(qi(β) )ti(β)

1
g′(qi1(β) )ti1(β)

qi1(β)(1 − qi(β) )xixT
i ,

qij(β) = 1 − exp
(
− aAexp

(
βT xi

) )
, tij(β) = qij

(
1 − qij

)
, qi(β) = 1 − exp

(
− 2aAexp

(
βTxi

) )
, ti(β) = qi(1 − qi), and g(p) = log( − log(1 − p) ). 

If the Poisson model is valid, S is asymptotically distributed according to a chi-squared distribution with q degrees of freedom, where q is the length 
of β. The binary model (5),and hence the Poisson model, is rejected if S is improbably large according to this chi-squared distribution. For small or 
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moderately large sample sizes, a better option might be to use parametric bootstrap (Davison and Hinkley, 1997). The bootstrap algorithm for 
computing the p-value of the test is given below. 

For b = 1,…,B, where B is a large integer:  

i) For Aij, generate points according to a Poisson point process with log intensity logλ̂i = β̂T xi, i = 1,…,n, j = 1,2.  
ii) Based on the point data obtained in i), let Y*

ijb be 1 if presence in Aij and 0 otherwise, and let Y*
ib = max

{
Y*

i1b,Y
*
i2b
}
, i = 1,…,n.  

iii) Let S* be defined as in (C.1), but based on 
{

Y*
ijb

}
and 

{
Y*

ib
}

rather than 
{
Yij
}

and {Yi}. 

The p-value of the test is given by the proportion of times S* is larger than or equal to S. 
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