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A B S T R A C T   

The climate change mitigation benefits of biochar systems arise largely from carbon storage in biochar. However, 
while biochar is increasingly recognized as a carbon dioxide removal technology, there are on-going scientific 
discussions on how to estimate the persistence of biochar carbon when biochar is used in soils. Estimates vary 
from decades to millennia, building on different modelling approaches and evidence. Here, we revisited the 
persistence estimates derived from extrapolation of biochar incubation experiments, with the aims of making 
incubation data available, modelling choices transparent, and results reproducible. An extensive dataset of 
biochar incubations, including 129 biochar decomposition time series, was compiled and is made available 
alongside code for its analysis. Biochar persistence correlations were sensitive to data selection procedures and to 
the curve fitting modelling step, while soil temperature adjustments methods had less impact. Biochar H/C ratio 
remained the main predictor of biochar persistence, in line with previous research, regardless of the extrapo-
lation assumptions (multi-pool exponential functions or power function) used in curve fitting. The relation be-
tween H/C and percentage of biochar carbon remaining after 100 years (BC100) was better explained by a power 
model than a linear model, with R2 values between 0.5 and 0.9. Using multi-pool exponential functions, esti-
mated BC100 varied between 90 % and 60 % for H/C from 0 to 0.7. However, using power functions, BC100 was 
constrained between 90 % and 80 % for the same H/C range. Additional information about the biochar, the 
pyrolysis conditions or the environmental incubation conditions did not significantly increase explained vari-
ance. Notably, the dataset lacks observations at H/C ratios below 0.2, of biochar made from manure and bio-
solids, biochar from processes other than slow pyrolysis, field studies, and incubation temperatures below 10 ◦C, 
which should guide future experimental work. The detailed analysis performed in this study does not cast doubts 
on the longevity of biochar carbon storage; rather, it confirms previous knowledge by critically examining the 
modelling, elucidating the assumptions and limitations, and making the analysis fully reproducible. There is a 
need for further interdisciplinary work on integration of various theories and approaches to biochar persistence, 
ultimately leading to the formulation of policy-relevant conclusions.   

1. Introduction 

Biochar is a charcoal-like material, obtained from biomass through 
pyrolysis, and used primarily as a soil amendment to improve soil 
properties and sequester carbon (Lehmann et al., 2015; Woolf et al., 
2010). The persistence of biochar carbon in soil is a critical aspect for 
biochar to serve as a climate change mitigation strategy (IPCC, 2018; 
Tisserant and Cherubini, 2019). Over the last two decades, the 

persistence of biochar carbon, also referred to as biochar persistence, 
permanence, or stability1 in previous research, and as biochar carbon 
storage durability in policy context, has been studied from multiple 
perspectives (Ascough et al., 2018; Bowring et al., 2022; Woolf et al., 
2021). In essence, assessing the persistence of biochar carbon revolves 
around studying the fate of biochar once it has been placed in a soil 
environment, and more specifically quantifying the amount of carbon 
that is returned to the atmosphere over time, primarily as carbon 
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1 Note that the term “stability” is often used in combination with a qualifier, e.g. thermal stability (resistance to decomposition when exposed to high temper-
atures), chemical stability (exposure to chemicals), or biological stability (exposure to microbial activity). 
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dioxide. 

1.1. Current understanding, empirical evidence, and modelling 
approaches 

The persistence of biochar carbon varies with the properties of bio-
char, which result from the pyrolysis process conditions and the biomass 
type, but also varies with the environmental conditions to which biochar 
is exposed (Lehmann et al., 2021). Importantly, since biochar is a term 
used to describe a continuum of materials with different degrees of ar-
omatic structure condensation, biochars do not necessarily have the 
same persistence. Biochars with a higher degree of fused aromatic car-
bon structures are less prone to microbial decomposition than fresh 
biomass and lightly charred materials. In soils, biochar is subject to 
multiple processes of degradation, protection, and transport to other 
compartments (e.g. nearby topsoil, subsoil, groundwater, rivers and 
sediments) (Lutfalla et al., 2017; Santos et al., 2022). These processes 
are affected by multiple factors like soil temperature, hydrological 
regime, texture, and management. 

Biochars are estimated to be at least one to two orders of magnitude 
more persistent in soils than the parent biomass (Lehmann et al., 2021). 
However, although biochar is increasingly recognised as a carbon di-
oxide removal method (Canadell et al., 2021), knowledge and evidence 
available are not sufficient to provide a quantification of biochar carbon 
persistence that captures all relevant processes and variations in biochar 
properties and environmental conditions. A wide range of biochar car-
bon persistence estimates have been proposed, supported by different 
empirical evidence, modelling approaches and theories:  

i) The biochar carbon persistence is estimated to be in the range of 
decades. This builds upon in-field observations (Leal et al., 2019; 
Ventura et al., 2019, 2014) and soil carbon modelling (Pulcher 
et al., 2022) for specific biochar types.  

ii) A large share of carbon remains in storage for at least 100 years. 
Assuming that biochar remains in the topsoil where it was applied 
and is continuously subject to microbial decomposition, this 100- 
year permanence factor can be derived from the biochar’s molar 
hydrogen to organic carbon (H/Corg) ratio and the soil tempera-
ture at site of use (Woolf et al., 2021). This builds upon an array of 
incubation studies, reviews, and models published in the field of 
soil science (see section 1.2).  

iii) A certain share of biochar carbon is thought to remain in storage 
for longer than millennia. This builds upon various arguments, 
such as the supposed chemical and biological “inertness” of large 
aromatic structure in biochars characterised using various tech-
niques (Ascough et al., 2009; Crombie et al., 2013; Harvey et al., 
2012; Petersen et al., 2023), evidence of archaeological and 
historical remains (Ascough et al., 2020; Glaser et al., 2001), 
global pyrogenic carbon transport and stock models (Bird et al., 
2015; Bowring et al., 2022). 

The focus of this work is primarily on advancing the study of biochar 
carbon persistence derived from incubation experiments. 

1.2. Persistence estimates derived from biochar incubation studies and 
research gaps 

Decomposition of biochar in soils has been studied via incubation 
experiments (e.g. Budai et al., 2016; Zimmerman and Ouyang, 2019), 
has been the object of several reviews (Leng et al., 2019a,b; Spokas, 
2010; Wang et al., 2016; Woolf et al., 2021), and attempts have been 
made to correlate permanence factors to biochar properties or pyrolysis 
temperature (Budai et al., 2013; IPCC, 2019; Rodrigues et al., 2023; 
Singh et al., 2015; Spokas, 2010; Woolf et al., 2021; Zimmerman, 2010). 
These assessments however, although broadly agreeing on the persistent 
nature of biochar, made different persistence quantifications, used 

partly different datasets and methodologies, and were left with high 
unexplained variance. 

The procedure for analysing and extrapolating biochar decomposi-
tion data involves multiple steps, conceptually summarized in Fig. 1. 
First, data from short-term incubation experiments are compiled into a 
consistent dataset. Then, the decomposition data is extrapolated to 
longer time scales using curve fitting procedures, estimates of perma-
nence are calculated, and various recalibrations are applied. Finally, 
correlations between permanence estimates and other information in 
the dataset are searched for. Ultimately, the resulting correlations can be 
adjusted for a specific policy context, e.g. project-specific carbon ac-
counting or national inventory guidelines. Previous assessments of 
biochar persistence derived from incubations have used similar pro-
cedures, with several limitations and research gaps. 

Data availability and reproducibility. Previous assessments of 
biochar incubation data did not publish their datasets of the incubation 
data, nor the detailed code used for performing the modelling. The data 
reported was usually limited to the estimated permanence and a few 
experimental variables. Traceability between permanence assessments 
and the individual observation in original publications was sometimes 
not possible. This hindered reproducibility and additivity of science. 

Curve-fitting. Incubation studies report the amount of carbon lost at 
the end of the incubation period and other characteristic metrics derived 
from analysis of the decomposition time series, such as mean residence 
times2 (MRT, i.e. time after which 63 % of initial carbon is released), 
half-lives2 (t1/2, i.e. time after which 50 % of initial carbon is released) 
or 100-year permanence factors (BC100, i.e. fraction of carbon remaining 
after 100 years). These characteristic metrics are obtained via curve 
fitting, i.e. a process to adjust a mathematical function with a limited 
number of parameters to time series of decay rates or cumulative carbon 
losses (Weihermüller et al., 2018). Curve fitting is an optimisation 
problem that does not always have a unique solution, and which can be 
sensitive to both irregularities in experimental data and assumptions 
made. Hence, it is critical to disclose what algorithm, initial conditions, 
and fitting constraints were used and how the quality of the selected fit 
was assessed. This has usually been inadequately reported in biochar 
incubation studies, which limits reproducibility (Weihermüller et al., 
2018). 

In addition, the type of model used in curve fitting (e.g. single, 
double, triple or power exponential models) has a strong influence on 
persistence estimates (Bird et al., 2015; Zimmerman et al., 2011). The 
use of at least double pool models has been recommended for biochar 
(Lehmann et al., 2021), while triple pool models were considered 
difficult to fit due to too short incubation times (Bird et al., 2015). Other 
types of decay models have usually been left out from persistence 
modelling. 

Soil temperature adjustment for biochar. Biochar incubation ex-
periments have been performed at different soil temperatures, varying 
from 10 ◦C to 60 ◦C. The effect of temperature on decomposition is two- 
fold: i) higher soil temperatures are associated with higher degradation 
rates, and ii) more complex molecules like biochar have a higher relative 
temperature sensitivity than easily degradable organic matter like 
sugars (Davidson and Janssens, 2006). For biochar, Lehmann et al. 
(2015) suggested to recalibrate the decay rates to a common soil tem-
perature using a temperature dependent Q10 relationship derived from 
former incubation studies (Cheng et al., 2008; Nguyen et al., 2010; 
Zimmermann et al., 2012) and this approach was then applied in Woolf 
et al. (2021). However, the adjustment method is associated with high 

2 Note that half-life and mean residence time are technically referring to 
single first order kinetics (SFO, i.e. single exponential models) or individual 
pools in multi-pool models, while in the context of non-SFO kinetics (e.g. 
double exponentials, power model), those quantities are more accurately 
referred to as 50%-degradation time (DT50) and 63%-degradation time (DT63), 
respectively. For simplicity, we use the terms half-life and mean residence time. 
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uncertainties, limited data at low temperatures, and is thought to un-
derestimate decay rates at low temperatures (Elsgaard and Eriksen, 
2023). 

Correlation search. Most previous assessments of biochar persis-
tence focused on estimates expressed as a 100-year permanence factor, 
an n-year permanence factor, MRT, or t1/2. Correlations with these 
persistence estimates were in most cases univariate (using a single 
parameter, e.g. H/Corg ratio, pyrolysis temperature) and used linear 
regressions; although Rodrigues et al. (2023) recently introduced a 
power model. No attempts at using multivariate regressions have been 
published, to our knowledge. Furthermore, data retained or excluded 
from a correlation model was not systematically justified, and extrapo-
lation of the predictions to ranges where data points are limited were not 
discussed. 

1.3. Aim of this work 

One of the main issues in evaluation of biochar persistence through 
incubation studies is the lack of an open and exhaustive dataset of bio-
char decomposition experiments that can be updated whenever new 
data are collected. Published data are sometimes not transparent 
regarding data preparation and processing toolchain, which makes 
application of modelling choices and reproducibility of scientific results 
difficult. Thus, our first aim was to rectify this by establishing such a 
dataset and toolchain, thereby also enabling refined analysis and dis-
cussion on modelling choices. 

The second aim was to analyse different modelling choices and 
attempt at refining existing biochar persistence models. More specif-
ically, the objectives were to:  

i) Analyse the effect of different curve fitting strategies and the 
meaning of different types of fitting functions (exponential and 
power functions).  

ii) Analyse the effect of different temperature adjustment methods. 
iii) Reproduce and critically analyse previously suggested correla-

tions between biochar persistence and H/Corg ratio, at any time 
horizon and soil temperature. 

2. Material & methods 

A dataset of previously published biochar decomposition incubation 
data was compiled (2.1) and used for an exploratory analysis (2.2). A 
modelling toolchain was developed and applied to perform various an-
alyses of the dataset (2.3). 

2.1. Dataset construction 

To achieve modelling transparency and reproducibility, the dataset 
was built following principles that are detailed in supporting informa-
tion (SI, Section 1). Key aspects include: i) for an observation to be 
included in the database, its incubation data must be available either as 
time series of the decay rate or cumulative carbon loss, averaged for the 
experimental replicates, so that curve fitting can be performed; ii) 
collection of data describing the experimental conditions, here after 
called metadata, must be extensive to support result interpretation; and 
iii) all data in the dataset shall be associated with contextual informa-
tion, to explain whenever relevant, from where data were sourced (e.g. 
unpublished data, obtained from authors) and if any modification or 
assumption were made (e.g. pyrolysis temperature not measured, but 
value from literature suggested by authors was reported). 

The dataset was structured in four tables, each table containing 
multiple fields (Fig. 2). The tables were named “articles” (with 16 
fields), “data” (26 fields, although only 4 were consistently populated), 
“metadata” (65 fields) and “validation” (109 fields). Each field is 
described in a database schema, which is provided in machine- and 
human-readable formats (json, html) (Section 2 in SI). The dataset is 
saved as a Microsoft Excel file but can also be exported to other formats. 
Additional data are also provided in separate files, e.g. data of Q10- 
values for temperature dependence of biochar decomposition and data 
from previous persistence assessments (IPCC, 2019; Lehmann et al., 
2021; Wang et al., 2016; Woolf et al., 2021). 

For the data compilation, articles containing biochar incubation data 
were identified. This identification started from existing assessments 
(Andrade et al., 2022; Budai et al., 2013; IPCC, 2019; Spokas, 2010; 
Wang et al., 2016; Woolf et al., 2021) and was further extended mainly 
by literature searches (direct search3, citing literature, search alerts on 
previous incubation studies, or direct communication with authors). 
Bibliographic information was saved, including e.g., open-source license 
information or copyright, digital object identifier, number of observa-
tions per article. Then, for each article, the individual observations were 
identified. For consistency and backward traceability, each observation 
was given a unique identifier number and a name corresponding to its 
given name in the original article. Whenever possible, a mapping be-
tween our data and data from former assessments (IPCC, 2019; Lehmann 

Fig. 1. From measuring a flux of carbon dioxide emission to calculating correlations between estimated persistence (or durability) and experimental variables: 
individual experiments, dataset compilation, data analysis, and policy-relevant adjustments. 

3 Scopus search string: TITLE-ABS-KEY ("biochar stability" OR "biochar 
decay" OR "biochar mineralisation" OR "biochar degradation" OR "biochar in-
cubation"). Latest search done in October 2022. This search string retrieved 
many but not all studies included in this work. Several articles were identified 
from other publications or direct contact with researchers. 
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et al., 2021; Woolf et al., 2021) was also established, to enable com-
parisons with previous assessment at the level of individual observa-
tions. Then, for each unequivocally identified observation, the 
decomposition data and metadata were extracted manually. If needed, 
figures were digitised or contact with the authors was established to 
access non-published data. 

As a result, the dataset contains information for 134 observations 
(129 observations from carbonized materials, and 5 from associated 
biomass controls), collected from 17 articles where biochar decompo-
sition was measured separately from the background soil organic matter 
decomposition (e.g. using isotopic techniques or incubation in pure 
sand) (Aubertin et al., 2021; Budai et al., 2016; Fang et al., 2019, 2014; 
Herath et al., 2015; Kuzyakov et al., 2014; Liu et al., 2020; Major et al., 
2010; Rasse et al., 2017; Santos et al., 2021; Singh et al., 2015, 2012, 
Ventura et al., 2019, 2014; Wu et al., 2016; Zhu et al., 2019; Zimmer-
man, 2010). The biochar decomposition time series (decay rates, cu-
mulative carbon lost or remaining) have not been included in a 
published dataset so far; only the estimated 100-year biochar stability 
(IPCC, 2019; Lehmann et al., 2021) or the decay model parameters have 
been reported (Woolf et al., 2021). Metadata describing the experiments 
totalled about 8000 data elements. The most recent previous assess-
ments had 87 observations, with much fewer metadata elements (ca 
350) (Lehmann et al., 2021; Woolf et al., 2021). In addition, the dataset 
includes bibliographic information of 56 articles that performed biochar 
incubation, but those studies did not differentiate the biochar carbon 
losses from background soil respiration. Consequently, data were not 
extracted from those articles. 

2.2. Exploratory data analysis 

An exploratory data analysis was performed with the goal of iden-
tifying existing correlations between variables, potential data gaps or 
inconsistencies. A second goal was to guide future biochar incubations. 
Scatter plots, ternary plots, histograms, Pearson correlation matrices, 
distance correlation matrices, and principal component analysis (PCA) 
were used to analyse the metadata, the decomposition data, and other 
variables calculated from these data (e.g. average of decay rate over 
given time range, calculated dry-ash free elemental composition). The 
data exploration was performed in python (v3.9) using several libraries, 
mainly pandas (McKinney, 2010; pandas development team, 2020), 
numpy (Harris et al., 2020), scipy (Virtanen et al., 2020), scikit-learn 
(Pedregosa et al., 2011), matplotlib (Hunter, 2007), and ternary 

(Harper, n.d.). 

2.3. Modelling toolchain development and analyses 

We developed an open-source modelling toolchain in python to 
perform the most common data analysis steps, including data selection 
procedures, curve fitting, persistence estimate calculation, soil temper-
ature adjustment, search for correlations, and various static and inter-
active visualisations. This modelling toolchain is released as a python 
library with its documentation and demonstration notebooks.4 The 
sections below detail some of the key modelling steps and the analyses 
performed, for curve-fitting (2.3.1), soil temperature re-calibration 
(2.3.2), persistence estimate calculation (2.3.3), and search for corre-
lations (2.3.4). 

2.3.1. Curve fitting of incubation data 
The curve-fitting procedures developed allow for specifying and 

disclosing modelling choices (e.g. initial conditions, algorithm and li-
brary, constraints, model function). The procedures report the fitted 
variables, their uncertainty and correlations, the residuals, and various 
goodness-of-fit metrics (e.g. sum of squared residuals, Bayesian infor-
mation criteria, Durbin-Watson score). Several physical checks are also 
applied, which can be used to further identify realistic fits (e.g. positivity 
of all decay rates, positivity of pool sizes, individual pool sizes below 
100 %) or rather well constrained fits (e.g. standard deviation of fitted 
parameter smaller than parameter value, in absolute value). All the 
fitting information is saved for each observation and figures can be 
plotted to visually inspect the quality of fitted curves. This allows all 
observations included in the dataset to be analysed using the same 
procedure, a limitation previously highlighted (Weihermüller et al., 
2018). 

These procedures were applied to the dataset, using multiple model 
functions (single, double, and triple exponential, in both constrained 
and unconstrained forms, and a power model (Zimmerman, 2010), see 
Section 3.1 in SI for parametrisation of each model function), several 
fitting algorithms (Levenberg-Marquardt and Trust Region Reflective 
algorithms, as implemented in scipy; and default algorithm implemented 
in lmfit), and five sets of initial conditions (different for each type of 

Fig. 2. Simplified structure of the biochar stability database, its four tables and example of contents for each table. DOI: Digital Object Identifier, HTT: Highest 
Treatment Temperature, WHC: Water Holding Capacity. 

4 GitHub repository for biocharStability library: https://github.com/ 
SLU-biochar/biocharStability. 
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exponential model function, see SI for numerical details). Best fits were 
then selected under different strategies (Table 1). All fits and best fits 
were analysed and compared to the fitted data reported in Woolf et al. 
(2021). Uncertainty from curve-fitting was also propagated on the fitted 
decomposition time series using 1st-order Taylor series expansion 
(Section 3.1 in SI), whenever possible. 

2.3.2. Soil temperature adjustment 
Three soil temperature adjustment methods were implemented and 

compared: a) the existing Q10 method (Lehmann et al., 2015; Woolf 
et al., 2021), b) a stepwise Q10 method and c) an exponential method. 
The two new methods, b) and c), are attempts to improve the soil 
temperature adjustment and overcome limitations of the existing Q10 
approach a). 

Q10(T) = 1.1 + 12.0 exp− 0.19T (1)  

f1,2 =
k2

k1
= (Qavg

10 )
T2 − T1

10 where Qavg
10 =

1
T2 − T1

∫ T2

T1

Q10(T)dT (2)  

The biochar Q10 method (a) relies on a temperature dependent Q10 
factor, derived from a series of biochar incubations (Eq. (1), which is 
then used as shown in Eq. (2) to convert decay rates from one temper-
ature to another. Although symmetric (i.e. f1,2*f2,1 = 1), this relation-
ship has an unexpected behaviour when doing multiple temperature 
conversions (i.e. f1,2*f2,3 ∕= f1,3, see Section 4 in SI for a numerical 
example). In addition, attempts to reproduce the Q10 values that were 
part of the dataset used to parametrize Eq. (1) from the original Nguyen 
et al. (2010) study were unsuccessful. 

The stepwise Q10 method factor is a slight modification of the 
method above that still uses the Q10 relationship in Eq. (1). However, 
instead of converting decay rates between two temperatures (from Ta to 
Tb) in one step, the conversion is done in equal steps s (Eq. (3). We noted 
that when s was small enough (s = 0.001 ◦C), the relationship converges 
towards a function with the expected mathematical property (i.e., f s

1,2* 
f s
2,3 = f s

1,3, see numerical example in Table S3 in SI). 

f s
a,b =

kb

ka
=

∏n− 1

i=0
fi,i+1 =

∏n− 1

i=0

(
1
s
*
∫ Ta+(i+1)*s

Ta+i*s
Q10(T)dT

) s
10

(3)  

Lastly, the exponential method builds upon a simple relationship be-
tween biochar decay rates and incubation temperature, directly derived 
from the dataset compiled in this study, and similar to the approach 
originally suggested in Cheng et al. (2008). For all observations with a 
H/C ratio below 0.7 and pyrolysis temperature above 400 ◦C (to exclude 
non biochar observations), the average decay rate over the 2nd year of 
incubation was calculated. This average decay rate was then plotted 
against incubation temperatures, and an exponential relationship 
derived, resulting in the parametrization in Eq. (4) and the conversion 
factor in Eq. (5), where temperature T is expressed in degree Celsius. 
This parametrisation corresponds to Q10 values of 2.0, 1.6, and 1.5 for 
temperatures of 0, 10, and 20 ◦C, respectively. 

k(T) = 0.9 exp0.02T − 0.7 (4)  

f e
a,b =

kb

ka
=

0.9 exp0.02Tb − 0.7
0.9 exp0.02Ta − 0.7

(5)  

The three approaches were compared numerically for a range of initial 
and target temperatures, by comparing the conversion factors fa,b ob-
tained for the incubation temperatures present in the dataset and by 
comparing the effect on the 100-year permanence of multi-pool expo-
nential fits from the dataset (section 3.3 below and section 8 in SI). 

2.3.3. Calculation of persistence estimates 
To identify potentially relevant correlations with the metadata 

available, we expanded the persistence estimates (i.e. indicator derived 

from curve fitting) from commonly used MRT, t1/2 and BC100 to also 
include: i) amounts of carbon remaining at 1, 2, 5, 10, 20, 30, 40, 50, 75, 
100, 200, 500 years, and ii) annual average decay rates in the n-th year 
(where n also varies from 1 to 500 years). These persistence estimates 
can be calculated from the fitted data, for any observation, at any time 
horizon, soil temperature, and temperature adjustment method. 

2.3.4. Search for persistence correlations 
Finally, functions were developed to correlate the available metadata 

to persistence estimates. This includes calculation of distance correla-
tion matrices, but also functions to perform linear correlations, as well as 
non-linear, multi-variate, and multi-target correlations. The main non- 
linear models implemented were power functions, sigmoid functions, 
piece-wise linear functions, and tree-based methods like random forest 
regressors (Breiman, 2001). 

Data selection. Persistence correlation analyses were performed on 
different subsets of observations: i) all observations, ii) excluding sin-
gular observations, and iii) excluding singular observations and outliers. 
Singular observations refer to observations where modelling issues arose 
(e.g. unreliable fits) or which did not meet certain criteria (Table 2). For 
each singular observation, reasons for classification as singular are re-
ported in Table S4 (Section 9 in SI) and are explained in results (sections 
3.2 and 3.3). The few remaining outliers are observations that met all 
selection criteria, but still resulted in unexplainable low persistence 
estimates (i.e. 0 % remaining after 100 years for H/C values where the 
majority of observations had much higher remaining fractions). Singular 
observations and outliers are shown separately on graphs. 

BC100 and H/C correlation. Linear regressions were computed on 
the different subsets of data, to re-produce the same type of relationship 
as previously published. A clipped power model was also introduced 
(Eq. (6)), with four parameters: M, a, b, α), to describe expected non- 
linearity in persistence and absence of persistence for very high H/C 
values (raw biomass). The 95 % confidence intervals were calculated by 
propagation of fitting uncertainty by 1st-order Taylor series expansion. 
{

BC100 = M − a(H/C)
b
, if H/C < α

BC100 = 0, if H/C ≥ α (6) 

Random forests. Random forests regressors were used to illustrate 
multi-target and multi-variate regressions. The random forests were 
fitted on the dataset excluding singular observations and outliers, in a 
descriptive way rather than in a predictive way (i.e. not using separate 
train/test/validation sets neither using out-of-bag methods). To limit 
over-fitting, the maximum depth of the decision trees was set to 5. The 
regressions were multi-target, meaning that the regressions would 
calculate simultaneously multiple persistence factors (biochar carbon 
remaining at any time horizon and soil temperature). The regressions 
were set up to use one or several variables as input data, and 39 com-
binations were tested in total. One regression included 24 possible 
metadata variables; other regressions included 1 to 3 variables (see 
variable combinations in Table S5, Section 10 in SI). 

3. Results and discussion 

3.1. Dataset exploratory analysis 

The compiled dataset was explored with a focus on measured 
timeseries of decay rates, gaps in the dataset, and internal correlations. 

Decay rate timeseries. Across all observations, measured biochar 
decay rates decrease with incubation time and are in the range of 10− 4 to 
1 gC yr− 1 gC0

− 1 (Fig. 3; Figs. S5–S6 in SI). After a few months of incu-
bation, decay rates are from one to several orders of magnitude lower 
than decay rates of fresh biomass (Ntonta et al., 2022), in line with 
previous reports (Woolf et al., 2021) (Fig. 3). At longer incubation times 
(>730 days), measured decay rates for some biochars were in the range 
of decay rates measured for lignite (Chabbi et al., 2006) (Fig. 3). 
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Cumulative carbon lost at the end of the incubations ranged from 0.02 % 
to 22.6 %, with a median of 1.4 %, across all studies and biochar types 
(Table 3). Notably, the few timeseries from field decomposition studies 
did not have smooth exponential decay curves as laboratory incubation, 
but exhibited oscillations linked primarily to seasonal temperature 
variations (Ventura et al., 2019). 

Feedstock type. Most observations were from wood-derived bio-
chars (53 %). Other biomass types used were crop residues (25 %, 
mainly corncob, rice straw or wheat straw), grass (16 %, mainly mis-
canthus), manure, leaf and biosolids (<5% each) (Table 3). Biomass 
with a C4 carbon fixation pathway e.g., maize, miscanthus or sugarcane 
have been commonly used as feedstock as it is an easier way to obtain an 
isotopically traceable biochar compared to using an actively labelled 
biomass. 

Conversion process conditions. The vast majority of observations 
used biochar produced via slow pyrolysis (95 %), while only a handful of 
observations are available for gasification (Ventura et al., 2019, 2014), 
hydrothermal carbonisation or flash carbonisation (Budai et al., 2016) 
(Table 3). In most cases, the pyrolysis was performed in laboratory 
bench scale reactors, although some commercial pyrolysis reactors have 
also been used. 

Recorded pyrolysis conditions included the highest treatment tem-
perature (HTT, ◦C), the heating rate (HR, ◦C/min) and the residence 
time (RT, min) at the HTT. The HTT is nearly always reported in incu-
bation studies, although it is recognised that HTT is difficult to deter-
mine in large scale (commercial) reactors due to non-homogenous heat 
distribution (Budai et al., 2016). Likewise, HR and RT are mainly re-
ported for laboratory produced biochar where these parameters are well 
controlled. A common possible source of misinterpretation, for the RT, is 
that some studies report an overall RT inside the reactor (from start to 
end of pyrolysis process, possibly including drying time) while others 
report the RT at HTT. Here, only RT at HTT was included in the database 
leading to some missing data. 

The reported HTT ranged from 105 ◦C (drying, fresh biomass in-
cubations) to 1200 ◦C (gasification), with most values in the range of 
400–600 ◦C (Fig. 4a). HR spanned between 0.1 ◦C/min and 51 ◦C/min, 
with a median of 7.5 ◦C/min. Finally, RT was mostly between 40 min 
and 3 h, although the effect of longer residence time was tested in some 
cases, with RT up to 72 h (Zimmerman, 2010). In terms of pyrolysis 
conditions, there is a data gap for biochars produced at higher temper-
atures (>600 ◦C). Furthermore, chars from hydro-thermal carbon-
isation, flash carbonisation, gasification and fast pyrolysis have mainly 
been incubated without isotopic techniques (Andrade et al., 2022), and 
are therefore underrepresented in this dataset. 

Biochar elemental composition and ratios. Basic elemental 
composition (C, H, O, N) is reported in most incubation studies, as well 
as molar elemental ratios (H/C, O/C) (Fig. S7 in SI). However, it is worth 
noting that only 8 observations, corresponding to only 2 different 

biochars, have measured both the total carbon (Ctot) and the organic 
carbon (Corg) contents. Previous assessments most often assumed that 
Ctot and Corg contents were equal. This assumption was reproduced in 
the current dataset and explicitly reported. The difference between Ctot 
and Corg is likely to be negligible (<1%) for most biochars made from 
woody feedstocks and with a low ash content. In the present study, 
whenever carbon content is used in calculation, Corg was used unless 
missing, in which case Ctot is used to bridge the data gap. This bridged 
carbon content is simply noted C (e.g. H/C ratio, O/C ratio in Fig. 4b-c). 

The molar H/C ratio, which indicates the average (bulk) degree of 
carbonisation of a biochar sample, ranged from 0.13 to 1.4, with a 
median of 0.54. Lower values of H/C ratio are thought to be associated 
with higher pyrolysis temperatures and longer residence times, but also 
higher persistence. We note that only 4 biochars with an H/C ratio below 
0.2 (Aubertin et al., 2021; Budai et al., 2016; Rasse et al., 2017)5 have 
been incubated so far, and no biochars with H/C ratios below 0.1 
(Fig. 4b). This is an important data gap for the validity of biochar 
persistence models, as it has been reported that biochars formed at 
higher temperatures, resulting in H/C ratios well below 0.1, show higher 
degree of aromatic condensation and specific morphotypes (Petersen 
et al., 2023). It must also be noted that there is trade-off between pro-
duction of biochars with lower H/C and maximising the biomass-to- 
biochar carbon yield and subsequent carbon storage potential (Rodri-
gues et al., 2023; Weber and Quicker, 2018). 

Biochar ash and pH. Ash content was determined either at 550 ◦C or 
at 700 ◦C, and seldomly using both methods. Regardless of the method, 
the ash content varied between 0.3 % (wood) and 76 % (cow manure), 
with a median around 7 %. Biochar pH was mostly determined in water 
(a handful of observations also determined pH in a CaCl2 solution), but 
at different char-to-water mass ratios (1:1, 1:5, 1:10, 1:20). Regardless of 
the ratios used, the pH of biochar varied between 6.3 and 10.8, with a 
median at 9.5 (excluding two hydrothermal carbonization (HTC) sam-
ples, which had lower pH values around 4.0). 

Biochar chemical oxidation and other indicators. Although pro-
posed as a persistence indicator a decade ago (Cross and Sohi, 2013) and 
more recently re-analysed (Liu et al., 2020), chemical oxidation of 
biochar has only been reported for 11 observations. Besides, the few 
studies reporting chemical oxidations have used different concentra-
tions of reagents and reaction times. Likewise, emerging characterisa-
tion methods such as hydrogen pyrolysis (Ascough et al., 2009; Howell 
et al., 2022) or random reflectance measurements (Mastalerz et al., 
2023; Petersen et al., 2023) have so far not been used to characterise 
biochars from incubations with separate measurement of biochar C 
fluxes. 

Table 1 
Strategies S1–S4 applied for selection of best-fit in curve-fitting of decomposition data. S: single, D: double, T: triple, R2: coefficient of determination, BIC: Bayesian 
Information Criteria.   

S1 (constrained double exponential) S2 (any exponential) S3 (power) S4 (any model) 

Rationale Reproduce results from previous studies, 
with mainly constrained double 
exponential models 

Neither force double exponential, nor force sum 
of pools to add up to 100 %; perform additional 
consistency checks 

Test behaviour of 
power model 

Let best fit selector and consistency 
checks select best model type for each 
observation 

Model functions D exponentials, constrained only S, D, T exponentials, constrained and 
unconstrained 

Power model 
only 

All model functions 

Checks applied  - Positive decay rates  
- Positive pool sizes  

- Positive decay rates (not applicable to power model)  
- Positive pool sizes (not applicable to power model)  
- Decay rates significantly different (not applicable to power model)  
- Parameters constrained 

Initial conditions None (default) Five sets of initial conditions per exponential 
model 

None (default) Five sets of initial conditions per 
exponential model 

Best fit selector R2 BIC 
Algorithm/library Levenberg-Marquardt and Trust Region Reflective algorithms, from scipy; and default algorithm implemented in lmfit   

5 The biochars with H/C < 0.2 from Budai et al. (2016) and Rasse et al. 
(2017) are the same. 
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Incubation conditions. Among the 129 biochar observations 
included at this stage, only 8 corresponded to biochar incubation under 
field conditions (Major et al., 2010; Singh et al., 2015; Ventura et al., 
2014, 2019) (Fig. 4f). Most incubations were performed at a tempera-
ture between 20 and 35 ◦C, and a handful at other temperatures 
(Fig. 4d). Temperatures lower than 20 ◦C usually correspond to field 
studies, where only the annual average temperature is reported. Tem-
peratures of 40 ◦C and 60 ◦C were used in one article to determine 
temperature sensitivity of biochar decomposition (Fang et al., 2014). No 
incubation was yet performed at temperatures below 10 ◦C, which is of 
relevance in cold climates. Incubation duration has been argued to be an 
important factor in the determination of biochar persistence estimates, 
and longer experiments usually lead to higher persistence estimates than 
shorter ones (Zimmerman et al., 2011). Incubation duration varied be-
tween 90 days and 3102 days (8.5 years), with a mode of 365 days and a 
median of 390 days (Fig. 4e). Finally, in laboratory incubations, soil 
moisture was set to 60–70 % of WHC in all except 5 observations where 
it was set to 100 % representing flooded paddy conditions (Wu et al., 
2016). Effects of freeze–thaw cycles were not studied in the experiments 
from which the dataset was compiled. 

Soil properties. Soil properties are shown in the SI (Figure S8-10, 
Section 6). Most soils had a sandy texture, with few clay-rich soils. Soil 
pH before biochar application ranged from 4.6 to 8.8 with a median of 
6.8. Soil organic carbon content is also available in the database and 
ranged from 0 % (pure sand incubations with microbial inoculate, 
Zimmerman et al. (2011)) to 10 % (Andisol under permanent pasture, 
used in Herath et al. (2015)), with a median of 1.2 %. 

Identified data gaps. Overall, the main gaps in the incubation 
dataset concern: i) biochars produced at temperatures above 600 ◦C, ii) 
biochars with high degree of carbonisation i.e. H/C ratios below 0.1, 
which is directly related to the temperature gap, iii) studies under field 
conditions, iv) incubations at soil temperatures below 10 ◦C, and v) 
characterisation of biochar samples using chemical and optical in-
dicators of stability. The latter gap could partly be bridged by re- 
characterisation of previously incubated samples whenever these are 
still available. 

Correlations within the dataset. Linear Pearson correlation and 
non-linear distance correlation were calculated for all numeric metadata 
in the dataset (Figure S11-S12, Section 6 in SI). These revealed expected 
and known correlations between biochar properties and production 
conditions, e.g. higher pyrolysis temperature and higher carbon content 
(Ippolito et al., 2020; Weber and Quicker, 2018). Further, linear Pearson 
and distance correlations were calculated between the cumulative 

carbon lost, the last measured decay rate, and all numeric metadata 
(Figure S13). Cumulative carbon lost and last measured decay rates, 
used here as simple indicator of biochar decomposition directly derived 
from the dataset, showed a medium level of correlation (i.e. r = 0.3 to 
0.6, in absolute values) with biochar elemental composition and ratios 
(C, H, and O on dry as free basis, H/C, O/C), Volatile Matter, Fixed 
Carbon (as determined by proximate analysis), biochar pH, and soil 
organic matter. Notably, while linear correlation was low with pyrolysis 
temperature (r = 0.08 with cumulative carbon lost, r = 0.01 with last 
measured decay rate), non-linear correlation was higher (r = 0.38, r =
0.34). 

Finally, a PCA was performed on all numerical variables, using the 
last measured decay rate as simple indicator of persistence (Fig. 5). The 
total explained variance was 53 %, indicating that the variation within 
the dataset is difficult to explain. The PCA only considered the numerical 
variables, thereby excluding information like biomass class, pyrolysis 
class, or incubation type. The 1st and 2nd components indicate that 
higher values of last measured decay rate are related to higher oxygen, 
hydrogen, H/C and O/C ratios, but also partly linked to higher soil 
organic matter and silt contents. Lower decay rates are here related to 
higher biochar C content, pyrolysis temperature, C/N ratio and sand 
content. 

3.2. Curve-fitting of incubation data 

Biochar carbon remaining as a function of time was fitted for all 
observations using a set of model functions, initial conditions, algo-
rithms, and libraries, totalling 53 fits per observation. Then, four best-fit 
selection strategies (Table 1) were applied and compared. The analysis 
includes in SI a comparison with fits previously reported in Woolf et al. 
(2021) for a common sub-set of 66 observations (Section 7.5 and 
Figure S16 in SI). 

Curve fitting procedure. Learnings from the curve fitting procedure 
are explained in Section 7 in SI and briefly summarized here. For this 
dataset of biochar incubations, using multiple sets of initial conditions 
(Table S1, Section 3.4 in SI) was useful to identify good fits. Applying 
physical consistency checks helped eliminating unrealistic fits and some 
degree of overfitting. Residuals were mostly not randomly distributed 
and sometimes reflected systematic patterns, indicating changes in 
environmental conditions (temperature) during the incubation time. 

In previous work, the coefficient of determination (R2) has 
commonly been used for selecting a best fit; however, this is not rec-
ommended for curve-fitting of non-linear functions and does not allow 

Table 2 
Criteria used for classification as singular observations. For each criteria, the number of observations (n) that meet the criteria is indicated. Note that in practice, most 
observations met multiple criteria simultaneously.  

Criteria n Remarks 

Incubation duration shorter than 349 daysa 7 Similar to previous persistence assessment (Woolf et al., 2021), it is assumed that incubations shorter than a year are not 
suited for long-term extrapolation. The observations include: 
2 observations with 90 days (Rasse et al., 2017), the same biochars are incubated for 365 days (Budai et al., 2016) 
2 observations with 164 days (Ventura et al., 2014), the same biochars are incubated for 959 days (Ventura et al., 2019) 
3 observations with 200 days (Zhu et al., 2019) 

Incubation temperature higher than 40 ◦C 20 In Fang et al. (2014), biochar was incubated at 20 ◦C, 40◦ and 60 ◦C. The observations at 20 ◦C are kept in regression 
analyses. See section 3.3. 

Soil-less or weathered materials 4 In Aubertin et al. (2021), out of 6 observations, 2 were performed with pure biochar (soil-less) and 2 were performed 
with weathered biochars. These experimental setups are not directly comparable with the other experimental setups in 
the dataset. The 2 remaining observations are kept (incubation of non-weathered biochar-compost blends). 

Accelerating decay in power model 12 Related to curve fitting issuesb. This indicates that the fitted power model predicts an acceleration of the biochar decay 
rates. This usually arose when experimental data showed temporary increases in decay rates. 

Single exponential as only best fit 13 Related to curve fitting issuesb. This indicates that double and triple exponential models had too large uncertainties to be 
selected as best fit, and usually arose when experimental data showed temporary increases in decay rates. 

Difference in BC100 between power and exponential 
model larger than 20 % 

15 Related to curve fitting issuesb.  

a The cutoff time is set to 349 days (instead of 1 year) to avoid excluding observations that have exactly a 1 year duration (n = 57), 360 days (n = 2), and 1 field 
observation where the last measurement is missing resulting in 349 days of incubation (Singh et al., 2015). 

b The three criteria related to curve fitting issues overlap to a large extent, i.e. issues with power model are linked to identification of single exponential as best fit, 
and to large differences in BC100 between the two extrapolation models. They also overlap partly with high incubation temperatures. 
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Fig. 3. Measured biochar carbon decay rates (in gC gC0
− 1 yr− 1, C0 is the amount of biochar C initially applied, logarithmic scale) for all observations included in the 

dataset, as average of experimental replicates. The color indicates the biomass feedstock. The upper and lower shaded areas indicate decay rates for fresh biomass 
residues (Ntonta et al., 2022) and for lignite (Chabbi et al., 2006), respectively. Decay rates can be converted to mgC gC0 day− 1 by dividing by 2.74. 

Table 3 
Cumulative biochar carbon lost, expressed as % of initially applied carbon, for incubations shorter than 2 years and incubations equal or longer than 2 years. Minimum, 
median and maximum values, calculated for different groupings of the data (all data, by feedstock classes, by pyrolysis classes, by H/C ratio). Numbers in brackets 
indicate the number of observations in each group (n). Cumulative carbon lost at end-of-incubation of fresh biomass is also reported from studies that incubated fresh 
biomass. HTC: Hydrothermal carbonization.  

Grouping Cumulative carbon lost at end of incubation (% of initially applied carbon) 

Incubations shorter than 2 years Incubations longer than 2 years 

Min Median Max n Min Median Max n 

All biochar observations (129) 0.02 1.1 15.3 (72) 0.4 1.9 22.6 (57)  

Feedstock classes (129)  
- Wood (69) 0.5 1.2 7 (23) 0.4 1.5 10.9 (46)  
- Crop (32) 0.2 1.2 15.3 (30) 14.9 18.7 22.6 (2)  
- Grass (21) 0.02 0.6 15.2 (19) 5.5 5.6 5.8 (2)  
- Leaf (2) NA NA NA NA 1.2 1.9 2.5 (2)  
- Biosolids (1) NA NA NA NA 8.9 8.9 8.9 (1)  
- Manure (4) NA NA NA NA 2.1 4.6 7.3 (4)  

Conversion process classes (129)  
- Slow pyrolysis (122) 0 1.1 15.2 (67) 0.4 1.8 10.9 (55)  
- Gasification (4) 2.8 5.3 5.3 (2) 14.9 18.7 22.6 (2)  
- Flash carbonisation (1) 0.5 0.5 0.5 (1) NA NA NA NA  
- HTC (2) 10 12.7 15.3 (2) NA NA NA NA  

Molar H/C ratio (129)  
- H/C < 0.3 (9) 0.02 0.4 2.2 (9) NA NA NA NA  
- 0.3 ≤ H/C < 0.7 (93) 0.2 1 10.1 (43) 0.4 1.6 22.6 (50)  
- 0.7 ≤ H/C < 1.0 (19) 0.3 1.3 4 (15) 2.2 3.1 6.9 (4)  
- H/C ≥ 1.0 (6) 6.6 14.5 15.3 (5) 7.3 7.3 7.3 (1) 
Fresh biomass (5) 29.4 38.7 57.3 (5) NA NA NA NA  
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model ranking and selection (Weihermüller et al., 2018). Here, the 
Bayesian information criteria (BIC) was used instead: it was observed 
that BIC and R2 did not yield the same rankings of fits for this dataset; 
but that all fits selected by BIC also had a high R2 (>0.9). 

However, even if the fitting strategies and procedures above allow 
the identification of best fits, those fits may still lead to results that 
conflict with current theories and understanding mainly because of ir-
regularities in the incubation data, such as increasing decay rates during 
some parts of the incubation. This was for instance the case of some 
biochars incubated at 40 ◦C and 60 ◦C (Fang et al., 2014), several bio-
chars in Budai et al. (2016), and some field studies (Figure S15, Table S4, 

Section 7 in SI). Therefore, it is important to visually inspect the incu-
bation data and the fitted models. In this study, all available incubation 
data were included in the dataset for transparency; however, irregu-
larities in the incubation data may be a criterium for exclusion when 
developing persistence correlations. 

Exponential models. Previous work recommended the use of dou-
ble exponential functions over single exponential functions (Woolf et al., 
2021). Triple exponential functions were only rarely used. Here, strat-
egy S2 shows that triple exponential functions (63 best fits) can be as 
relevant as double exponential functions (58 best fits) (Table 4). It also 
indicated that even single exponentials cannot be excluded in some cases 

Fig. 4. Histogram of pyrolysis temperature (a), molar H/C ratio (b), molar O/C ratio (c), incubation soil temperature (d), incubation duration (e) and incubation type 
(f), for all biochar and fresh biomass observations included in the dataset. 

Fig. 5. Principal component analysis performed on all numeric variables in the dataset (excluding last measured decay rate and total C lost at end of incubation), 
with 3 components. Explained variance per component was 25%, 16%, and 12% (53% in total). The 10 most important variables are shown as arrows (HTT: highest 
treatment temperature; HR: heating rates; biochar elemental composition ratios: C, N, H/C, O/C, C/N; pHbc: biochar pH; Ash: biochar ash content; OM: soil organic 
matter content; pHs: soil pH; Sand, silt: sand and silt soil contents; ID: incubation duration). The colors indicate the last measured decay rate in logarithmic scale, for 
each observation (hence with variable incubation durations). 
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(13 best fits). However, further visual inspection revealed that single 
exponential best fits were mostly related to experimental time series 
with irregularities, and therefore high fitting uncertainties which led to 
exclusion of higher pool models by the checks applied. In such cases, 
even if the R2 was high, the validity of the best fits may still be ques-
tioned. Last, in most cases, the constrained models were selected as best 
fit in S2; but in some cases, unconstrained models were selected 
(Table 4). This was also linked to irregularities in the experimental data. 

Power models. It was possible to fit power models to all 134 ob-
servations, but five observations did not pass the constraint on param-
eter uncertainty (Strategy S3, Table 4). Previously, power models have 
been shown to yield much longer residence times than exponential 
models (Zimmerman et al., 2011) but have not been applied to all 
available biochar and biomass incubation time series. 

Fig. 6a compares BC100 obtained with power model and exponential 
models, for all observations. It shows that power models can describe 
situations where biochar/biomass decays rapidly and yield similarly low 
100-year permanence fractions as exponential models, with only a 
handful of exceptions (see bottom left corner in Fig. 6a). When expo-
nential models predict high BC100 (>80 %), power models also predicted 
high (higher) BC100, with few exceptions. Between those extremes, when 
BC100 from exponential models was in the range 20 %-80 %, power 
models tended to yield higher BC100 values in most cases. 

Power models yield similar or slightly lower MRTs whenever expo-
nential models yield MRTs below 500 years, but beyond this point, 
power models generally yield MRTs that are several orders of magnitude 
higher (Fig. 6b). Hence, it may be argued that for the timescales relevant 
in climate policy (from century to millennia), both model types seem to 
provide comparable results, with some notable exceptions related to 
irregularities in the measured decay rates (see details in section 7.4 in 
SI). 

Overall, power models extrapolate biochar decomposition by 
extrapolating the observed change in decay rate during the incubation 
time. Under the theory that biochar is an arrangement of aromatic 
carbon structures where remaining biochar has an increasing chemical 

stability and thereby decreasing susceptibility to microbial oxidation, 
the power model may make more sense than a finite number of expo-
nentials (Zimmerman et al., 2011). However, whether observed decline 
in decay rate reflects future decline is not obvious and constitutes an 
inherent assumption of power models. As for exponential models, curve 
fitting extrapolation highlights the need for long-enough experiments 
(typically > 1–2 years). 

Best fits & singular observations. Overall, even if best fits were 
identified by the strategies applied; these may still result in unexpected 
or too uncertain extrapolations results. At this stage of the modelling, 32 
observations from 8 articles were classified as singular observations, of 
which 23 were based on irregularities in the curve fitting step, 5 due 
only to incubation time shorter than 349 days, and 4 due only to soil-less 
experimental conditions (Table 2, Table S4 in SI). For the rest of this 
article, best fits from strategies S2 (all exponentials, with constraints) 
and S3 (power model, with constraints) were used. 

3.3. Soil temperature adjustment 

Overall, the three soil temperature adjustment methods had a similar 
behaviour i.e. increasing with temperature although differently, and 
resulted in minor differences on average (Figure S17 and section 8 in SI). 
The new methods both provided slight improvements of decay rate 
corrections at lower target temperatures, in line with unpublished re-
sults that concluded that the Q10 method overestimates long-term sta-
bility in soils at 0–10 ◦C (Elsgaard and Eriksen, 2023). 

Temperature adjustment methods remain associated with large un-
certainties and unknowns (Davidson and Janssens, 2006). For instance, 
all methods assume that biochar temperature sensitivity observed over 
0–2 year of incubation informs on the temperature sensitivity of the 
whole extrapolated period (0 to 100 years), and that all biochars 
respond in a similar way. Data at lower incubation temperatures is also 
scarce, and temperature adjustment from high temperatures (40◦, 60 ◦C) 
down to 20 ◦C is not well calibrated (section 8 in SI). Thus, to minimize 
uncertainty related to temperature adjustment, the rest of the article 
presents calculations at the most common incubation temperature 
(20 ◦C), and the incubations not performed at 20 ◦C were adjusted using 
the exponential method. In addition, at this stage of the modelling, 17 
observations from Fang et al. (2014) with incubation temperature of 
either 40 ◦C or 60 ◦C were classified as singular observations (Table 2, 
Table S4 in SI). 

3.4. Persistence correlations 

3.4.1. Distance correlation matrices 
Following curve fitting and temperature adjustment, persistence 

estimates were calculated for each observation. Correlation of persis-
tence estimates with metadata was investigated using distance correla-
tion matrices (Figure S18 and S19, Section 10 in SI). For exponential 
models (strategy S2), carbon remaining at any time correlated strongly 
with biochar elemental composition and molar ratios (C, H, O, H/C, (H 
+ O) / C), biochar pH, fixed carbon, volatile matter, pyrolysis char yield, 
and pyrolysis temperature (r > 0.5 to 0.9). There were stronger corre-
lations (by 0.1 to 0.3 units) between estimates of carbon remaining after 
short time frames (0 to 100 years) than longer ones (100 to 500 years). 
Both carbon remaining and annual average decay rates showed the 
highest correlation with total C lost during incubation time and last 
measured decay rate, the variable that was used as a preliminary 
persistence indicator in the PCA (Fig. 5). For power models (strategy 
S3), similar patterns were obtained but correlations were weaker at 
longer time horizons (by 0.1 unit). MRT and t1/2 exhibited weaker 
correlations with the variables mentioned above (r < 0.4). 

Overall, these correlation matrices seem to indicate that among all 
numerical variables, biochar elemental composition (C, H, O), molar 
ratios, fixed carbon, volatile matter, biochar pH, and the pyrolysis 
temperature are most relevant to consider for persistence estimates. 

Table 4 
Statistics from best-fit selection strategies: number of model functions selected 
as best fit, best fits with or without initial conditions set, and library/algorithm 
used. NA indicates not applicable for the given fitting strategy; while a 0 in-
dicates no results obtained for that criteria. Sc/Su: single exponential con-
strained/unconstrained, Dc/Du: double exponential constrained/unconstrained, 
Tc/Tu: triple exponential constrained/unconstrained, P: power model, TRF: 
Trust Region Reflective algorithm, LM: Levenberg-Marquardt algorithm, R2: 
coefficient of determination.   

S1 (constrained 
double exponential) 

S2 (any 
exponential) 

S3 
(power) 

S4 (any 
model) 

Functions  
- Sc / Su NA / NA 08-May NA / NA 0 / 2  
- Dc / Du 134 / NA 46 / 12 NA / NA 38 / 7  
- Tc / Tu NA / NA 61 / 2 NA / NA 39 / 1  
- P NA NA 129* 41  

Initial conditions  
- Not 

specified 
134 54 129* 83  

- Specified NA 80 NA 51  

Library, algorithm  
- Scipy, TRF 79 61 129* 94  
- Scipy, LM 28 56 0 26  
- lmfit, 

default 
27 17 0 14  

R2, min, max 0.94, 1.0 0.92, 1.0 0.91, 1.0 0.94, 1.0 

* No best fit was found for 5 observations, due to the check on parameter 
standard deviation 
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Notably, incubation conditions and other pyrolysis conditions exhibited 
weaker correlations with persistence estimates (around 0.2 to 0.3). 

3.4.2. Correlation between BC100 and molar H/C ratio 
Correlation between BC100 and H/C ratios at 20 ◦C is shown in Fig. 7, 

for both extrapolation via exponential and power model curve fittings. 
When using power models, the main cluster of observations was con-
tained within 20 % of biochar carbon lost (Fig. 7b), while the variation is 
twice as high with exponential models (Fig. 7a). 

Linear regressions and power-model regressions were both fitted on 
three different subsets of observations (Table 5, Fig. 7). Regardless of 
model type and curve fitting approach, removing singular observations 
and outliers reduced mean absolute error (MAE) but also dramatically 
increased R2 values (Table 5), as expected. It is worth noting that sin-
gular observations identified in previous modelling steps do not corre-
spond only to observations with very low predicted BC100, but in fact 
span from 0 to 100 % with the majority of observations in the range 20 
%-80 % (data points in grey in Fig. 7). The 4 remaining outliers excluded 
here correspond to gasification crop biochars with an H/C of 0.5 (Ven-
tura et al., 2019), one slow pyrolysis crop biochar with an H/C of 0.7 
produced at 350 ◦C (Herath et al., 2015), and one slow pyrolysis wood 
biochar with an H/C of 0.62 studied under field conditions (only for 
exponential models) (Singh et al., 2015). The gasification biochars and 
the wood biochar were studied under field conditions, and decay rates 
stabilized around 4 × 10− 2 gC gC0

− 1 year− 1, with visible oscillations due 
to temperature variations. For the gasification biochars, it was also 
noted that the presence of roots (in a willow cultivated field) increased 
decomposition (Ventura et al., 2019). All the 4 biochars incubated by 
Herath et al. (2015) under laboratory conditions lost more than 10 % of 
carbon within 500 days, with no clear explanation beside the relatively 
high organic matter content of the two soil types used in those in-
cubations. These outliers call for further field studies but also further 
characterization of these biochars, to attempt elucidating why their 
behavior is markedly different from most other observations. 

Previous work mainly relied on linear correlations for developing 
biochar persistence predictions with H/C ratio (Lehmann et al., 2021; 
Woolf et al., 2021), although a power model was also recently published 
(Rodrigues et al., 2023). In the case of exponential extrapolation 
(Fig. 7a), predictions of both power and linear regressions were rather 
similar for H/C between 0.4 and 1.0. At H/C below 0.4, the power 

regression reached a plateau while the linear regression extended 
beyond 100 % (which is then usually capped to 100 %). At H/C above 
1.0, the power regression declined more rapidly than the linear regres-
sion, before reaching 0 %. Although H/C ratios beyond 1.0 are not 
relevant for evaluating persistence of biochars (since biochar is usually 
defined as H/C below 0.7), we noted that by excluding those observa-
tions, any previously published linear regressions and the ones produced 
here would perform much worse in terms of R2 and MAE and have a very 
different slope. 

In the case of power extrapolation (Fig. 7b), differences between 
linear and power regressions were more pronounced. Although the R2 

was 0.7, the linear regression did not match the data well, over-
estimating persistence at low H/C, underestimating it in the middle 
range of H/C and overestimating it at high H/C. The power model was 
able to describe the data better, with a plateau for H/C below 0.6, fol-
lowed by a rapid decline. In practice, this power regression applied to 
the dataset with power extrapolation implies that all biochars with an 
H/C between 0 and 0.7 would have a similar predicted BC100 (varying 
between 94 % and 91 %). This outcome should be considered with 
caution because of the large modelling uncertainty and inherent 
assumption of power extrapolations in curve fitting. In addition, it 
should be noted again that persistence estimates for H/C below 0.3 are 
not sufficiently supported by data (Fig. 4). 

Similarly to Rodrigues et al. (2023), we find that the use of power 
regressions is preferred over linear regressions, for describing 100-year 
biochar persistence as a function of the H/C ratio. However, we further 
stress that the data selection, curve fitting, and soil temperature 
adjustment procedures significantly affect the persistence predictions. 
For instance, the power regression from Rodrigues et al. (2023) reaches 
0 % persistence at H/C of around 0.75. This directly results from i) 
excluding any observations with H/C above 0.7 despite their relatively 
high modelled persistence, and from ii) including of a series of obser-
vations in the H/C range 0.6–0.7 that in our analysis were excluded 
because of curve fitting issues or temperature adjustment issues. 

3.4.3. Exploring multi-variate, multi-target random forest regressions 
The random forest regressions were fitted on a subset of observations 

that excluded singular observations (identified in sections 3.2, 3.3) and 
remaining outliers identified previously (section 3.4.2), using power 
model extrapolation. Two thirds of the regression models had an R2 

Fig. 6. Comparison between predictions of power model (strategy S3) and exponential models (strategy S2), in terms of a) fraction of biochar C remaining after 100 
years (BC100) and b) apparent mean residence time (MRT, years, time after which 63 % of the carbon is lost), at incubation temperature. For some observations, the 
apparent MRTs calculated with power model were in the range of 106 to 1010 years (cut-out in panel b), which results from rapidly decreasing decay rates. 
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above 0.7 (Table S5 in SI). The regression that included 24 metadata 
variables had the second highest R2 (0.95) and a root mean square error 
(RMSE) of 4.2 %. This regression likely overfits the data and is not of any 
practical use due to the high number of variables, but can be used as a 
benchmark for other models. Interestingly, many regressions with only 1 
or 2 input variables could get close enough to this benchmark (Table S5, 
Section 10 in SI). Most of these included H/C or HTT with one other 
variable, such as soil organic matter content, hydrogen content, oxygen 
content, biochar pH or pyrolysis class. The only regression that out-
performed the benchmark (R2 of 0.97) used H/C and soil organic matter 
content. The random forest that used only H/C ratio as input variable 
had a R2 of 0.85 and a root mean square error of 7.9 %, across all time 
horizons and soil temperatures included. Fig. 8 further illustrates pre-
dictions from the random forest, both for exponential and power 

extrapolations, at multiple time horizons and H/C values. The devel-
opment and use of such models could be further investigated, e.g. to 
provide possible insights to drivers of singular observations and outliers. 

3.5. Perspectives on incubation experiments 

Since the seminal work of Spokas (2010) up to the development of 
methods for inclusion in IPCC inventory guidelines (IPCC, 2019; Woolf 
et al., 2021), incubation experiments have been the basis for persistence 
estimates used in biochar research and practice. However, incubation- 
based approaches are known to not cover all processes that affect bio-
char persistence and are built on several assumptions. 

First, incubation conditions are assumed to be representative of 
conditions in the field. However, while in the laboratory, temperature 

Fig. 7. Biochar carbon remaining after 100-years (BC100) at an incubation temperature of 20 ◦C as a function of the molar hydrogen-to-carbon (H/C) ratio, for 
exponential (a) and power (b) extrapolations. The color and shape of the data points indicate the type of biomass and treatment. Data points in grey are singular 
observations previously identified, which are excluded from the regressions shown. Circled grey data points are outlier observations discussed in the text. Black solid 
lines are best-fit linear regressions. Blue solid lines are best-fit power regressions. Dashed lines are the 95 % confidence internals calculated via uncertainty prop-
agation. R2: Coefficient of determination, MAE: Mean absolute error (%). 
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Table 5 
Correlation relationships between BC100 (%) and molar H/C for different subsets of data, at 20 ◦C. Relationships from previous studies are also reported at either 20 ◦C or 14.9 ◦C. For model comparison, BC100 at H/C of 0.7 
is calculated. R2: Coefficient of determination, MAE: Mean absolute error. BC100 and MAE are expressed in the same unit (%). NA: Not available.  

Extrapolation Relationship Data subset and remarks Equation (BC100 in %) R2 MAE (%) BC100 (%) 
at H/C = 0.7 

Exponential curve fitting, 
at 20 ◦C 

Linear All data (132 observations) BC100 = 101–64.1 × H/C 0.37 18.7  56.1 
Excluding 49 singular observations BC100 = 111–69.4 × H/C 0.43 14.8  62.4 
Excluding 49 singular observations and 4 outliers BC100 = 118–75.2 × H/C 0.68 10.5  65.4 

Power# All data (127 observations) BC100 = 84.2–50.2 × H/C1.78 0.38 (0.17) 17.8  65.6 
Excluding 49 singular observations BC100 = 86.4–43.4 × H/C2.06 0.44 (0.36) 13.9  65.6 
Excluding 49 singular observations and 4 outliers BC100 = 93.0–49.1 × H/C1.98 0.71 (0.49) 9.8  68.8 

Power model curve fitting, 
at 20 ◦C 

Linear All data (132 observations) BC100 = 98.3–46.2 × H/C 0.14 27.3  66.0 
Excluding 49 singular observations BC100 = 122–62.7 × H/C 0.35 13.5  78.1 
Excluding 49 singular observations and 4 outliers BC100 = 130–69.6 × H/C 0.70 9.1  81.3 

Power# All data (127 observations) BC100 = 74.6–3.30 × H/C9.38 0.23 (0.096) 24.6  74.5 
Excluding 49 singular observations BC100 = 87.4–8.21 × H/C7.07 0.50 (0.36) 10.7  86.7 
Excluding 49 singular observations and 4 outliers BC100 = 93.8–18.0 × H/C4.85 0.91 (0.86) 5.1  90.6  

Previous studies 

Exponential curve fitting Linear Woolf et al., 2021, at 20 ◦C, 
85 observations 

BC100 = 100.6–65.07 × H/C 0.32 NA  55.1 

Linear Woolf et al., 2021, at 14.9 ◦C, 
85 observations 

BC100 = 104.45–63.51 × H/C 0.33 NA  60.0 

Power Rodrigues et al., 2023 at 14.9 ◦C, 
77 observations with C ≥ 50 %, H/C < 0.7 and O/C < 0.4 

BC100 = 85.4–493.3 × H/C5.9998 0.33 NA  27.3  

# The R2 value provided in brackets correspond to R2 calculated for the part of the curve where predicted BC100 is not equal to 0%, i.e. removing from the R2 calculation the observations with H/C ratio larger than ca 1.3 
that improve performance of the clipped power model used and increase R2 values. 
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and moisture are held constant, leading to smooth decay curves, in the 
field, seasonal variations in decay rates can be observed (Major et al., 
2010; Singh et al., 2015; Ventura et al., 2014, 2019). As moisture is 
controlled at optimal levels for microbial activity, it has been claimed 
that biochar persistence estimates from laboratory setups are more 
conservative than field conditions (Kuzyakov et al., 2009). However, 
due to larger diversity of fungi and fauna, supply of nutrients, the 
presence of roots, root exudates, extra-cellular enzymes and light, field 
conditions are also described as more biologically active and could 
thereby lead to higher decomposition rates (Feng et al., 2023; Ventura 
et al., 2019). Moreover, under field conditions, soils are often exposed to 
drying/rewetting cycles as well as freezing-thawing cycles and how 
these processes affect the environmental fate of biochar is poorly un-
derstood (Schimmelpfennig et al., 2017). Studies indicate that certain 

microorganisms have the ability to degrade even highly condensed ar-
omatic carbon structures such as graphene or graphites, although 
mineralization rates in soil are low (Liu et al., 2015; Navarro et al., 
2020). At the same time, in the field, biochar can be protected from 
microbial attack via formation of aggregates with soil particles (Burrell 
et al., 2016). Overall, differences between field and laboratory in-
cubations have not been quantitatively assessed. 

Second, biochar is assumed to stay in the upper soil layers, and not 
migrate via leaching and erosion to deeper soil layers, rivers, and sedi-
ments, where decomposition rates are expected to be significantly 
lower. Movement of pyrogenic carbon in the environment has mostly 
been studied in the context of vegetation fires and organic carbon 
presence in rocks, to understand the planetary carbon cycle (Abiven and 
Santín, 2019; Bird et al., 2015; Bowring et al., 2022). However, it has 

Fig. 8. Biochar carbon remaining (BC) as a function of time (years) and molar H/C ratio, for a soil temperature of 20 ◦C, as predicted by a random forest algorithm 
fitted on a subset of observations that excludes singular observations and outliers, extrapolated by (a) exponential or (b) power model curve fitting. The regressions 
illustrate the use of non-linear multi-target models of biochar persistence. 
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also been shown that biochar and pyrogenic carbon can be mobile in 
soils (Lutfalla et al., 2017; Major et al., 2010). Partial transport of bio-
char particles away from topsoil could be a significant but variable 
process resulting in very long-term persistence of biochar carbon and is a 
process that is not captured by laboratory incubations. The presence of 
charcoal (as well as biomass) in archaeological artefacts and macerals in 
geological records is a clear indication that biochar can be preserved for 
millennia under the right environmental condition (Ascough et al., 
2020, 2018). However, the mere existence of such very old organic 
material is not proof that all biochar applied to a soil will be preserved in 
this way nor that certain biochar fractions are ‘inert’. 

Third, the whole biochar carbon pool is assumed to behave according 
to the assumptions built into the extrapolation model (i.e. single, double, 
triple exponential, or power decay) and parametrized as observed dur-
ing incubation. This assumption has recently been a source of critique of 
persistence estimates derived from incubation, with some arguing that 
the highly condensed aromatic fractions of biochar are strictly ‘inert’ 
(Petersen et al., 2023). However, possible mechanisms of biotic and 
abiotic alteration of coal and pyrogenic carbon structures are also 
known (De la Rosa et al., 2018; Liu et al., 2015; Navarro et al., 2020; 
Sekhohola et al., 2013; Shneour, 1966). It has also been claimed that 
incubations must be sufficiently long, at least 1 year and preferably 2 
years (Lehmann et al., 2021) to yield reliable enough extrapolations. 
Incubations longer than 2 years usually show a stabilisation of measured 
decay rates (Fig. 3), but it remains impossible to say whether those rates 
will be maintained for multiple decades. It is worth noting that long 
laboratory incubations sometimes lead to reduced microbial activity 
because of depletion of nutrients or other unknown factors. Neverthe-
less, we have clarified that different extrapolation models (power vs 
exponential) make different extrapolation assumptions, and that power 
models which extrapolate decline in decay rate are partly in line with 
the theory that biochar is an ensemble of increasingly persistent forms of 
aromatic carbon. 

3.6. Further work 

Dataset. More data could be collected from existing studies. In 
particular, time series from controls were not compiled in the dataset; 
hence, priming effects were not possible to re-analyse. Likewise, in-
cubations without separate biochar C flux measurement (i.e. studies 
where priming and biochar decomposition cannot be distinguished from 
one another) were not included. Since incubation without separate 
biochar C flux measurement are easier and cheaper to perform, devel-
oping reliable-enough predictors of priming during incubations could be 
a way to expand the usable dataset, albeit with some uncertainties. 

Modelling. Refining soil temperature adjustment methods is an 
important area of work, which would require new studies at low soil 
temperatures. For curve fitting, techniques to deal with irregularities in 
data could be developed and applied, e.g. fitting on only a part of the 
timeseries or excluding some data points. Other types of model functions 
could be tested, e.g. models with connected or inert pools (Sleutel et al., 
2005). The dataset could also be used to inform soil carbon models on 
including biochar related processes (Pulcher et al., 2022). 

New biochar incubations and characterisation. From this work 
but also other recent research (Howell et al., 2022; Petersen et al., 
2023), it appears necessary to conduct new incubations with compara-
ble experimental conditions on labelled biochars with very low H/C 
ratios, biochars with very high inertinite content, as well as on fractions 
of biochar remaining after certain thermochemical treatments (Howell 
et al., 2022; Petersen et al., 2023). Characterisation methods like 
hydrogen pyrolysis (Ascough et al., 2009; Howell et al., 2022) or 
random reflectance measurements (Mastalerz et al., 2023; Petersen 
et al., 2023) ought to be performed in new incubations, but also to the 
extent possible, performed on biochars from previous incubation studies 
if samples are still available. Finally, biochar persistence should also be 
further studied in the biologically active topsoil layer under field 

conditions, and other environments with high microbial activity, 
alongside the physical movement of biochar particles away from the 
topsoil layer. 

Policy estimates of biochar persistence and durability of carbon 
storage. Finally, the consolidation of knowledge on biochar persistence 
up to the adoption of numbers for use in various policies and carbon 
finance mechanisms requires, in our opinion, interdisciplinary work 
aiming at integrating various approaches and co-existing theories. This 
could lead to the formulation of policy-relevant estimates of biochar 
carbon storage durability (last step in Fig. 1), whether for use in national 
inventories or in project-specific carbon accounting, e.g. with adequate 
conservative margins. 

4. Conclusion 

An extensive dataset of published biochar decomposition studies was 
created and is made available alongside a python library to conduct 
reproducible analyses. This is a significant step forward for biochar 
persistence modelling, as it provides a guide for future experiments, 
allows the research community to easily extend the dataset, and im-
proves the transparency of resulting models. 

The detailed re-analysis performed here does not cast doubts on 
biochar systems contributing to climate change mitigation via carbon 
storage, but critically examined the assumptions and modelling tech-
niques associated with persistence estimates derived from incubation 
studies. Thereby, we were able to validate and refine biochar persistence 
models but also highlighted their limitations. In particular, it is debat-
able whether incubation-based approaches are adequate for extrapo-
lating persistence estimates beyond 100 years because short-term 
incubations do not capture all the processes that are relevant on long 
time scales. 

Ultimately, as other approaches to biochar persistence determination 
are emerging in other disciplines, e.g. petrogeology, it is critical for 
transdisciplinary work to begin, aiming to integrate the various ap-
proaches and theories. Such an effort is urgently needed due to the rising 
industry and policy interest for biochar as a climate solution. 
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G.S., Knicker, H., 2019. Charcoal Fine Residues Effects on Soil Organic Matter Humic 
Substances, Composition, and Biodegradability. Agronomy 9, 384. 10.3390/ 
AGRONOMY9070384. 

Lehmann, J., Abiven, S., Kleber, M., Pan, G., Singh, B.P., Sohi, S.P., Zimmerman, A.R., 
2015. Persistence of biochar in soil. In: Biochar for Environmental Management: 
Science, Technology and Implementation (2nd Edition). Routledge, London, 
pp. 235–282. 

Lehmann, J., Cowie, A., Masiello, C.A., Kammann, C., Woolf, D., Amonette, J.E., 
Cayuela, M.L., Camps-Arbestain, M., Whitman, T., 2021. Biochar in climate change 
mitigation. Nat. Geosci. 14, 883–892. https://doi.org/10.1038/s41561-021-00852- 
8. 

Leng, L., Huang, H., Li, H., Li, J., Zhou, W., 2019a. Biochar stability assessment methods: 
A review. Sci. Total Environ. 647, 210–222. https://doi.org/10.1016/j. 
scitotenv.2018.07.402. 

Leng, L., Xu, X., Wei, L., Fan, L., Huang, H., Li, J., Lu, Q., Li, J., Zhou, W., 2019b. Biochar 
stability assessment by incubation and modelling: Methods, drawbacks and 
recommendations. Sci. Total Environ. 664, 11–23. https://doi.org/10.1016/j. 
scitotenv.2019.01.298. 

E.S. Azzi et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.geoderma.2023.116761
https://doi.org/10.1016/j.geoderma.2023.116761
https://doi.org/10.3389/feart.2019.00031
https://doi.org/10.3389/feart.2019.00031
https://doi.org/10.1016/j.quageo.2008.11.001
https://doi.org/10.1016/j.quageo.2008.11.001
https://doi.org/10.3389/feart.2018.00061
https://doi.org/10.3389/fenvs.2019.00203
https://doi.org/10.3389/fenvs.2019.00203
https://doi.org/10.3390/agronomy11020336
https://doi.org/10.3390/agronomy11020336
https://doi.org/10.1146/annurev-earth-060614-105038
https://doi.org/10.1146/annurev-earth-060614-105038
https://doi.org/10.1038/s41561-021-00892-0
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/s00374-016-1116-6
https://doi.org/10.1016/j.geoderma.2016.07.019
https://doi.org/10.1016/j.geoderma.2016.07.019
https://doi.org/10.1016/j.orggeochem.2006.02.002
https://doi.org/10.1016/j.orggeochem.2006.02.002
https://doi.org/10.1029/2007JG000642
https://doi.org/10.1029/2007JG000642
https://doi.org/10.1111/gcbb.12030
https://doi.org/10.1111/gcbb.12035
https://doi.org/10.1038/nature04514
https://doi.org/10.1038/nature04514
https://doi.org/10.1038/s41598-018-21257-5
https://doi.org/10.1038/s41598-018-21257-5
https://doi.org/10.1016/J.AGEE.2014.02.018
https://doi.org/10.1111/EJSS.12808
https://doi.org/10.1111/brv.12949
https://doi.org/10.1007/s001140000193
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1021/es2040398
https://doi.org/10.1111/GCBB.12183
https://doi.org/10.1016/j.scitotenv.2022.157610
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1007/s42773-020-00067-x
https://doi.org/10.1007/s42773-020-00067-x
https://doi.org/10.1016/J.SOILBIO.2008.10.016
https://doi.org/10.1016/J.SOILBIO.2008.10.016
https://doi.org/10.1016/J.SOILBIO.2013.12.021
https://doi.org/10.1016/J.SOILBIO.2013.12.021
http://refhub.elsevier.com/S0016-7061(23)00438-X/h0185
http://refhub.elsevier.com/S0016-7061(23)00438-X/h0185
http://refhub.elsevier.com/S0016-7061(23)00438-X/h0185
http://refhub.elsevier.com/S0016-7061(23)00438-X/h0185
https://doi.org/10.1038/s41561-021-00852-8
https://doi.org/10.1038/s41561-021-00852-8
https://doi.org/10.1016/j.scitotenv.2018.07.402
https://doi.org/10.1016/j.scitotenv.2018.07.402
https://doi.org/10.1016/j.scitotenv.2019.01.298
https://doi.org/10.1016/j.scitotenv.2019.01.298


Geoderma 441 (2024) 116761

17

Liu, B., Liu, Q., Wang, X., Bei, Q., Zhang, Y., Lin, Z., Liu, G., Zhu, J., Hu, T., Jin, H., 
Wang, H., Sun, X., Lin, X., Xie, Z., 2020. A fast chemical oxidation method for 
predicting the long-term mineralization of biochar in soils. Sci. Total Environ. 718, 
137390 https://doi.org/10.1016/J.SCITOTENV.2020.137390. 

Liu, L., Zhu, C., Fan, M., Chen, C., Huang, Y., Hao, Q., Yang, J., Wang, H., Sun, D., 2015. 
Oxidation and degradation of graphitic materials by naphthalene-degrading 
bacteria. Nanoscale 7, 13619–13628. https://doi.org/10.1039/C5NR02502H. 
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