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Abstract Allopolyploidization is a frequent evolutionary transition in plants that combines whole- 
genome duplication (WGD) and interspecific hybridization. The genome of an allopolyploid species 
results from initial interactions between parental genomes and long- term evolution. Distinguishing 
the contributions of these two phases is essential to understanding the evolutionary trajectory of 
allopolyploid species. Here, we compared phenotypic and transcriptomic changes in natural and 
resynthesized Capsella allotetraploids with their diploid parental species. We focused on pheno-
typic traits associated with the selfing syndrome and on transcription- level phenomena such as 
expression- level dominance (ELD), transgressive expression (TRE), and homoeolog expression bias 
(HEB). We found that selfing syndrome, high pollen, and seed quality in natural allotetraploids likely 
resulted from long- term evolution. Similarly, TRE and most down- regulated ELD were only found in 
natural allopolyploids. Natural allotetraploids also had more ELD toward the self- fertilizing parental 
species than resynthesized allotetraploids, mirroring the establishment of the selfing syndrome. 
However, short- term changes mattered, and 40% of the cases of ELD in natural allotetraploids were 
already observed in resynthesized allotetraploids. Resynthesized allotetraploids showed striking vari-
ation of HEB among chromosomes and individuals. Homoeologous synapsis was its primary source 
and may still be a source of genetic variation in natural allotetraploids. In conclusion, both short- and 
long- term mechanisms contributed to transcriptomic and phenotypic changes in natural allotetra-
ploids. However, the initial gene expression changes were largely reshaped during long- term evolu-
tion leading to further morphological changes.

eLife assessment
This important study offers new insight into how floral and reproductive phenotypes and gene 
expression evolve in allopolyploids. The authors marshal compelling evidence, using well- 
constructed genetic lines, RNA sequencing, and phenotypic analyses to distinguish the roles of 
hybridization, whole genome duplication, and subsequent evolution in phenotypes associated with 
the selfing syndrome and in gene expression. The work will be of interest to researchers working in 
plant speciation and genomics, as well as those more broadly interested in the effects of genome 
copy number on phenotypic and expression evolution.

Introduction
Allopolyploidization is the coupling of whole genome duplication and interspecific hybridization, 
resulting in organisms possessing two or more diverged genomes. This intriguing evolutionary 
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transition is widespread in nature (Albertin and Marullo, 2012; Barker et al., 2016) and is of agricul-
tural importance (Behling et al., 2020). Allopolyploidization is expected to have both short- term and 
long- term consequences: not only can the merging of divergent genomes itself be seen as a macro-
mutation but also it triggers subsequent genomic changes over distinct time scales.

Right after allopolyploidization or within a few generations, various genomic and transcriptomic 
changes can be caused by a series of mechanisms, including DNA methylation repatterning (Edger 
et al., 2017; Li et al., 2019), reactivation of transposable elements (TE, reviewed in Vicient and Casa-
cuberta, 2017), chromosome rearrangements, including homoeologous exchanges (Parisod et al., 
2009; Szadkowski et al., 2010; Lashermes et al., 2014; Xiong et al., 2021) and intergenomic inter-
actions between regulatory elements (Shi et al., 2012; Hu and Wendel, 2019). These multifaceted 
effects were initially proposed to be dramatic but are likely smoother and more subtle than initially 
thought. The fact remains that these short- term mechanisms add further complexity to the genetic 
variation gathered from parental lineages. Genetic changes can reinforce some initial epigenetic 
changes, leading to long- term heritable consequences in established allopolyploids. For instance, an 
epigenetically downregulated/silenced gene copy is more likely to degenerate than the other copy 
due to weaker purifying selection.

Apart from instant genomic changes, allopolyploidization also alters multiple genetic attributes, 
impacting the long- term evolution of allopolyploid genomes. First, as a minority cytotype, newly 
formed allopolyploid populations often experience a bottleneck (Levin, 1975; Novikova et al., 2017; 
Griffiths et  al., 2019). This bottleneck reduces genetic variation within allopolyploid species and 
favors the fixation of neutral or slightly deleterious mutations (Novikova et al., 2017). Second, with an 
extra genome, allotetraploid species could undergo a period of relaxed purifying selection (Lynch and 
Conery, 2000; Douglas et al., 2015; Paape et al., 2018). Relaxed selection also accelerates the accu-
mulation of deleterious mutations on allopolyploid genomes. At the same time, it facilitates neofunc-
tionalization by allowing functional mutations to accumulate in one paralog while maintaining the 
ancestral function through the second (Ohno, 1970). Third, allopolyploidization immediately distorts 
both the relative and absolute dosage of gene product, which further alters physiological balance and 
efficiency (Anneberg and Segraves, 2020; Yu et al., 2021; Domínguez- Delgado et al., 2021). In 
the long term, both relative and absolute dosages of gene expression of allopolyploid genomes are 
expected to be under selection (Bekaert et al., 2011), and gradually adapt to a polyploid or hybrid 
state (Bomblies, 2020). Under the joint action of these forces, allopolyploid subgenomes are further 
co- adapted and degenerated, and subgenomes are often biasedly retained, termed biased fraction-
ation (Schnable et al., 2011; Tang et al., 2012; Renny- Byfield et al., 2015; Wendel et al., 2018).

Both short- term reactions and long- term evolution can generate novel evolutionary opportunities 
and potentially allow allopolyploid lineages to have advantages in adaptation to novel environments 
(Baniaga et al., 2020). In established allopolyploids, phenomena caused by long- term evolutionary 
forces can be confounded by traces of short- term genomic changes. The relative contributions of 
short- and long- term mechanisms to genomic changes in allopolyploids can be assessed by comparing 
established natural allopolyploids with resynthesized allopolyploids (e.g. Wang et al., 2006; Wang 
et al., 2016; Buggs et al., 2011; Yoo et al., 2013; Zhang et al., 2016b).

Variation and novelties in gene expression caused by allopolyploidization are often assessed by 
homoeolog expression bias (HEB) and non- additive gene expression (Grover et al., 2012; Yoo et al., 
2013; Zhang et al., 2016a; Wu et al., 2018; Shan et al., 2020). HEB measures the separate contri-
butions of gene copies from different parental species (homoeologs) and non- additive gene expres-
sion measures the deviation of the total expression of both homoeologs from an intermediate value 
between parental species. Non- additive patterns of gene expressions are further classified as expres-
sion level dominance (ELD) and transgressive expression (TRE). ELD means that the total expression of 
both homoeologs is similar to the expression level of only one parental species (Grover et al., 2012), 
but differs from the expression level of the other. TRE means that gene expression in allopolyploids is 
higher or lower than in both parental species. Variation of HEB and non- additive gene expression in 
allopolyploids can be triggered by several mechanisms in the early generations of the new allopoly-
ploid; or alternatively, they may arise during long- term evolution due to either neutral or selective 
processes.

Capsella bursa- pastoris is a natural allotetraploid plant species which originated about 100,000 years 
ago (Douglas et al., 2015). Two diploid species, C. orientalis and C. grandiflora, are extant relatives of 
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the maternal and paternal progenitors (hereinafter referred to as parental species) of C. bursa- pastoris, 
respectively (Hurka et al., 2012; Douglas et al., 2015). C. grandiflora is self- incompatible (SI), but 
C. orientalis was already self- compatible (SC) before the formation of C. bursa- pastoris (Bachmann 
et al., 2019). C. bursa- pastoris is also a self- compatible species, with typical selfing- syndrome charac-
teristics. In particular, it has smaller petals, fewer pollen grains, and shorter styles than the outcrossing 
C. grandiflora (Neuffer and Paetsch, 2013). Yet, it remains unclear whether the inconspicuous flower 
phenotypes of C. bursa- pastoris only reflect the dominance relationship of the parental alleles or if 
these traits have also evolved post- allopolyploidization.

Natural C. bursa- pastoris exhibits disomic inheritance (Hurka et  al., 1989; Roux and Pannell, 
2015), with which chromosomes only recombine and segregate with their homologs during meiosis, 
but not with homoeologs. However, the strictness of disomic inheritance in C. bursa- pastoris has not 
been tested. In general, the two subgenomes of C. bursa- pastoris are still well- retained and func-
tional. There is no sign of large- scale gene loss or silencing, although purifying selection has been 
weaker genome- wide (Douglas et al., 2015), and the C. orientalis- derived subgenome (Cbp_co) has 
accumulated more putatively deleterious mutations than the C. grandiflora- derived subgenome (Cbp_
cg), both before and after the formation of C. bursa- pastoris (Douglas et al., 2015; Kryvokhyzha 
et al., 2019a). The majority of genes are expressed from both homoeologs, and on average there is 
only a slight HEB toward Cbp_cg homoeologs (Douglas et al., 2015; Kryvokhyzha et al., 2019a). 
Most genes are additively expressed in natural C. bursa- pastoris, but ELD and transgressive gene 
expression have also been observed (Kryvokhyzha et al., 2019a). Despite the moderate HEB and 
non- additive expression, gene expression in C. bursa- pastoris showed some striking tissue- specific 
features (Kryvokhyzha et al., 2019a). In flowers, gene expression levels in C. bursa- pastoris resem-
bled those in C. orientalis, while in leaves and roots, gene expression levels were more similar to those 
in C. grandiflora.

In contrast to the drastic genomic or transcriptomic changes observed in allopolyploid wheat 
(Zhang et  al., 2016a), Brassica (Szadkowski et  al., 2010; Lloyd et  al., 2018), and Tragopogon 
(Chester et al., 2012), natural C. bursa- pastoris represents another paradigm where established allo-
polyploid species show only mild genomic changes and expression bias. This contrast raises ques-
tions. Was the genome of natural C. bursa- pastoris less affected by putative short- term mechanisms, 
or was it the result of 100,000  years’ evolution, which filtered out or compensated for the initial 
drastic changes? What are the relative strengths of short- term mechanisms and long- term evolution in 
shaping genomic and phenotypic variation in allopolyploids?

Resynthesized allopolyploids are the closest approximation to the early stage of natural allopoly-
ploids. They provide a reference point for separating the short- term effects of allopolyploidization 
from long- term evolutionary changes. The present study builds upon Duan et al., 2023, which showed 
that hybridization played a much larger role than whole genome doubling during the creation of 
resynthesized polyploids in the Capsella genus. Here, we compared transcriptomes and phenotypes 
of resynthesized C. bursa- pastoris- like allotetraploids with natural C. bursa- pastoris and its two diploid 
progenitors. We focused on teasing apart the contributions from short- and long- term processes to (1) 
phenotypes, (2) non- additive gene expression, and (3) HEB in Capsella allotetraploids.

Results
The selfing syndrome was observed in natural C. bursa-pastoris but not 
in resynthesized allotetraploids
The breakdown of self- incompatibility in allotetraploid Capsella can directly result from hybridizing 
with the self- fertilizing species (Bachmann et al., 2021; Duan et al., 2023). We explored to what 
extent the development of a selfing syndrome was instantly achieved after allopolyploidization or, 
instead, developed later on by comparing phenotypes of resynthesized allotetraploids (groups Sd 
and Sh), natural C. bursa- pastoris (Cbp) and the diploid parental species, C. grandiflora (Cg2) and C. 
orientalis (Co2). The resynthesized allotetraploids were generated with individuals from one popula-
tion of each diploid parental species (Figure 1), and the Sd (‘WGD- first‘) and Sh (‘hybridization- first’) 
groups only differed in the order of WGD and hybridization (Duan et  al., 2023). There were six 
‘lines’ in each of the five plant groups. For the Sd and Sh groups, each line represented an indepen-
dent allopolyploidization event, while the six lines of natural C. bursa- pastoris were from six different 
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populations (Figure 1c and Figure 1—source data 1), representing three major genetic clusters of 
the wild C. bursa- pastoris (Kryvokhyzha et al., 2016). For diploid parental groups, a line referred to 
a full- sibling family resulting from self- fertilization (Co2) or one controlled cross (Cg2). Phenotypes 
of the five groups were measured in a growth chamber on about 36 individuals per plant group (6 
individuals × 6 lines).

Figure 1. Plant material used in the present study. (a) Five groups of Capsella plants. Diploid species (Co2 and Cg2 groups) and the second generation 
of resynthesized allotetraploids (Sd and Sh groups) were from Duan et al., 2023. Samples of natural allotetraploids, C. bursa- pastoris, were added to 
the present study. (b) Phylogenetic relationship of the three natural species used in the present study, modified from Douglas et al., 2015; C. bursa- 
pastoris originated from the hybridization between the ancestral population of C. orientalis and the (C. grandiflora + C. rubella) lineage, and C. rubella 
were omitted from the figure; kya: thousand years ago. (c) Geographic origin of the Capsella samples.

The online version of this article includes the following source data for figure 1:

Source data 1. Capsella plants used in the present study.

https://doi.org/10.7554/eLife.88398


 Research article      Evolutionary Biology | Genetics and Genomics

Duan et al. eLife 2023;12:RP88398. DOI: https://doi.org/10.7554/eLife.88398  5 of 28

Figure 2. Phenotypic traits of the five Capsella groups. Co2: diploid C. orientalis; Cg2: diploid C. grandiflora; Sd: whole- genome- duplication- first 
resynthesized allotetraploids; Sh: hybridization- first resynthesized allotetraploids; Cbp: natural allotetraploid C. bursa- pastoris. The measured traits 
were (a) petal length, (b) sepal length, (c) pistil length, (d) stamen length, (e) petal width, (f) sepal length, (g) pistil width, (h) length of the longest 
stem, (i) number of pollen grains per flower, (j) number of seeds in ten fruits, (k) number of days from germination to the opening of the first flower, 
(l) proportion of viable pollen grains, and (m) proportion of normal seeds in ten fruits. Sample sizes are shown above the groups.

The online version of this article includes the following source data for figure 2:

Source data 1. Effects of plant group and positions (tray ID) on phenotypes.

https://doi.org/10.7554/eLife.88398
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Resynthesized and natural allotetraploids had distinct floral morphologies (Figure 2a–g). Indeed, 
natural allotetraploids had significantly shorter and narrower petals, sepals and pistils and shorter 
stamina than resynthesized allotetraploids (one- way ANOVA, F4,160 > 78 and p<0.001 in all seven tests; 
Tukey’s HSD test, α=0.01). Pollen and seed production was also affected. Natural allotetraploids had 
fewer pollen grains per flower (Figure 2i). While the number of pollen grains in resynthesized allo-
tetraploids was intermediate between the two parental species, the number of pollen grains of the 
natural allotetraploid group was now similar to that of the Co2 group (one- way ANOVA, F4,137 = 164.6, 
p<0.001; Tukey’s HSD test, α=0.01). Moreover, the number of seeds per fruit in natural allotetraploids 
was much larger than in resynthesized allotetraploids. The resynthesized allotetraploid groups had a 
similar number of seeds in 10 fruits to that of the Cg2 group, whereas the number of seeds in 10 fruits 
in the natural allotetraploid group was even higher than that of the Co2 group (Figure 2j; one- way 
ANOVA, F4,146 = 152.5, p<0.001; Tukey’s HSD test, α=0.01).

The architecture and phenology of the whole plant were affected too. The stem length of natural 
Cbp was shorter than in resynthesized allotetraploids but was similar to the stem length of the Co2 
group (Figure 2h; one- way ANOVA, F4,166 = 84.5, p<0.001; Tukey’s HSD test, α=0.01). Finally, plants 
of the Cbp group flowered earlier than those of the Sd group, but at a similar time as those of the Sh 
group (Figure 2k; one- way ANOVA with hc3 White’s correction, F4,165 = 49.2, p<0.001; Tukey’s HSD 
test, α=0.01).

Pollen viability and seed quality improved in natural Capsella 
allotetraploids
Pollen viability and the proportion of normal seeds were compared between resynthesized and 
natural allotetraploids. For both traits, we observed a decrease in pollen viability in resynthesized 
allotetraploids followed by recovery in natural Cbp. Both Sd and Sh groups had lower proportions 
of viable pollen than the diploid parental species, but the proportion of viable pollen in natural Cbp 
was similar to that of the diploid parental species (Figure  2l; GLM, quasi binomial, F4,137 = 24.4, 
p<0.001; Tukey’s HSD test, α=0.01). The resynthesized allotetraploids generated a higher proportion 
of abnormal seeds than the three natural species (Figure  2m; GLM, quasi binomial, F4,146 = 59.2, 
p<0.001; Tukey’s HSD test, α=0.01). The average percentage of normal seeds was 69.6±4.3% in the 
Sd group and 77.5±2.2% in the Sh group. In contrast, the natural Cbp had almost no abnormal seeds, 
with a percentage of normal seeds of 99.6±0.8%.

A two-step evolution of the global expression pattern of natural 
allopolyploid Cbp
To compare the gene expression pattern of the five plant groups, RNA- sequencing was conducted 
for one individual per line and six lines per group, using young inflorescences (flowers) and leaves. 
Expression levels were determined for 21,937 genes in flower samples and 18,999 genes in leaf 
samples after excluding genes with CPM >1 in less than two samples. The overall gene expression 
pattern was visualized with multi- dimensional scaling (MDS) analysis (Figure 3a and b). For unphased 
gene expression, the resynthesized allotetraploids lay between the diploid parental species in both 
flowers and leaves. Natural Cbp samples were also intermediate between parental species in the first 
dimension but were far from the resynthesized allotetraploids in the other dimension, showing the 
effect of long- term evolution in Cbp and possibly also the divergence between extant diploid species 
and the real progenitors.

The expression levels of separate homoeologs in allotetraploids were determined with the diag-
nostic SNPs between the two diploid species. For the Sd, Sh, and Cbp groups, 52.8%, 53.7%, and 
44.7% of the mapped reads could be assigned to one of the homoeologs, respectively. The expres-
sion pattern of each allotetraploid subgenome was more similar to the corresponding diploid progen-
itor (Figure 3c and d). The pattern of expression of resynthesized allotetraploids was intermediate 
between those of diploid progenitors and natural Cbp.

Differential expression analysis was performed among the five plant groups, using the down- 
sampled unphased gene expression data. With a threshold of FC >2 and FDR <0.05, no significant 
differentially expressed genes (DEGs) were found between the two resynthesized allotetraploid 
groups, while 311–2888 DEGs were revealed in other group contrasts (Figure 3—figure supplements 
1 and 2). There are two salient features. First, compared to either diploid progenitor, most DEGs in 
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both resynthesized and natural allotetraploid groups were up- regulated (Figure 3—figure supple-
ment 2). The proportion of down- regulated DEGs increased, nevertheless, in natural allotetraploids. 
Second, both resynthesized allotetraploids, Sd and Sh, have much more DEG with Co2 than with Cg2. 
However, this is no longer the case in Cbp where the two comparisons yielded similar results.

Although we could not make a clear expectation for gene ontology (GO) terms that would be 
overrepresented in DEGs between resynthesized and natural allopolyploids, we are not the only study 

Figure 3. Multi- dimensional scaling (MDS) analyses of gene or homoeolog expression in two tissues. Down- sampled gene expressions were used to 
compare gene expression patterns of the five plant groups in either flowers (a) or leaves (b). The five groups of Capsella plants are: diploid parental 
species C. grandiflora (Cg2) and C. orientalis (Co2), hybridization- first (Sh) and whole- genome- duplication- first (Sd) resynthesized allotetraploids, and 
natural allotetraploid C. bursa- pastoris (Cbp). Separated homoeolog expressions in allotetraploids were then compared with rescaled gene expression 
of diploid groups in both flowers (c) and leaves (d). All the MDS analyses used genes with count- per- million (CPM) >1 in at least two samples, and 
expression levels were normalized with the trimmed mean of M- values (TMM) method.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Differentially expressed genes (DEGs) in pair- wise contrasts among the five Capsella plant groups in flowers and leaves.

Figure supplement 2. Summary of differential expression analyses of allotetraploid groups.

https://doi.org/10.7554/eLife.88398
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that compared newly resynthesized and established allopolyploids, and GO terms that were repeat-
edly revealed by exploratory analysis may give a hint for future studies. For this reason, we further 
performed a GO enrichment analysis, using genes that were differentially expressed in both Cbp- Sd 
and Cbp- Sh contrasts as the test set, and all expressed genes with GO annotations as the background 
set. In flowers or leaves, the top 10 most- enriched GO terms for biological processes were related to 
proteolysis, xenobiotic transport, regulation of translational fidelity, telomere maintenance and organi-
zation, DNA geometric change and duplex unwinding, cellular response to toxic substance, aminoacy-
lation, peptidyl- lysine methylation, and heterochromatin formation and organization (Supplementary 
file 3). But after adjusting p- values with the Benjamini- Hochberg procedure, only GO term proteolysis 
(GO:0006508) was significantly overrepresented in DEGs between resynthesized and natural allotet-
raploids in leaves (Fisher’s exact test, adjusted p- value = 0.0175).

Both short- and long-term mechanisms contributed to expression level 
dominance in natural Cbp, but transgressive expressions were mainly 
from long-term evolution
Non- additive gene expression shared by natural allotetraploids may be triggered right after allo-
polyploidization by short- term deterministic mechanisms, such as intergenomic interactions of regu-
latory elements. Alternatively, non- additive expression may have been caused by mechanisms with 
stochastic effects or arose later during long- term evolution. We explored to what extent the non- 
additive expression shared by natural allotetraploids could reflect short- term deterministic mecha-
nisms. By comparing gene expression levels in allotetraploids and diploid species, 21,647 genes in 
flowers and 18,758 genes in leaves were classified into one of the 10 expression categories, using the 
results of DE analysis on unphased gene expression (FC >2 and FDR <0.05). We focused on complete 
ELD and TREs: complete ELD is obtained when the gene expression level in an allopolyploid group 
is similar to that in one diploid group but not to the expression in the other diploid group, and TRE 
is detected when the gene expression level in an allopolyploid group is either higher or lower than in 
both diploid groups.

The percentage of genes showing complete ELD was altogether limited but doubled in natural 
allotetraploids relative to resynthesized allotetraploids (5.5% of genes in resynthesized allotetraploids 
and 10.2% in natural allotetraploids. Figure 4a and b and Figure 4—source data 1). Genes with ELD 
and the directions of ELD were highly shared between the two resynthesized allotetraploid groups 
(Figure  4c, Figure  4—figure supplement 1). The majority of these shared ELD were retained in 
natural allotetraploids (63.3% in flowers and 72.2% in leaves), suggesting that short- term deterministic 
mechanism contributed to ELD in natural allotetraploids. However, Cbp- specific ELD was also abun-
dant, comprising more than half of the cases found in natural allotetraploids (56.6% in flowers and 
60.8% in leaves), thereby showing the effects of long- term evolution.

The direction of ELD shifted between the resynthesized and natural allotetraploids (Figure 4a and 
b and Figure 4—source data 1). In resynthesized allotetraploids, most cases of ELD were up- reg-
ulated, and the number of genes with ELD toward C. grandiflora (Cg- ELD) was about twice of that 
toward C. orientalis (Co- ELD). Natural allotetraploids still had more up- regulated ELD than down- 
regulated ones, but the proportion of down- regulated cases increased. The proportion of Co- ELD had 
also increased in natural allotetraploids. In flowers, natural allotetraploids had more Co- ELD (1101) 
than Cg- ELD (938), and the number of Cg- and Co- ELDs were similar in leaves (Cg- ELD: 854, Co- ELD: 
839).

Almost no TRE was found in resynthesized allotetraploids (less than five genes in either Sd or Sh 
group and in either tissue, Figure 4a and b, and Figure 4—source data 1). In contrast, about 1.3% of 
genes in Cbp showed TRE in both flowers and leaves.

Segregation and recombination of homoeologous chromosomes were a 
major source of homoeolog expression bias variation in resynthesized 
Capsella allotetraploids
HEB of genes in an allotetraploid individual was measured by the ratio of expression of the C. 
grandiflora- origin homoeolog (cg) to the total expression of both homoeologs (cg/(cg  +co)). To 
obtain a reliable gene expression ratio, lowly expressed genes (CPM(cg +co)<1 in any allotetraploid 

https://doi.org/10.7554/eLife.88398
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Figure 4. Additive and non- additive expression in allotetraploid groups. Sd: whole- genome- duplication- first resynthesized allotetraploids; Sh: 
hybridization- first resynthesized allotetraploids; Cbp: natural allotetraploid C. bursa- pastoris. (a) Number of genes that showed additive expression 
(ADD, including partial expression level dominance [ELD]), complete ELD, and transgressive expression (TRE) in each allotetraploid group. (b) Genes 
with complete ELD or TRE were further classified by whether they were up- or down- regulated in allotetraploids, and whether the expression level in 

Figure 4 continued on next page
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individual) were excluded from this analysis. Eventually, the homoeolog expression ratio was calcu-
lated for 18,255 genes in flowers, and 15,581 genes in leaves.

Overall, none of the three allotetraploid groups showed a strong average HEB. In flowers, the 
average HEB was 0.499±0.001, 0.531±0.001, and 0.475±0.001 for the Sd, Sh, and Cbp groups, 
respectively. In leaves, the average HEB was 0.504±0.001, 0.532±0.001, and 0.477 for the Sd, Sh, and 
Cbp groups. When averaged among individuals, the HEB of resynthesized allotetraploids had smaller 
gene- wise variation than that of the Cbp group (Levene’s test, p- value <0.001).

Among resynthesized allotetraploids, although the average homoeolog expression ratio was not 
systematically biased toward Cg or Co, HEB showed great variation among chromosomes and indi-
viduals (Figure 5a and b, Figure 5—figure supplements 1 and 2). The distribution of HEB in some 
chromosomes had peaks around 0, 0.25, 0.75, or 1, but the shape of the distribution was almost iden-
tical between flower and leaf samples. When HEB of genes was plotted along chromosomal positions, 
we found that the extra peaks in the distribution of HEB can be further explained by large genomic 
segments separated by a sudden change of average HEB (Figure 5c, Figure 5—figure supplements 
3–6). Altogether, the pattern suggested that some chromosomes or chromosomal regions in resyn-
thesized allotetraploids had an unbalanced number of cg- and co- homoeologs (not 2:2), which were 
likely caused by the segregation and recombination of homoeologous chromosomes. Both the segre-
gation and recombination of homoeologous chromosomes are outcomes of homoeologous synapsis 
(synapsis between homoeologous chromosomes during meiosis), which reflects polysomic or mixed 
inheritance in resynthesized allopolyploids. For short, we refer to both segregation and recombination 
of homoeologous chromosomes as homoeologous synapsis.

The effect of possessing an unbalanced number of homoeologs largely increased the variation of 
HEB in resynthesized allotetraploids. The breakpoint between segments with distinct average HEB 
and the copy number of cg- homoeolog on each segment were estimated with a five- state Hidden 
Markov Model (HMM), using HEB along chromosomes (Figure 5c, Figure 5—figure supplement 7). 
Among the 96 chromosome quartets (two pairs of homologous chromosomes) from the 12 resyn-
thesized allotetraploid individuals, only 39 chromosome quartets showed no sign of homoeologous 
synapsis, that is no breakpoint was identified and the estimated number of cg- homoeolog across the 
chromosome was two. On average 0.833±0.097 (mean ± se) breakpoint was identified for each chro-
mosome quartet, and 31.0% of genes were estimated to have different numbers of cg- and co- ho-
moeologs. Finally, for resynthesized allotetraploids, the estimated copy number of homoeologs was 
able to explain 48.4% and 46.8% of the variance of HEB in flowers and leaves, respectively (GLM with 
quasi- binomial error distribution, p<0.001 in both tissues).

In contrast to resynthesized allotetraploids, the distribution of HEB of natural Cbp was similar 
among individuals and chromosomes (Figure 5a and b, Figure 5—figure supplement 2), although 
the distribution of HEB of some chromosomes of Cbp also showed weak bumps around 0, 0.25, 0.75, 
or 1 (Figure 5b, Figure 5—figure supplement 2). We could not confidently estimate the number of 
homoeologs or the breakpoint of segments for Cbp with only RNA- sequencing data, as segments 
resulting from homoeologous exchanges could be shorter in natural Cbp, and the signals of copy 
number could be blurred by the variance of regulatory divergence. Nevertheless, the HMM segmen-
tation algorithm also identified some candidate segments of which the average HEB strongly devi-
ated from 0.5. Some candidate segments were only shared by individuals from the same population 
(Figure 6, Figure 6—figure supplements 1 and 2).

allotetraploids was similar to C. grandiflora (Cg- ELD) or C. orientalis (Co- ELD). (c) Venn diagram of genes with complete ELD of the three allotetraploid 
groups in flowers, separated by directions of ELD.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Additive and non- additive gene expression in allotetraploid groups.

Figure supplement 1. Genes showed expression level dominance (ELD) of the three allotetraploid groups in leaves.

Figure 4 continued
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Figure 5. Variation of homoeolog expression bias (HEB) of the three allotetraploid groups in flowers. Sd: whole- genome- duplication- first resynthesized 
allotetraploids; Sh: hybridization- first resynthesized allotetraploids; Cbp: natural allotetraploid C. bursa- pastoris. Gene- wise HEB was calculated 
as the expression level of cg- homoeolog divided by the total expression level of both cg- and co- homoeologs (cg/(cg +co)). For each individual, 
HEB was calculated for 18,255 genes, which had count- per- million>1 in all flower samples. The distribution of HEB was shown by (a) individuals and 
(b) chromosomes. (c) HEB was also plotted along chromosome positions to show the sudden change of average HEB between genomic blocks, taking 
individual Sd- 6–4 as an example. The number of cg- homoeologs at each gene estimated by the five- state Hidden Markov Model (HMM) was indicated 
by five colors. Dark green, light green, grey, light purple, and dark purple represent (0, 1, 2, 3, 4) cg- homoeologs and (4, 3, 2, 1, 0) co- homoeologs, 
respectively.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Distribution of gene homoeolog expression bias (HEB) by individuals.

Figure 5 continued on next page
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Most resynthesized allotetraploids had less homoeolog expression loss 
than natural Cbp, but with extreme outliers
Loss of homoeolog expression is a common phenomenon in allopolyploid species, which can be caused 
by homoeolog loss or silencing (Buggs et al., 2009; Cox et al., 2014; Lashermes et al., 2016). Loss of 
homoeolog expression may quickly arise after allopolyploidy, or alternatively, reflect a gradual biased 
gene fractionation during diploidization. We compared the extent of loss of homoeolog expression 
between resynthesized and natural Capsella allotetraploids, and among allotetraploid individuals.

The loss of homoeolog expression was identified from genes with medium to high expression levels 
in all individuals of the corresponding diploid species (Figure 7) to reduce noise from RNA- sequencing 
and phasing. On average, only 1.0% of these genes showed homoeolog- specific expression loss in 
natural Cbp. Most resynthesized allotetraploids have a lower level of homoeolog- specific expression 
loss than natural Cbp, but three individuals (Sd- 6–4, Sd- 8–5, and Sh- 5–5) showed an extremely high 
level of homoeolog expression loss. The striking homoeolog expression loss in these three resynthe-
sized allotetraploids was most likely caused by the segregation and recombination of homoeologous 
chromosomes, as the extreme HEB in the three outliers was restricted to chromosome 3, where the 
entire chromosome or a large chunk of the chromosome has only expression from one homoeolog 
(Figure 5b, Figure 5—figure supplements 3–6).

Expression level dominance is caused by different mechanisms in 
resynthesized and natural allotetraploids
As homoeologous synapsis seemed to be a major cause of HEB and homoeolog- specific expression 
loss in resynthesized allotetraploids, we assessed whether it could have also played a role in the 
evolution of ELD. To do so, we explored the mechanism of ELD in resynthesized allotetraploids by 
comparing the gene expression change of separate homoeologs relative to the corresponding gene 
in diploid groups (log2FC(cg/Cg2) and log2FC(co/Co2)) among non- additive gene expression cate-
gories (Figure 8).

For ELD in resynthesized allotetraploids, different non- exclusive short- term mechanisms would 
produce different patterns of average expression change of EL- dominant (homoeolog derived from 
the diploid progenitor to which the total expression of both homoeologs was similar) and EL- reces-
sive homoeologs (the opposite homoeolog), among genes with significant ELD: (i) If ELD was mainly 
caused by possessing more than two copies of the EL- dominant homoeolog (due to the segrega-
tion or recombination of homoeologous chromosomes), we would expect on average the expression 
of EL- dominant homoeolog to increase, and EL- recessive homoeolog to decrease, in both up- and 
down- regulated cases of ELD. (ii) If ELD was mainly caused by mechanisms with random effects, such 
as TE transposition, on average, there should be no large difference between the expression changes 
of EL- dominant and EL- recessive homoeologs. Because the occurrence and regulatory effects of new 
TE transpositions do not depend on the original relative expression level of the two homoeologs, 
that is the highly and lowly expressed homoeologs are equally likely to be up- or down- regulated by 
new TE transpositions. (iii) Predictions for new intergenomic interactions of regulatory elements can 
be complex, but under a simple scenario (Hu and Wendel, 2019), ELD may be caused by divergent 
trans- acting factors. In allopolyploids, stronger trans- acting factors act on the cis- regulatory elements 
of the opposite homoeolog, causing a similar regulatory effect if transcription rate were not limited by 

Figure supplement 2. Distribution of gene homoeolog expression bias (HEB) by chromosomes in leaves.

Figure supplement 3. Homoeolog expression bias along chromosome positions in the inflorescence sample of the Sd group (‘Whole- genome- 
duplication- first’” resynthesized Capsella allotetraploids).

Figure supplement 4. Homoeolog expression bias along chromosome positions in the leaf sample of the Sd group (‘Whole- genome- duplication- first’ 
resynthesized Capsella allotetraploids).

Figure supplement 5. Homoeolog expression bias along chromosome positions in the inflorescence sample of the Sh group (‘hybridization- first’ 
resynthesized Capsella allotetraploids).

Figure supplement 6. Homoeolog expression bias along chromosome positions in the leaf sample of the Sh group (‘hybridization- first’ resynthesized 
Capsella allotetraploids).

Figure supplement 7. Estimated number of breakpoints per chromosome quartet in resynthesized allotetraploids.

Figure 5 continued
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Figure 6. Homoeolog expression bias (cg/(cg +co)) along chromosomes of natural allotetraploid C. bursa- pastoris in flowers, taking four pairs of 
chromosome quartets with typical patterns as an example. The number of cg- homoeologs estimated by the five- state Hidden Markov Model was 
indicated by five colors. The two chromosome quartets in the same row are from the two individuals of the same major genetic cluster of natural C. 
bursa- pastoris (Kryvokhyzha et al., 2016), showing that some estimated segments with an unbalanced number of cg- and co- homoeologs were shared 
between the individuals from the same genetic cluster.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Homoeolog expression bias along chromosome positions in the inflorescence sample of the Cbp group (natural Capsella bursa- 
pastoris).

Figure supplement 2. Homoeolog expression bias along chromosome positions in the leaf samples of the Cbp group (natural Capsella bursa- pastoris).

https://doi.org/10.7554/eLife.88398
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the concentration of these trans- regulators. If this mechanism were the main cause of ELD, on average 
the EL- recessive homoeolog should have the larger expression change in all categories of ELD, while 
the expression of EL- dominant homoeolog is not expected to change. In all other cases, we would not 
have direct inference on the exact mechanism of ELD, but at least the three mechanisms listed above 
could not be the predominant cause of ELD.

Concerning the ELD found in resynthesized allotetraploids, the change of homoeolog expression 
fits the third scenario. In all four categories of ELD, the EL- recessive homoeolog had a larger average 
expression change in the same direction as ELD, while the average expression change of EL- dominant 
homoeolog was closer to zero (Figure 8, Figure 8—figure supplement 1, and Figure 8—source 
data 1).

The Cbp- specific ELD showed a different pattern. Although the EL- recessive homoeolog still had a 
larger expression change, the EL- dominant also showed non- zero average expression change toward 

Figure 7. Loss of homoeolog expression in resynthesized (Sd and Sh) and natural allotetraploids (Cbp). The number of genes with the expression loss 
of C. orientalis- homoeolog (a,c) or C. grandiflora- homoeolog (b,d) per individual was compared among the three groups of allotetraploids in flowers 
(a,b) or leaves (c,d). Homoeologous genes that had obvious expression (count per million >5) in all individuals of the corresponding diploid species but 
almost no expression (count per million <0.5) in one allotetraploid individual were considered cases of homoeolog expression loss.

https://doi.org/10.7554/eLife.88398
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the direction of ELD, especially in Cg- ELD genes. For genes with Cbp- specific TRE, both homoeologs 
had expression change in the same direction of TRE (Figure 8, Figure 8—figure supplement 1, and 
Figure 8—source data 1).

Discussion
Distinguishing parental legacy from the effects of evolutionary forces is essential for interpreting the 
outcome of allopolyploidization. The short- term genomic interactions in allopolyploids reflect the 
divergence of parental genomes (Johnson, 2010). In this sense, short- term transcriptomic changes in 
new allopolyploids are also part of parental legacy but are not observable with only information from 

Figure 8. Relationships between homoeolog expression change and non- additive gene expression in flowers. (a) Expected patterns of homoeolog 
expression change in each scenario that may explain the cause of expression level dominance (ELD) in resynthesized allotetraploids. (b) Observed 
homoeolog expression change among genes with ELD in resynthesized allotetraploids (Sd and Sh). (c) Observed homoeolog expression change among 
genes with Cbp- specific non- additive expression.

The online version of this article includes the following source data and figure supplement(s) for figure 8:

Source data 1. Expression level fold- change (log2FC) of homoeologs relative to the corresponding gene in diploid groups among genes with 
expression level dominance (ELD) in flowers or leaves.

Figure supplement 1. Relationships between homoeolog expression change and non- additive gene expression in leaves.

https://doi.org/10.7554/eLife.88398
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diploid parental species. In this study, we used resynthesized Capsella allotetraploids as an approx-
imation of the early stage of the natural allotetraploid species to separate and compare the short- 
and long- term transcriptomic and phenotypic changes. The timing and pattern of the variation also 
provided hints for locating the exact mechanism.

The extant diploid species were not the exact parental populations of natural C. bursa- pastoris, 
and the sampled diploid individuals were genetically closer to the resynthesized allotetraploids than 
to natural C. bursa- pastoris, potentially leading to an overestimation of the contribution of long- 
term mechanisms. However, the divergence between C. grandiflora and C. orientalis was much more 
ancient than the formation of C. bursa- pastoris (Douglas et al., 2015). Therefore, the molecular diver-
gence between C. grandiflora and C. orientalis after the formation of C. bursa- pastoris is only a small 
fraction of the total divergence.

Besides, the mating system of the real parental populations of C. bursa- pastoris was likely the 
same as today: A nonfunctional self- incompatibility haplotype that was fixed in C. orientalis was also 
found in C. bursa- pastoris, suggesting that C.orientalis became self- compatible before the forma-
tion of C. bursa- pastoris (Bachmann et al., 2019); On the other hand, restoring the great polymor-
phism of functional self- incompatibility haplotypes from a self- compatible ancestral population is very 
unlikely, therefore self- incompatibility should be the ancestral state of the (C. grandiflora +C. rubella) 
lineage. Although we cannot exclude the alternative hypothesis that the progenitor of Cbp_cg is a 
self- fertilizing ghost population, the most parsimonious hypothesis is that Cbp_cg subgenome orig-
inated from outcrossing individuals. For all these reasons, the resynthesized Capsella allotetraploids 
may still provide a realistic approximation to the early stages of natural C. bursa- pastoris.

Another limitation of using resynthesized allotetraploids is that we could not completely exclude 
the effect of colchicine treatment, even though we used second- generation allotetraploids (Münzber-
gová, 2017). Colchicine treatment could affect pollen and seed quality and the rate of homoeologous 
synapsis in resynthesized allotetraploids. Spontaneous Capsella allotetraploids have been repeatedly 
found among diploid hybrids that were not treated with colchicine solution (Bachmann et al., 2021 
own unpublished results). For future studies, these spontaneous allotetraploids would be excellent 
materials for accurately estimating the rate of homoeologous synapsis in newly formed Capsella allo-
tetraploids. Nevertheless, the reported influence of colchicine treatments on the second generation 
of synthetic polyploids was either trivial (Husband et al., 2016) or not in the same direction as our 
results (Münzbergová, 2017). Hence, the observed pollen and seed quality reduction and rampant 
homoeologous synapsis were unlikely pure artifacts from colchicine treatment.

Resynthesized and natural Capsella allotetraploids had distinct 
phenotypes
The most noticeable morphological difference between resynthesized and natural Capsella allotet-
raploids was related to the selfing syndrome. Compared to second- generation resynthesized allo-
tetraploids, natural C. bursa- pastoris had smaller floral organs, more pollen per flower, and a shorter 
stem length (Figure 1). In particular, trait values of petal size and stamen length of the resynthe-
sized allotetraploids had almost no overlap with natural C. bursa- pastoris but were similar to the 
outcrossing progenitor C. grandiflora. The shorter stem length in natural C. bursa- pastoris may reflect 
a shorter lifespan, which is also a feature of self- fertilizing species (Duminil et al., 2009; Lesaffre 
and Billiard, 2020). If natural C. bursa- pastoris indeed originated from the hybridization between C. 
grandiflora- like outcrossing plants and C. orientalis- like self- fertilizing plants, the selfing syndrome in 
C. bursa- pastoris does not reflect the instant dominance effect of the C. orientalis alleles, but evolved 
afterward. A remaining question is whether the genetic basis of the selfing syndrome in C. bursa- 
pastoris is the same as in C. orientalis. Did the pre- existing selfing syndrome- related alleles from C. 
orientalis facilitate the evolution of selfing syndrome in C. bursa- pastoris? Was the selfing syndrome 
of C. bursa- pastoris established by silencing/replacing the C. grandiflora alleles or new regulations on 
both C. orientalis and C. grandiflora homoeologs?

Although the selfing syndrome in natural C. bursa- pastoris was most likely an adaptation to the 
change in mating system, these morphological changes may be accelerated by the compensation 
or adaptation to a polyploid state (Hollister, 2015). WGD directly increases the size of various types 
of cells (Beaulieu et al., 2008; Katagiri et al., 2016; Snodgrass et al., 2017; Wilson et al., 2021) 
and disturbs the efficiency of multiple physiological processes (Drake et al., 2013; Bomblies, 2020). 

https://doi.org/10.7554/eLife.88398
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Compared to newly resynthesized autopolyploids, natural autopolyploid plants often have smaller 
cell or organ sizes (Maherali et al., 2009; Münzbergová, 2017; Landis et al., 2020), possibly driven 
by the demand for optimizing physiological processes or resource allocation (Roddy et al., 2020; 
Domínguez- Delgado et al., 2021). In the case of allotetraploid Capsella, the selection of selfing- 
syndrome- related traits and the adaptation to a polyploid state (e.g. decreasing the size of cell or 
organ for physiological efficiency or better energy allocation) may work synergistically and can be 
difficult to separate.

Apart from the selfing- syndrome- related traits, newly resynthesized Capsella allotetraploids had 
lower proportions of viable pollen (Figure 1l) and normal seeds (Figure 1m). In contrast, pollen and 
seed quality in natural C. bursa- pastoris were much higher and as good as in diploid species. The 
higher pollen and seed quality in natural C. bursa- pastoris was possibly achieved by improving meiotic 
behaviors. Meiotic stabilization is another important aspect of adaptation to an allopolyploid state 
(Blasio et al., 2022). Newly resynthesized allopolyploids suffer more often than natural allopolyploids, 
from frequent and severe meiotic abnormalities, which are associated with lower pollen viability and 
fertility in resynthesized allopolyploids (Szadkowski et al., 2010; Zhang et al., 2013; Henry et al., 
2014). The molecular basis of improved meiotic synapsis in natural allopolyploids is not completely 
clear, but several loci that suppress homoeologous synapsis or recombination are essential for the 
process (Jenczewski et al., 2003; Nicolas et al., 2009; Greer et al., 2012; Martín et al., 2017). The 
exact mechanism of meiotic stabilization in natural C. bursa- pastoris needs further investigation.

The emergence of non-additive gene expression in allotetraploids was 
a two-stage process
Non- additive gene expression in allotetraploid Capsella was altogether limited and neither a complete 
relict of short- term genomic interactions nor entirely due to gradual divergence. We found that about 
40% of the cases of ELD in natural C. bursa- pastoris could already be found in the second genera-
tion of resynthesized allotetraploids (relict ELDs). Most of these relict ELDs and their directions were 
shared by the two resynthesized allotetraploid groups (Figure 4c, Figure 4—figure supplement 1), 
suggesting that most relict ELDs were repeatable alterations. On the other hand, about 60% of the 
cases of ELD were specific to natural C. bursa- pastoris (Cbp- specific ELDs, Figure 4c, and Figure 4—
figure supplement 1), revealing the contributions from long- term evolution.

The relict ELDs and Cbp- specific ELDs differed in several features. While the vast majority of relict 
ELDs were up- regulated (97% in flowers and 88% in leaves), Cbp- specific ELDs had a more balanced 
number of up- and down- regulated ELDs (61% and 54% were up- regulated in flowers and leaves, 
respectively), suggesting the short and long- term ELD had different molecular basis. In diploid or 
polyploid interspecific hybrids, overexpression is often more common than underexpression. The 
trend has been observed in a wide range of organisms, including Brassica (Wu et al., 2018; Li et al., 
2020; Wei et al., 2021) and Raphanobrassica (Ye et al., 2016), cotton (Yoo et al., 2013), brown algae 
(Sousa et al., 2019), and copepod (Barreto et al., 2015). Results in Capsella further showed that 
short- term mechanisms mainly caused the excess of up- regulated ELDs. Among the short- term mech-
anisms, intergenomic interaction of regulatory elements is the most likely candidate for generating the 
excess of up- regulated ELDs, considering that these up- regulated ELDs were highly shared between 
the two resynthesized allotetraploid groups, and between resynthesized and natural allotetraploids. 
A global DNA methylation change may also contribute to the excess of up- regulation in resynthesized 
allotetraploids, if methylation levels were systematically lower in Capsella allotetraploids, as observed 
in Mimulus (Edger et al., 2017). However, methylation change alone fails to explain why the majority 
of these up- regulated ELDs in resynthesized allotetraploids were retained in natural allotetraploids, 
especially in leaves (Figure 4c, Figure 4—figure supplement 1).

Besides, the relict ELDs contained more Cg- ELDs than Co- ELD, but Cbp- specific ELDs had more 
Co- ELDs, especially in flowers (Figure 4c, Figure 4—figure supplement 1). The increase of Co- ELDs 
in natural C. bursa- pastoris mirrored the morphological difference: The floral organ size of resynthe-
sized allotetraploids was similar to that of C. grandiflora, whereas natural C. bursa- pastoris was more 
similar to C. orientalis (Figure 1a–g). However, it is worth noting that the reversed trend of ELD may 
not be the fundamental genetic basis of selfing syndrome, but reflect the different composition of 
tissue/cells in RNA samples. Both morphological changes and the direction of ELD could result from 
upstream regulatory changes.

https://doi.org/10.7554/eLife.88398
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In addition, although unbalanced homoeolog content (not 2:2) caused by homoeologous synapsis 
was common in our resynthesized allotetraploids, they were still not the main cause of ELD in resyn-
thesized allotetraploids. If ELD were mainly caused by possessing more than two copies of the 
EL- dominant homoeolog, we would expect the relative expression from the EL- dominant homoeolog 
to increase and the EL- recessive homoeolog to decrease in genes with significant ELD. In contrast 
to this expectation, we found that, on average, the expression of EL- dominant homoeologs (relative 
to the transcriptome of the subgenome) was similar to that in diploid parental species, while the 
expression of EL- recessive homoeologs changed toward the EL- dominant homoeolog (Figure 8). This 
suggests that ELD is mainly achieved by altering the expression of EL- recessive homoeologs. This 
result is consistent with studies in a wide range of allopolyploid organisms (Yoo et al., 2013; Cox 
et al., 2014; Combes et al., 2015; Sousa et al., 2019), although not in resynthesized Brasssica napus 
(Wu et al., 2018). This conservative pattern can be explained by intergenomic interaction between 
divergent regulatory elements (Hu and Wendel, 2019), but direct evidence is still lacking.

As for transgressive gene expression, we found almost no TRE genes in resynthesized allotetra-
ploids, but a mere 1.3% TRE genes in natural C. bursa- pastoris, with a threshold of FC >2 (Figure 
4—source data 1). In agreement with several previous observations (Flagel and Wendel, 2010; Yoo 
et al., 2013; Zhang et al., 2016b), the results in Capsella suggest that transcriptional novelties in 
allopolyploids were not an instant outcome of allopolyploidization but mainly arose during long- term 
evolution and remained altogether rather limited.

Homoeologous synapsis was common in resynthesized Capsella 
allotetraploids, and may still be a source of variation in natural Cbp
Disomic inheritance in allopolyploid species is not established all at once (Henry et al., 2014), and 
strict disomic inheritance may have never been achieved in some allopolyploid species. In contrast to 
the disomic inheritance and the low level of homoeolog expression loss in natural C. bursa- pastoris, 
we found abundant traces of homoeologous segregation or recombination in all 12 lines of resyn-
thesized Capsella allotetraploids, after only one meiosis. The observation is in line with many recent 
studies in which abundant homoeologous exchanges were found in allopolyploids (Lloyd et al., 2018; 
Pelé et al., 2018). The contrast between resynthesized and natural allotetraploids suggested that 
preferential synapsis was rapidly improved in natural C. bursa- pastoris, and/or a balanced number of 
homoeologs was strongly preferred by selection, otherwise, we would expect a much higher propor-
tion of homoeolog replacement (having four copies of the same homoeolog) after 100,000 year recur-
rent self- fertilization with tetrasomic/heterosomic inheritance.

Homoeologous synapsis was the major mechanism for the variation of HEB and homoeolog 
expression loss in resynthesized Capsella allopolyploids (Figures 5 and 7). Several models have been 
proposed to explain HEB and biased genome fractionation in allopolyploids, including different TE 
contents (Woodhouse et al., 2014; Cheng et al., 2016; Wendel et al., 2018), the epigenetic differ-
ence of subgenomes (Li et al., 2014), different strength of regulatory elements, as a result of enhancer 
runaway (Fyon et al., 2015; Bottani et al., 2018). It was also suggested that the initial HEB may be 
reinforced in long- term evolution, as the homoeolog with a lower initial expression level is subject 
to weaker purifying selection, and has a larger chance of degeneration (Woodhouse et al., 2014). 
However, in resynthesized Capsella allotetraploids, homoeologous synapsis played an important role 
in generating HEB variation, possibly overshadowing the influence of other mechanisms. This result 
does not conflict with the observed association between TE content in parental species and genome 
dominance (Woodhouse et al., 2014). While TE contents may have only a minor effect in directly 
generating HEB variation, they could still be informative in predicting HEB in established allopoly-
ploids, as the presence of TEs in the flanking regions may affect the fitness effect of HEB variation 
(Hollister and Gaut, 2009). In other words, TEs may not function as a strong mutagenic mechanism 
of HEB variation, but affect the selection on HEB variation, as a form of genetic load.

For established natural allotetraploids, occasional homoeologous synapsis may still be an 
important source of genetic variation, even long after the allopolyploidization event. Although an 
earlier allozymic study (Hurka et al., 1989) and an approximate Bayesian computation (ABC) with 
high throughput sequencing data (Roux and Pannell, 2015) suggest that natural C. bursa- pastoris 
exhibits disomic inheritance, neither analysis could reject homoeologous synapsis at a lower rate. 
A very small proportion of homoeologous synapsis may be negligible for inferring the dominant 
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mode of inheritance, but in terms of causing homoeologous gene loss and creating genetic varia-
tion, homoeologous synapsis can still be more influential than point mutations. Due to the inevitable 
technical variation of RNA- seq and expression variation across genes, we were unable to confidently 
resolve smaller blocks of unbalanced homoeolog content. Despite the small sample size and the low 
resolution of RNA- seq data, we noticed that some small genomic blocks with homoeolog replacement 
were shared by the individuals of the same population but varied among populations of natural C. 
bursa- pastoris (Figure 6, Figure 6—figure supplements 1 and 2), suggesting that homoeologous 
synapsis still contribute to expressional variation in natural C. bursa- pastoris. Apart from homoeolog 
synapsis in a single- origin allopolyploid species, unbalanced content of homoeologs could also arise 
from secondary introgression from diploid parental species. Detailed demographic modeling would 
be needed for distinguishing the two scenarios.

Conclusion
In conclusion, together with Duan et al., 2023, the present study shows that both short- and long- 
term mechanisms contributed to transcriptomic and phenotypic changes in natural allotetraploids. 
However, the initial gene expression changes were largely reshaped during long- term evolution 
leading to more pronounced morphological changes. Resource limitations and/or adaptation to self- 
fertilization also, drive flowers' evolution after polyploidization.

Materials and methods
Plant material
The present study used five Capsella plant groups (Figure 1, Figure 1—source data 1), including 
diploid C. orientalis (Co2), diploid C. grandiflora (Cg2), two types of resynthesized allotetraploids (Sd 
and Sh), and natural allotetraploids, C. bursa- pastoris (Cbp). RNA- sequencing data and most pheno-
typic data (except floral morphologic traits) of Co2, Cg2, Sd, and Sh groups were from Duan et al., 
2023. The Sd and Sh allotetraploids only differed in the order of hybridization and whole genome 
duplication. Allotetraploids of the Sd group were generated by crossing synthetic autotetraploid C. 
orientalis with autotetraploid C. grandiflora, whereas the Sh group was generated by inducing WGD 
in the first generation of diploid hybrids of C. orientalis×C. grandiflora. In all interspecific crosses, C. 
orientalis served as maternal plants, mimicking the formation of the natural allotetraploid species, C. 
bursa- pastoris (Hurka et al., 2012). All C. orientalis plants used in the experiment are descendants of 
one wild C. orientalis individual, and all the C. grandiflora plants are descendants of three individuals 
from one C. grandiflora population (Figure 1c and Figure 1—source data 1).

To compare the resynthesized allotetraploids with natural allotetraploids, natural C. bursa- pastoris 
was added to the present study. Seeds of wild C. bursa- pastoris plants were grown in a growth 
chamber for one generation. Then the second generation of C. bursa- pastoris plants was grown in the 
same experiment together with the other four plant groups used in Duan et al., 2023. All five plant 
groups were grown in a growth chamber under long- day conditions (16 hr light at 22 °C and 8 hr dark 
at 20 °C, light intensity = 137 uE·m- 2·s- 1).

Each of the five plant groups was represented by six ‘lines’, and each line had six individuals, which 
were full siblings from either self- fertilization (Co2, Cbp, Sh, and Sd groups) or brother- sister mating 
(Cg2 group). The six lines of C. bursa- pastoris were from six populations (Figure 1c and Figure 1—
source data 1), representing three major genetic clusters of the wild C. bursa- pastoris (Kryvokhyzha 
et al., 2019b). Each line originated from an independent allopolyploidization event for the Sh and Sd 
groups. For Co2 and Cg2 groups, ‘line’ only referred to the offspring of one parental plant (Co2) or a 
pair of parental plants (Cg2) in the previous generation.

Plants used in the present study and a previously published work (Duan et al., 2023) were different 
subsets of a single experiment. The entire experiment had eight plant groups, including the five plant 
groups used in the present study (Groups Cg2, Co2, Sh, Sd, and Cbp; 5 groups x 6 lines x 6 individuals 
= 180 plants), and other three groups that were only used in Duan et al., 2023, Groups F, Co4 and 
Cg4; 3 groups x 6 lines x 6 individuals = 108 plants. All these plants were grown in 36 trays placed on 
six shelves inside the same growth chamber. Each tray had exactly one plant from each of the eight 
groups, and the positions of the eight plants within each tray (A- H) were randomized with random.
shuffle() method in Python (Supplementary file 1). The position of the 36 trays inside the growth room 
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(1- 36) was also random and the positions of all trays were shuffled once again 28 days after germina-
tion (randomized with RAND() and sorting in Microsoft Excel Spreadsheet).

Phenotyping
Floral morphological traits were measured for all five groups on 165 plants 7–14 days after the first 
flower opened. The rest 15 plants were not measured due to technical errors. Two fully opened young 
flowers were dissected for each plant, and the floral organs were scanned with a photo scanner (Epson 
Perfection V370) at 3200 dpi. Seven floral morphological traits were measured on the digital images 
with Fiji, an open- source platform for biological- image analysis (Schindelin et al., 2012), including 
sepal width, sepal length, petal width, petal length, pistil width, pistil length, and stamen length. 
For each plant, two flowers were examined. Three sepals, petals and stamina, and one pistil were 
measured for each flower.

Stem length (total sample size n=171), flowering time (n=170), pollen traits (n=142), and seed traits 
(n=151) were measured for the five plant groups. Measurements of the Cg2, Co2, Sh, and Sd groups 
were from Duan et al., 2023, and measurements of the Cbp group were added by the present study, 
which were obtained in the same way as the other four groups. The length of the longest stem (stem 
length) was measured on dry plants. The number of days from germination start to the opening of the 
first flower was recorded as flowering time. The number of pollen grains per flower (pollen counts) 
was calculated by counting 1/60 (Co2, Sd, Sh, and Cbp groups) or 1/120 (Cg2 group) of the total 
pollen grains of a flower using a hemocytometer. Pollen viability was measured with an aceto- carmine 
staining method (Duan et al., 2023), by examining at least 300 pollen grains per flower. Pollen counts 
and pollen viability were measured on two flowers of each individual. Seeds from the 11th to 20th 
fruits were counted and were used to measure the proportion of normal seeds. In the case of the Cg2 
and Cg4 groups, seeds were obtained through hand pollination. The first ten fruits were used when 
not all of these flowers set fruits. Individuals with less than ten fruits were excluded from the analysis. 
Seeds that were flat or dark and small were considered abnormal.

General linear models (for non- ratio data) or generalized linear models with quasi- binomial error 
distribution and a logit link function (for pollen viability and seed quality) were fit to each phenotypic 
trait. The difference in phenotypic traits among the five plant groups was tested with one- way anal-
yses of variance (ANOVA, trait value ~plant group, type- III tests), using R package ‘car’ version 3.1–2 
(Fox and Weisberg, 2019). A two- way ANOVA (trait value ~plant group +tray ID, type- III tests) was 
also tried to test the positional effect. When plant group had a significant effect on a trait, groups with 
different means were identified by Tukey’s HSD test using R packages ‘agricolae’ version 1.3–6 (de 
Mendiburu and Yaseen, 2020) and ‘multcomp’ version 1.4–25 (Hothorn et al., 2008).

RNA-sequencing
RNA- sequencing was conducted for the five plant groups (Co2, Cg2, Sd, Sh, and Cbp). For each line, 
leaf and young inflorescence (flower) samples from one randomly chosen individual were sequenced, 
resulting in 60 RNA- sequencing samples (5 groups × 6 lines × 2 tissues). RNA- sequencing data of the 
Co2, Cg2, Sd, and Sh groups were from Duan et al., 2023. Data from the Cbp group was added to 
the present study, but the Cbp samples were collected and sequenced simultaneously with the other 
four plant groups in 2019. The 8th and 9th leaves were harvested at the emergence of the 11th leaf, 
and 2–4 inflorescences with only unopened flower buds were collected 7–14 days after the first flower 
opened. The collected tissue was frozen in liquid nitrogen and stored at –80 °C.

Total RNA was extracted from leaf and flower samples with a cetyl- trimethyl- ammonium- bromide 
(CTAB)- based method (Duan et al., 2023). DNA contamination was further removed by the RNase- 
Free DNase Set (QIAGEN). RNA libraries were prepared with Illumina TruSeq Stranded mRNA (poly- A 
selection) kits and sequenced with pair- end reads of 150 bp on three NovaSeq 6000 S4 lanes, by the 
SNP&SEQ Technology Platform in Uppsala, Sweden. One sequencing library was generated for each 
diploid sample, and two libraries were generated for each allotetraploid sample.

Gene and homoeolog expression
Raw RNA- seq reads were mapped to the reference genome of Capsella rubella (Slotte et al., 2013) 
using Stampy v.1.0.32 (Lunter and Goodson, 2011). The expected divergence between refer-
ence and query sequences was set to 0.02, 0.04, and 0.025 for C. grandiflora, C. orientalis, and 
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allotetraploids, respectively. Mapping quality was inspected by Qualimap v. 2.2.1 (Okonechnikov 
et al., 2016). The number of reads mapped to each gene was counted by HTSeq v.0.12.4 (Anders 
et al., 2015), using the mode ‘union’ (hereinafter referred to as ‘unphased gene expression’). The 
average number of mapped reads was 38.4±2.4 and 70.0±3.5 for the diploid and tetraploid samples, 
respectively (Supplementary file 2). For all analyses on unphased gene expression, the mapped reads 
were downsampled with a custom Python script (Duan et al., 2023), so that all five groups had a 
similar average number of mapped reads.

The expression level of separate homoeologs in allotetraploids was determined by the program 
HyLiTE v.2.0.2 (Duchemin et al., 2015). Alignment results from the software Stampy v.1.0.32 (Lunter 
and Goodson, 2011) of all five groups and the C. rubella reference genome (Slotte et al., 2013) 
were used as the input for HyliTE. HyLiTE performed SNP calling, classified RNA- seq reads of allotet-
raploids to parental types according to the identified diagnostic variation between the two diploid 
parental species and generated a table of homoeolog read counts for allotetraploid individuals (here-
inafter referred to as ‘phased gene expression’).

After partitioning the homoeolog expression, the average library size of allotetraploid subgenomes 
was similar to the library size of diploid groups (one- way ANOVA, F4,91=1.28, p=0.29). To reduce bias 
between phased and unphased expression datasets, when the homoeolog expression of allotetra-
ploids was compared with gene expression in diploid parental species, the expression level of each 
gene in diploid individuals was rescaled by the proportion of reads that can be phased for the same 
gene in allotetraploid individuals.

The overall gene expression pattern of five plant groups in each tissue was visualized by MDS 
analysis, using the R package ‘edgeR’ (version 3.28.1; Robinson et al., 2010) in the R software envi-
ronment version 3.6.3 (R Core Team, 2020). For both phased and unphased gene expression data, 
genes with count- per- million (CPM) over one in at least two samples were used for the MDS analysis, 
and expression levels were normalized with the trimmed mean of M- values (TMM) method.

Differential expression (DE) analysis
DE analysis was conducted on both unphased and phased gene expression data with the R package 
‘edgeR’ (version 3.28.1; Robinson et al., 2010), using TMM normalized gene expression levels. A 

Table 1. Classification of additive and non- additive gene expression pattern in allotetraploids.

Group Description Classification criteria*

a
Additive expression with no parental 
differentiation Cgi = xij = Coi

b
Partial ELD or additive expression with 
parental differentiation

(Cgi <xij < Coi) or
(Coi <xij < Cgi) or
(Cgi ≠ Coi and xij = Cgi and xij = Coi)

c Up- regulated ELD toward Cg2 xij = Cgi and xij >Coi

d Down- regulated ELD toward Cg2 xij = Cgi and xij <Coi

e Up- regulated ELD toward Co2 xij = Coi and xij >Cgi

f Down- regulated ELD toward Co2 xij = Coi and xij <Cgi

g
Up- regulated TRE with no parental 
differentiation Cgi = Coi and xij >Cgi and xij >Coi

h Up- regulated TRE with parental differentiation Cgi ≠ Coi and xij >Cgi and xij >Coi

i
Down- regulated TRE with no parental 
differentiation Cgi = Coi and xij <Cgi and xij <Coi

j
Down- regulated TRE with parental 
differentiation Cgi ≠ Coi and xij <Cgi and xij <Coi

*Cgi: expression level of gene i in the Cg2 group; Coi: expression level of gene i in the Co2 group; xij: expression 
level of gene i in allotetraploid group j, and j∈(Sd, Sh, Cbp); ELD: expression level dominance; TRE: transgressive 
expression; The significance of differential expression between groups were determined by results of differential 
expression analysis on unphased gene expression, with a threshold of fold- change >2 and false discovery 
rate <0.05.
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negative binomial generalized linear model (GLM) was fitted to each dataset. Pairwise group contrasts 
were then made for each GLM model, and gene- wise quasi- likelihood F- tests were conducted to 
detect expression changes in each contrast. For unphased data, pairwise contrasts were made among 
the original five groups (Co2, Cg2, Sd, Sh, and Cbp). For phased data, allopolyploid subgenomes were 
treated as separate groups (Sd_co, Sd_cg, Sh_co, Sh_cg, Cbp_co, and Cbp_cg) and were compared 
with the two diploid groups (Co2, Cg2). Genes with an expression fold- change (FC) larger than two 
and a false discovery rate (FDR) less than 0.05 were considered significant DEGs.

Expression level dominance and transgressive expression
To measure the extent of non- additive expression in allotetraploids, genes were classified into ten 
expression categories (Table 1), by comparing the total expression of both homoeologs in an allo-
tetraploid group to the gene expression level in a diploid group. The 10 categories were modified 
from the classification by Zhang et al., 2016a. Results of DE analysis on unphased gene expression 
(FC >2 and FDR <0.05) were used for the classification.

Homoeolog expression bias
HEB of gene i in allotetraploid individual j was measured by the proportion of cg- homoeolog expres-
sion (cgij) in the total expression of both homoeologs (cgij/(cgij +coij)). The distribution of HEB was 
then viewed by individuals, chromosomes, or along genomic coordinates. Signs of the segregation or 
recombination of homoeologous chromosomes were revealed in resynthesized allopolyploids by the 
distribution of HEB along genomic coordinates.

The copy number of cg- and co- homoeologs of each gene and the breakpoints between chromo-
somal segments resulting from homoeologous recombination were estimated with a five- state HMM 
of gene- wise HEB, using a modified version of the R package ‘HMMcopy’ version 1.40.0 (Lai et al., 
2022). The five states corresponded to (0, 1, 2, 3, 4) gene copies from Cg and (4, 3, 2, 1, 0) copies from 
Co, respectively. The expected optimal values of median HEB (m) were set to 0.01, 0.25, 0.5, 0.75, 
and 0.99 for the five states. The length of segments was controlled by arguments e and strength. e is 
the initial value of the transition probability that the state (copy number of cg homoeolog) does not 
change between two adjacent genes, and strength is the strength of this initial e. Smaller values of 
strength increase the flexibility of transition probability, and an extremely large value leads to almost 
fixed transition probabilities. For natural C. bursa- pastoris, e and strength were set to (1 – 1e- 7) and 
1e+7, respectively. For resynthesized allotetraploids, e was increased to (1 – 1e- 10), and strength was 
increased to 1e+12, as homoeologous exchanges were expected to be rare for resynthesized allotet-
raploids which had only experienced one round of meiosis.

The effect of homoeologous segregation and recombination on HEB in resynthesized allotetra-
ploids was analyzed by a generalized linear model with quasi- binomial error distribution and logit link 
function. Gene- wise HEB was reshaped as binomial data (read counts from cg homeolog and total 
counts from both homoeologs). The copy number of cg homoeologs (0, 1, 2, 3, and 4) estimated 
by HMM segmentation was used as the explanatory variable. The variance of HEB explained by the 
estimated copy number of cg homoeolog was assessed by the coefficient of determination (R2), calcu-
lated with R package ‘rsq’ version 2.5 (Zhang, 2022).

The relationship between non- additive gene expression and homoeolog expression was explored 
by comparing the estimated expression fold change of each homoeolog among additive and different 
non- additive expression categories. The expression fold change of homoeologs was measured by 
homoeolog expression of gene i in allotetraploid group k divided by expression of gene i in the 
corresponding diploid group, that is log2FC(cgik/Cg2i) or log2FC(coik/Co2i), using the estimated FC 
from DE analysis on phased data. The difference of expression fold change between EL- dominant and 
EL- recessive homoeologs was tested by Welch’s two- sample t- tests.

Loss of homoeolog expression
The most extreme HEB occurs when one homoeolog is silenced or lost in allotetraploids. To explore 
the timing and mechanism of the loss of homoeolog expression in Capsella, the number of genes with 
homoeolog expression loss was counted for each resynthesized or natural allotetraploid. Lowly or 
occasionally expressed genes were excluded from the analysis to reduce noise from sequencing and 
phasing. Specifically, if one homoeologous gene had obvious expression (CPM >5) in all six individuals 
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of the corresponding diploid species, but had almost no expression in one allotetraploid individual 
(CPM <0.5), the case was considered a loss of homoeologous expression.

Gene ontology (GO) enrichment analysis
GO enrichment analysis was performed with R package ‘topGO’ version 2.52.0 (Alexa and Main-
tainer, 2023), using results of DE analysis on unphased gene expression and GO annotations of C. 
rubella downloaded from PlantRegMap (Tian et al., 2020). Genes that were differentially expressed 
in both Cbp- Sd and Cbp- Sh comparisons (FC >1.5 and FDR < 0.05; 578 genes in flowers and 345 
in leaves) were used as the test set, and all genes with GO annotation and CPM > 1 in at least two 
samples were used as the background set (17,718 genes in flowers and 15,631 genes in leaves). GO 
terms were scored with the ‘classic’ algorithm and Fisher’s exact tests, and p- values were adjusted 
with the Benjamini- Hochberg procedure in R. GO terms with less than 10 annotated genes were 
excluded from the analysis.
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