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Abstract

Background The global human footprint has fundamentally altered wildfire regimes, creating serious consequences
for human health, biodiversity, and climate. However, it remains difficult to project how long-term interactions
among land use, management, and climate change will affect fire behavior, representing a key knowledge gap

for sustainable management. We used expert assessment to combine opinions about past and future fire regimes
from 99 wildfire researchers. We asked for quantitative and qualitative assessments of the frequency, type, and impli-
cations of fire regime change from the beginning of the Holocene through the year 2300.

Results Respondents indicated some direct human influence on wildfire since at least ~ 12,000 years BP, though nat-
ural climate variability remained the dominant driver of fire regime change until around 5,000 years BP, for most
study regions. Responses suggested a ten-fold increase in the frequency of fire regime change during the last 250
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years compared with the rest of the Holocene, corresponding first with the intensification and extensification of land
use and later with anthropogenic climate change. Looking to the future, fire regimes were predicted to intensify,
with increases in frequency, severity, and size in all biomes except grassland ecosystems. Fire regimes showed differ-
ent climate sensitivities across biomes, but the likelihood of fire regime change increased with higher warming sce-
narios for all biomes. Biodiversity, carbon storage, and other ecosystem services were predicted to decrease for most
biomes under higher emission scenarios. We present recommendations for adaptation and mitigation under emerg-
ing fire regimes, while recognizing that management options are constrained under higher emission scenarios.

Conclusion The influence of humans on wildfire regimes has increased over the last two centuries. The perspective
gained from past fires should be considered in land and fire management strategies, but novel fire behavior is likely
given the unprecedented human disruption of plant communities, climate, and other factors. Future fire regimes are
likely to degrade key ecosystem services, unless climate change is aggressively mitigated. Expert assessment com-
plements empirical data and modeling, providing a broader perspective of fire science to inform decision making
and future research priorities.

Keywords Biome, Climate change, Ecosystem services, Expert assessment, Fire regime, Holocene, Management

Resumen

Antecedentes Las huellas humanas globales han alterado fundamentalmente los regimenes de fuegos, creando
serias consecuencias para la salud humana, la biodiversidad y el clima. Sin embargo, resulta dificil proyectar como las
interacciones a largo plazo entre el uso de la tierra, la gestion, y el Cambio Climatico van a afectar el comportamiento
del fuego, lo que representa un vacio clave en el conocimiento para la gestion sostenible. Usamos las apreciaciones
de expertos para combinar opiniones sobre regimenes de fuegos pasados y futuros de 99 investigadores en el tema
de fuegos de vegetacion. Preguntamos por determinaciones cualitativas y cuantitativas de la frecuencia, tipo, e impli-
caciones de los cambios en los regimenes de fuegos desde el inicio del Holoceno hasta el afio 2300.

Resultados Quienes respondieron indicaron alguna influencia humana directa en los fuegos de vegetacion desde

al menos ~12.000 afos atras, en los que la variabilidad climatica perduré como la conductora dominante de los
cambios en los regimenes de fuego hasta hace aproximadamente unos 5.000 afios, para la mayoria de las regiones en
estudio. Las respuestas sugirieron que hubo un incremento de 10 veces en la frecuencia de cambios en los regimenes
de fuego durante los ultimos 250 anos comparado con el resto del Holoceno, correspondiendo en primer lugar con
la intensificacion y expansion del uso de la tierra y luego con el Cambio Climético antropogénico. Mirando al futuro,
predicen que los cambios en los regimenes de fuego se intensificaran, con incrementos en la frecuencia, severidad,

y tamano en todos los biomas con excepcion de los ecosistemas de pastizales. Los regimenes de fuego muestran
diferente sensibilidad climatica a través de los biomas, aunque la probabilidad de cambio en el régimen de fuego se
incrementa con mayores escenarios de calentamiento en todos los biomas. Predicen asimismo que la biodiversidad,
el almacenamiento de Carbono, y otros servicios ecosistémicos, van a decrecer para la mayoria de los biomas bajo
escenarios de mayores emisiones. Presentamos recomendaciones para la adaptacion y mitigacion bajo regimenes de
fuego emergentes, mientras que reconocemos que las opciones de manejo estan condicionadas bajo escenarios de
mayores emisiones.

Conclusiones La influencia de los humanos en los regimenes de fuego se ha incrementado en las Ultimas dos
centurias. Las perspectivas ganadas sobre incendios pasados deben ser consideradas en las estrategias de manejo

de tierras y de fuego, aunque un nuevo comportamiento del fuego es probable, dado que la disrupcién humana en
las comunidades vegetales, en el clima, y en otros factores no tiene precedentes. Los regimenes de fuegos futuros
probablemente degraden algunos servicios ecosistémicos clave, al menos que el Cambio Climatico sea agresiva-
mente mitigado. Las apreciaciones de los expertos complementan los datos empiricos y modelados, proveyendo una
perspectiva mas amplia de la ciencia del fuego para informar a los decisores y priorizar futuras investigaciones.

Background of years, and many require periodic disturbance to main-
Human alteration of land cover and climate is reshaping  tain ecosystem structure and function (Bond et al. 2005;
wildfire on Earth (Andela et al. 2017; Bowman et al. 2020;  Harris et al. 2016). Yet, when fires exceed their histori-
Davis 2021; Pereira et al. 2022; Ellis et al. 2022). Most ter-  cal patterns of intensity, extent, severity, seasonality, and
restrial ecosystems have coevolved with fire over millions  frequency (hereafter fire regime; Fig. 1a), they can harm
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biodiversity (Kelly et al. 2020; Feng et al. 2021), climate
(IPCC 2021), and societies (Doerr and Santin 2016; John-
ston et al. 2021; Jones 2017). In some regions, recent state
changes in fire regimes have reduced ecosystem services,
including air quality, water availability, habitat, and eco-
system carbon storage (McClure and Jaffe 2018; Pausas
and Keeley 2019; Collins et al. 2021; Xie et al. 2022). Such
changes in fire regime can cause loss of life and property,
degradation of health, acute risk to fire managers, emer-
gency evacuations, and other socioeconomic impacts
(Balch et al. 2020; Raymond et al. 2020).

In the past and across large spatial scales, the dominant
driver of fire regimes has been the interaction between
climate and vegetation (Girardin et al. 2013; Abbott et al.
2016; Harris et al. 2016; McDowell et al. 2020; Molinari
et al. 2020). All aspects of climate, but especially patterns
of precipitation and temperature influence plant com-
munity composition and its moisture content. Climate
and weather also control ignition sources, with lightning
being the most common natural source of wildfire. Con-
sequently, climate lays the foundation for fire regimes
through fuel availability, flammability, and ignition like-
lihood (Bowman et al. 2009; Scholten et al. 2021; Chen
et al. 2021a).

As humans modified global patterns of vegetation, igni-
tion, and climate over the past several millennia (Wat-
son et al. 2018; Abbott et al. 2019; McDowell et al. 2020;
Ellis et al. 2021), fire disturbance became progressively
more anthropogenically influenced at local to global
scales (Hantson et al. 2015; Nowacki and Abrams 2015;
Lestienne et al. 2020; Hagmann et al. 2021) (Fig. 1a). For
example, humans have directly modified vegetation type
and density for 77% of the Earth’s terrestrial surface, pri-
marily through agriculture, with myriad consequences
for fuel characteristics and ignition sources (Marlon et al.
2008; Bowman et al. 2011; Balch et al. 2017; Watson et al.
2018; Stowinski et al. 2022). Likewise, climate disruption
has influenced all of the Earth’s ecosystems, supercharg-
ing wildfire in some regions (Turco et al. 2017, 2018;
Wasserman and Mueller 2023).

Understanding the characteristics and sensitivity of fire
regime change is necessary for sustainable land manage-
ment as well as climate change mitigation, adaptation,
and planning (Cochrane and Bowman 2021; Moritz et al.
2014). However, our understanding is incomplete for
relationships linking climate, land use, and fire regimes
in the past, present, and future. In this context, we com-
bined scientific opinions about the drivers and conse-
quences of fire regime change in the Holocene and near
future. Combining assessments from multiple sources
allows an integrative evaluation of the range of possible
futures complementary to numerical model projections
(Morgan 2014; Sayedi et al. 2020; Schuur et al. 2013).
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We intended these assessments to address the current
needs of decision makers and ecosystem managers to
better understand and apply the consensus view from the
research community.

Using the collected informed opinion from experts, we
evaluated centennial to millennial-scale state changes
(Fig. 1a) in past, present, and future fire regimes at both
regional scales and biome levels. We were motivated by
four topic questions: How have fire regimes varied dur-
ing the Holocene (the last~ 11,700 years)? How likely are
fire regime state changes under different future climate
change scenarios? What component of ecosystems will
be affected by potential future fire regimes? and What
types of human activities could be the most effective for
mitigation and adaptation under future fire regimes? We
used a questionnaire to collect quantitative and qualita-
tive assessments from experts for specific biogeographic
realms and biomes from around the world (Fig. 1b; Sup-
plementary Information).

Methods

We used expert assessment to evaluate the risk of fire
regime change and its consequences in the future. The
concept and initial preparation for this study emerged
from a September 2016 paleofire workshop held in
Beguey, France, supported by the PAGES (Past Global
Changes) Global Paleofire Working Group 2. At that
meeting and through 2020, we completed a literature
review of both scientific and policy related documents
about wildfires and fire regime change. Following best
practices from expert assessment and expert elicitation
(Bamber and Aspinall 2013; Morgan 2014; Sutherland
and Burgman 2015; Sayedi et al. 2020), we designed a
structured questionnaire to gather scientific opinion on
changes in fire regimes and their effects on ecosystems,
climate, and societies (Supplementary Information). We
focused on centennial-to-millennial changes in past,
present, and future fire regimes across the globe (seven
biogeographic realms and 11 biomes) to consider long-
term processes beyond observational and instrumental
records. After two testing rounds, we distributed the final
questionnaire containing 15 questions to 430 scientists
with fire related expertise. To include both academic and
applied wildfire experts, we invited coauthors from the
papers in the background review as well as referrals from
workshop participants and all respondents who filled out
the questionnaire.

Of the 430 invitees, we collected 124 filled question-
naires from 99 respondents (included here as coauthors),
with some respondents completing the questionnaire
for more than one fire region, which explains the higher
number of filled surveys. Respondents were from 23
countries (Fig. S24) and were 46% female, 45% male, and
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Fig. 1 a Conceptual diagram of fire regime characteristics and state changes for three example biomes. Fire regime is defined in terms
of spatial (e.g., extent, type, patchiness), temporal (e.g., frequency, interval, seasonality), and physical (e.g., intensity, severity) fire characteristics.
The size of flame in the figure represents fire extent, and the vertical placement of the flame represents fire type (e.g., surface vs. crown). The
green and brown bands represent above- and below-ground biomass, respectively. The vertical black dashed lines represent fire regime state
change. The gray wedges represent fire seasonality before fire regime change: W: winter, Sp: Spring, S: summer and F: fall/autumn. Red dashed
lines inside wedges represent new fire regime seasonality after state change b The location of the fire regions used in this study (Olson 2001)
with the number of respondents per fire region
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9% unspecified (Table S2). The primary research disci-
plines, as identified by the respondents themselves, were
paleoecology (55%), ecology (17%), and other fields, such
as geography or geosciences (28%). Each response was
specific to one biogeographic realm-biome combination,
which we defined as “a fire region” (Fig. 1). We received
responses for 70% of flammable land area worldwide
(total land surface excluding rock, ice, and lakes; Fig. 1b
and S1, Table S2), reflecting diverse global bioclimatic,
socioeconomic, and fire regime characteristics (Olson
et al. 2001).

The questionnaire included detailed background infor-
mation and instructions to reduce the effects of avail-
ability bias and increase the likelihood of commensurate
responses across experts from different realms (Morgan
2014; Sayedi et al. 2020). The questionnaire included a
description of representative concentration pathways
(RCP) scenarios (Moss et al. 2008) and predicted tem-
perature and precipitation (Supplementary Information).
We also provided detailed definitions and references
on the concepts of fire regime and state change (details
in Supplementary Information-questionnaire). Briefly,
we defined state change as a large and sustained depar-
ture from a set of specific system behaviors. Fire regime
state changes can be triggered by disturbances of vary-
ing duration and intensity, including internal and exter-
nal drivers such as climate change, vegetation shifts, and
human activities (Fig. 1a). These disturbances can result
in reversible or permanent changes to the fire regime. For
example, a state change in a fire regime may be expressed
as a shift in the central tendency, such as a decrease in
mean annual area burned, a change in overall variance,
such as an increase in interannual variability of area
burned, or in the frequency of events that exceed an eco-
logical threshold, such as a change in the return interval
of crown fires (Scheffer et al. 2009).

The questionnaire focused on four topics: (1) past fire
regimes, (2) current fire regime states, (3) future fire
projections, and (4) interventions and management. For
each section, respondents provided self-reported exper-
tise, confidence level, sources used to generate estimates
(e.g., published or unpublished empirical data, profes-
sional opinion; Table S3), along with a list of sources of
uncertainty (Table 1). For future fire behavior, we asked
experts to provide estimates for short (2050), medium
(2100), and long (2300) time frames. We included the
2300-timestep to account for lags in the response of fire
regime to disturbance, as it can take several decades or
centuries to fully manifest. Although climate projections
and estimates of system response become increasingly
uncertain for distant time frames, we asked respond-
ents to think conceptually about the eventual fire regime
state if the described climate conditions persisted. We
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compared estimates for all three time-steps with current
fire regime.

For most of the quantitative questions, we asked for
three quantiles (5% lower, 50% central, and 95% upper)
to build a credible range of 90%. We primarily discuss
the distribution of central estimates for the main arti-
cle, though full ranges are shown in the Supplemen-
tary Information. The qualitative questions included
both open-ended and numerical responses. The open-
ended questions were analyzed using a thematic analy-
sis method, where we applied coded categories to each
response. We calculated descriptive statistics in R version
3.6.1 (R Core Team 2019). We used ArcGIS Pro 3.0 for
spatial analyses and visualizations.

In the following sections, we present estimates and sug-
gestions based on experts’ responses, which we compare
with relevant literature. Because not all fire regions have
the same number of respondents, we focus on identifying
general patterns and trends rather than providing spe-
cific results for individual regions with limited represen-
tation (though the comprehensive results by fire region
are included in the Supplementary Information). Conse-
quently, we focus on general patterns and trends among
biomes and biogeographic realms to create a more com-
prehensive and nuanced understanding of the global pat-
terns of fire regimes.

Results
Past and present drivers of fire regime
The median estimated number of fire regime state
changes during the Holocene varied across biomes, rang-
ing from two (Tundra) to seven (Temperate grasslands,
savannas, and shrublands) (Fig. S2). Respondents iden-
tified the timing of the three largest fire regime state
changes in the Holocene, with 16% of responses suggest-
ing the Early Holocene (ca. 11,700-8,200 BP), 27% the
Mid Holocene (ca. 8,200-4,200 BP), and 57% the Late
Holocene (ca. 4,200-0 BP). Survey responses indicated
an increase in fire regime changes after the Industrial
Revolution in 1760 AD, with 20% of identified fire regime
changes occurring since that time (Fig. S3). This sug-
gests a~ 10-fold increase in the frequency of fire regime
changes over the last 250 years compared with the rest
of the Holocene. The Nearctic and Australasia regions
may have experienced even larger recent changes in fire
regime, with 30% and 36% of the identified fire regime
changes occurring in the past 250 years, respectively.
Climate was identified as the main driver of fire regime
changes during the Holocene (47% of responses), espe-
cially in the Early and Mid-Holocene. Direct human
activity was the second most identified driver of changes
(32%). The onset of strong human influence on fire
regimes varied among regions (Fig. 2), but direct human
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influence was the greatest during the Late Holocene.
For the post-industrial period (1950 AD-present), cli-
mate change and direct human activity were mentioned
equally often as drivers (40% and 46%, respectively). Veg-
etation and fuel were mentioned the least for each time
interval (Fig. S4), possibly because these factors respond
to climate on centennial timescales, emphasizing the
importance of temporal scale when considering drivers.

Respondents identified several dimensions of altered
fire regimes over the past 250 years, including changes
in fire frequency, extent, and severity (Fig. S5). There
was a wide range of human-wildfire interactions identi-
fied that were specific to fire regions. For example, in
Indo-Malayan Tropical forests, deforestation due to
economic development has modified the fuel structure
and ignition sources, potentially increasing fire activity
in an ecosystem where it was historically rare. In mul-
tiple regions, other fire management strategies such as
increased fire suppression and exclusion of Indigenous or
traditional prescribed burning practices were recognized
as potential drivers of increasing fuel loads and ulti-
mately increased fire severity, especially when coupled
with recent temperature increases. In seven out of eleven
biomes, respondents identified a change in fire regime
since the Industrial Revolution (Fig. S3), with the median
estimate of current fire regime duration lasting less
than 200 years (Fig. S6). The duration of the current fire
regime was less than 70 years for Tundra; Mediterranean
forests, woodlands, and scrub; Tropical and subtropi-
cal moist broadleaf forests; and Tropical and subtropical
grasslands, savannas, and shrubs (Fig. S6).

Timing and type of future fire regime change

Respondents provided estimates of fire regime change
for their fire region in 2050, 2100, and 2300, based on the
IPCC RCPs 2.6, 4.5, and 8.5, representing increasingly
severe greenhouse gas emission scenarios. Most respond-
ents predicted that the likelihood of fire regime change
would increase with time and climate change severity
(Figs. S9-10). For example, under RCP8.5, nine biomes
were predicted to have >50% chance of experiencing a
fire regime change by 2050, compared to one biome for
RCP2.6. However, by 2100 and 2300, five biomes were
predicted to have a >50% likelihood of fire regime change
under RCP2.6 (Fig. 3a and S9-10). The climate sensitiv-
ity—which we defined as the amount of increase in the
likelihood of a fire regime change across RCP scenarios—
varied substantially among biomes. For example, RCP2.6
was predicted to be enough to initiate a fire regime
change for Tundra, whereas the predicted likelihood of
fire regime change was much lower under RCP2.6 than
RCP8.5 for Boreal forest (Fig. 3b and S11-12). Results
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from all scales, years, and scenarios are presented in the
Supplementary Information.

The climate sensitivity estimates from this study
agreed with many model-based studies projecting future
changes in fire activity (Bowman et al. 2020). Climate
drivers such as fire weather and fire danger days are pro-
jected to increase in many areas of the globe (IPCC 2021),
particularly in fire-prone regions such as the Mediterra-
nean basin, southwestern USA, and subtropical regions
of the Southern Hemisphere (Bowman et al. 2017; Cook
et al. 2022). An increase in extreme fire behavior is also
projected in many regions such as the Amazon, western
USA, Mediterranean and southern Australia (Turco et al.
2018; Bowman et al. 2020). Substantial intensification of
fire behavior is projected for higher latitudes through the
end of the 21st century (Flannigan et al. 2013; Bergeron
et al. 2010; Abbott et al. 2021; Talucci et al. 2022), though
local fire patterns are expected to be heterogeneous
(McCarty et al. 2021).

Respondents predicted an intensification of some com-
ponents of the fire regimes across biomes, with burned
area, frequency, and severity increasing for all but a few
biome-time-step combinations (Fig. 4). The magnitude
of change generally increased with time and with higher
emission scenarios (Figs. S13-16). These predictions
are consistent with other studies, suggesting a substan-
tial intensification of fire regimes (i.e., an increase in
fire extent, severity, and frequency) with greater warm-
ing. For example, panarctic wildfire emissions have been
predicted to increase by 250% by 2100 under RCP8.5
(Abbott et al. 2016). Similarly, fire emissions in Finnish
boreal forests have been predicted to experience a 190%
increase, even under RCP4.5 (McCarty et al. 2021). In
Europe, burned area is predicted to increase between 180
and 360% until the end of the century under RCP8.5, but
less than 60% under RCP2.6 (Wu et al. 2015). In south-
ern Europe, burned area is projected to increase 5-50%
per decade under high emission scenarios (Dupuy et al.
2020), whereas with a 1.5° to 3 °C warming burned area is
projected to increase 40—100% in Mediterranean Europe
(Bowman et al. 2020). An increase in burned area is like-
wise predicted for the Amazon and western USA (Bow-
man et al. 2020; Abatzoglou et al. 2021). In the grasslands
of central Asia, the potential burned area is expected to
increase 13% by 2080 (Zong et al. 2020).

Contrary to most regions, less burning was predicted
by experts for some parts of Africa under warmer sce-
narios. This is consistent with observations (Moritz et al.
2012; Andela and van der Werf 2014) that reveal a more
intense fire regime under cooler and wetter climates that
favor fuel build-up in these dry regions (Daniau et al.
2013; Moritz et al. 2012). More generally, fire frequency
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and severity are expected to decrease in fuel-limited eco-
systems under drier conditions, whereas they are likely to
increase in wetter ecosystems where fuel humidity cur-
rently limits fire (Rogers et al. 2020).

Many respondents from most fire regions mentioned
the importance of recognizing that within a single fire
region, different ecological communities may experience
divergent future fire trajectories (Moritz et al. 2012). For
example, the risk of fire-climate interactions can vary
in different types of conifer forests in western North
America (moist-dry-subalpine) based on their elevation
(Halofsky et al. 2020). Likewise, substantial differences
exist between eastern and western Boreal forests of the
Nearctic, with the latter experiencing increasing annual
area burned (Chavardes et al. 2022). However, projected

climate change could create similar increases for east-
ern and western Boreal forests of the Nearctic during the
mid- to late-21st century (Chavardes et al. 2022).

Consequences of fire regime change

Respondents estimated that biodiversity (habitat extent,
diversity and quality), carbon stocks (soil and vegeta-
tion), and ecosystem services (other benefits for socie-
ties living in the region) would decrease with future fire
regime change. The magnitude of change was predicted
to increase for more extreme warming scenarios and
longer timeframes in most biomes, similar to the patterns
for other questions (Fig. 5 and S17-20). The estimates of
fire consequences were highly spatially variable (Fig. 5).
Negative impacts estimated for biodiversity were greatest
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Fig. 4 Direction and magnitude of change of fire regime characteristics as estimated by respondents. Median estimates of changes in fire extent
(area), frequency, and severity for global greenhouse gas emission scenarios RCP2.6, RCP4.5 and RCP8.5 in 2050, 2100, and 2300

in tropical, semiarid, and arid ecosystems, whereas
decreases in carbon stocks were more uniform across
biomes. The large projected decrease in carbon stocks
for Boreal forests and Tropical and subtropical moist
broadleaf forests was particularly concerning, given how
these ecosystems contain much of global terrestrial car-
bon (McDowell et al. 2020; Pan et al. 2011; Schuur et al.
2022). Similarly, the strong projected loss of ecosystem
services, including air, water, and soil quality in Africa,
South America, and southern Europe could further bur-
den areas already experiencing disproportionate climate
impacts (Ogunbode 2022).

The projected response of albedo displayed significant
temporal complexity, representing a dimension of eco-
system response that was generally expected to improve
with fire regime changes (Fig. 5 and S21). It is important
to note that the relationship between fire emissions and
albedo is multifaceted, varying depending on factors
such as the region and land surface type. These factors
can lead to different effects on albedo. For example, while
aerosols from fire emissions may initially reduce albedo
by promoting snowpack melting, it is worth considering
the net negative radiative impact of such emissions, as
demonstrated in (Tian et al. 2022), which can result in a
mid-term cooling effect.

Our survey respondents estimated a general increase in
albedo from 2050 to 2100 as fire regimes increased. How-
ever, it is noteworthy that this trend reversed for some

(See figure on next page.)

biomes beyond 2300, indicating a transient stabilizing
effect on climate (Fig. 5 and S21). The intricate analysis
encompassing various scales, scenarios, and years can be
found in the Supplementary Information.

This discussion underscores the complexity of fire
emissions and their impact on albedo, with outcomes
varying depending on regional factors and land surface
characteristics. Furthermore, the influence of fires on
albedo evolves over time, making it a dynamic and intri-
cate phenomenon.

Drivers of fire regime change and management options

The identified fire regime drivers varied substantially by
both warming scenario and fire region. Under higher
emissions (i.e., RCP4.5 and RCP8.5), most experts sug-
gested that climatic factors would be the dominant
driver of fire regime change. Conversely, under RCP2.6,
only about half of the responses indicated that climatic
factors would be the most important driver. For Aus-
tralasia and Nearctic fire regimes, climatic factors were
identified as the most important driver for all scenarios.
In the Neotropic, Afrotropic, and Indo-Malayan bio-
geographic realms, human activities were identified as
the most important fire driver, with an average of 18% of
responses across all scenarios. Although vegetation and
fuel were also frequently mentioned, accounting for 22%
of total responses, these factors were never suggested as
the most important driver of future fire regime changes

Fig. 5 The net effect of predicted fire regime changes on ecosystem values in the future as estimated by respondents. a The maps show

the median value of expert estimates under RCP4.5, year 2100 (see Figs S18-21 for changes in RCP2.6 and RCP8.5). b Average values and standard
error for year 2100 under three RCP scenarios. The full names of the biomes can be seen in Fig. 1b Experts responded on a -5 to 5 scale

for how strongly the future fire regime of the three RCP scenarios would affect the indicated parameters in the year 2100 (-5=strong net decrease,

0=no net effect, 5=strong net increase)
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(representing approximately 1% of the responses (Fig.
$22)), highlighting the complex interplay amongst cli-
mate, fuel, and fire, especially on centennial timescales.

While we have summarized and combined the manage-
ment suggestions from respondents below, we emphasize
that suitable management applications vary substantially
between and within biomes. The detailed responses for
each fire region can be found in the Supplementary Infor-
mation. Responses suggested that human actions for the
next 20—50 years will be highly influential in determining
how different ecosystem values (e.g., biodiversity, carbon
stocks) are likely to change. Only 14% of the respondents
indicated that human actions have no effect, mainly lim-
ited to albedo (Table S1). Only 10% of responses recom-
mended non-intervention, which instead was rated as a
negative or unhelpful approach, though there were mixed
opinions across and within fire regions.

About half of the respondents considered direct land
management as an important approach for mitigating
impacts of changing fire regime. Several landscape man-
agement strategies had general support, including increas-
ing landscape heterogeneity, diversification, and reduction
of landscape flammability by targeted land use, as well as
creating buffer zones around primary and old-growth
forests (Barredo et al. 2021). Attention to the human-fire
interface was a common recommendation, as certain levels
of population (housing) density, wildland-urban interface,
and landscape connectivity can affect the characteristics
and societal consequences of fire (Syphard et al. 2007;
Archibald et al. 2012; Moritz et al. 2014; Kelley et al. 2019).
Fuel treatment, vegetation management, urban/suburban
development design, and sustainable agriculture (cropland
optimization, savanna conversion management, integrated
grazing, traditional agroforestry, etc.) were identified as
potentially useful mitigation approaches.

There was a high level of agreement that prescribed
burning would help biodiversity and ecosystem ser-
vices, but there were mixed opinions about its effect on
carbon stocks, potentially because of successional com-
plexities and the fact that the area subject to prescribed
burning is relatively small compared to the total burned
area each year. There was less agreement about other
fuel management techniques such as forest clearing or
thinning, potentially because of the variety of vegeta-
tion types under consideration, and the lack of consen-
sus in the literature on mechanical treatments. Even
though activities such as clear-cutting reduce fuel, fire
activity may increase due to the effects on microclimate
and residual biomass, therefore changing fuel structure
and composition (Lindenmayer et al. 2009, 2020; Max-
well et al. 2019; Stephens et al. 2020; Baker and Hanson
2022). Conversely, traditional or Indigenous practices—
such as cultural burning—were suggested as beneficial in
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reinforcing fire regime resilience, protecting biodiversity,
and mitigating damage by preventing extreme wildfire
events (Christianson 2015; Fletcher et al. 2021; Hoffman
et al. 2021). However, respondents also noted that many
current burning practices—such as slash-and-burn tech-
niques—no longer resemble traditional cultural burning
practices as they existed before industrialization.

There was a high level of agreement among experts
who mentioned restoring vegetation (i.e., native habitat
conservation and restoration; establishment of climate-
adaptable vegetation communities) as a positive impact
on all ecosystem values. There were mixed opinions
about introducing fire resilient plants, but agreement on
the positive effect of reducing flammable invasive plants.
The natural or artificial selection of nonflammable spe-
cies was mostly considered to have a negative effect on
biodiversity and ecosystem services but variable effects
on carbon and albedo.

Direct fire management was recommended in 17% of
responses. In the case of fire suppression as a direct fire
management strategy, there was less agreement about the
direction of effects on different factors. Fire suppression
can have a negative impact on fire-dependent ecosys-
tems, and aggressive suppression policies have led to fuel
accumulation and increased flammability that have con-
tributed to today’s extreme wildfire events (Marlon et al.
2012; Valese et al. 2014; Schoennagel et al. 2017; Paris-
ien et al. 2020). A greater proportion of responses (23%)
indicated the importance of social or political awareness
and action. These initiatives include climate mitigation,
public education on fire risks and their ecological roles,
direct (e.g., controlled burns, firebreak establishment)
and indirect (e.g., illegal logging regulations, land-use
policies) conservation policies, and the incorporation of
Indigenous and traditional knowledge. (Table S1).

For most biogeographic realms—though notably not
the Afrotropic and the Indo-Malayan—respondents
projected that under RCP8.5, humans would have a
decreasing capacity to control wildfires. This was most
obvious for the Neotropic, Nearctic, and Australasia for
both 2100 and 2300. Respondents for the Neotropic and
Nearctic fire regimes indicated that this same decreased
capacity was likely to apply under RCP4.5. For RCP2.6,
70% of respondents indicated that humans would main-
tain some effectiveness in managing fire-impacts (Fig.
$23).

Sources of uncertainty

For each question, respondents identified their main
sources of uncertainty (Table 1). The most common
responses were limited observational data, inadequate
modeling frameworks, and system complexity, particu-
larly social dimensions. Respondents emphasized that
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Table 1 Sources of Uncertainty in Survey Estimates
Past Current Future Management
Sources of uncertainty %  Sources of uncertainty %  Sources of uncertainty %  Sources of uncertainty %
Limited proxy-paleo data 23 Spatial variability 31 Vegetation shift 12 Political and socio-economic 22
Spatial variability 17  Limited data 17 Ecosystem interactions 12 Capacity and effectiveness 13
and feedbacks® of management and interven-
tion
Proxy resolution 15 Combustion/severity Climate change 10  Climate change 1
Model limitation 11 Small fire detection/remote 7 Political and socio-economic 8 Ecosystem interactions 10
sensing and feedbacks
Human influence? 11 Human activity Model limitation Technology developments
Proxy reliability 8 Recent changes Fire management and interven- 7 Science and management 4
tion connection
Temporal variability 6 Land use change Vegetation state 4
Chronological 5 Precipitation

This table presents the major sources of uncertainty identified by respondents for each section of the survey. The percentages represent the proportion of responses
within each category for the respective sections. Note that the table includes only the significant sources of uncertainty, and the columns may not sum up to 100%

due to the omission of less prominent factors
? E.g., Fire management history, land use history, etc.

b E.g., Climate-vegetation dynamics, aloedo and new vegetation, vegetation-fire interaction, fuel-ignition relationships, climate-human intervention, climate-

vegetation feedbacks

the impact of different human activities is not completely
understood for the past or present, and that untangling
different fire drivers can be difficult due to multiple inter-
actions and feedbacks, which are often not represented
in coupled models. Respondents also mentioned that
the unprecedented rate of ongoing climate change and
heterogeneity of human activities made estimations of
fire return intervals and other dimensions of fire regime
uncertain. Respondents had uncertainties about emer-
gent economic and policy direction, cultural beliefs, and
available technologies as tools to combat changing fire
regime. Additional sources of uncertainty included the
spatial variability and a lack of information about fire
severity impacting ecological succession, albedo, and car-
bon-climate feedbacks.

Discussion

This expert assessment synthesized global fire exper-
tise to explore the possible magnitude, type, and conse-
quences of human-wildfire interactions in the Holocene
and Anthropocene. The results confirmed the growing
consensus in the literature that we have entered a new
epoch of fire behavior dominated by climate change and
direct human activity (Bowman et al. 2020; Mottl et al.
2021). The geographic diversity of past and future fire
regimes also emphasized the importance of local factors,
especially human culture and plant community. In the
following section, we compare our survey results with the
broader literature and summarize potential management
and policy implications.

Fire regime change as an indicator of the Anthropocene
This study adds to the consensus that human activity
dominates vegetation disturbance and distribution glob-
ally (Harris et al. 2016; Watson et al. 2018; Abbott et al.
2019; Bowman et al. 2020; Mottl et al. 2021; Stowinski
et al. 2022). The ten-fold acceleration of fire regime
change over the past two centuries aligns directly with
recent paleoecological evidence showing vegetation shifts
unprecedented in the last 18,000 years (Mottl et al. 2021).
Although there are still debates about the formal start of
the Anthropocene (Witze 2023), our survey results pro-
vide evidence that we have entered a new epoch where
fire is no longer solely influenced by natural factors but is
increasingly shaped by human activities, both intentional
and inadvertent (Fig. S1). After approximately 500 mil-
lion years of natural wildfire regulation driven by climate
and vegetation interactions (Glasspool et al. 2004), our
findings indicate that fire dynamics in the Earth system
are now significantly controlled by direct and indirect
human actions. Notably, the quadruple combination of
invasive species, fire ignition and suppression practices,
land use changes, and climate change has substantially
reshaped nearly every dimension of fire behavior in the
Anthropocene (Fig. 1).

One of the paradoxes highlighted by our study and
much previous work is that knowledge of past fire behav-
ior is both crucial and rapidly becoming outdated. Past
fire regimes provide perspective on how climate, vegeta-
tion, and human actions interacted to shape fire dynam-
ics in the Earth system (Marlon et al. 2008; Pechony and
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Shindell 2010; Molinari et al. 2018). For example, paleo-
ecological knowledge about vegetation community and
historical amplitude of fire regime change in a given
biome can provide estimates of historical thresholds and
optimal vegetation structure for management purposes
(Hennebelle et al. 2018). Likewise, fire histories show
human-vegetation-climate linkages, such as decreas-
ing tree cover creating microclimates favorable to the
encroachment of flammable vegetation in the understory
(Feurdean et al. 2020). However, we have exceeded the
envelope of global fire behavior observed in the Holocene,
meaning that human-fire interactions could have extreme
and unexpected outcomes (Bova et al. 2021; Hammond
et al. 2022). We should not assume that historical man-
agement practices will suffice (Pyne 2007; Crandall et al.
2021; Ellis et al. 2021) given accelerated rates of vegetation
change (Mottl et al. 2021; Stowinski et al. 2022; Talucci
et al. 2022), climate destabilization (Armstrong McKay
et al. 2022; Breyer et al. 2023), the emergence of novel
biotic and abiotic conditions (Ordonez et al. 2016; Fins-
inger et al. 2017; Burke et al. 2019), and increasing human
population and affluence. For example, the expansion of
human development in fire-prone areas in the western US
is increasing both wildfire incidence and cost of suppres-
sion (Balch et al. 2017).

Climate and culture control native and invasive vegetation
Ecosystem response to changing fire disturbance can take
centuries to millennia (Carcaillet et al. 2010, 2020). In
the Anthropocene, which is characterized by overlapping
and interacting human disturbances, the emergence of
stable fire regimes depends on synergies among fire, veg-
etation changes, and climate within a region.

The combination of climate and species change can shift
the balance between native and invasive taxa. New fire-
adapted species have altered vegetation structure in many
fire-prone regions, including cheatgrass (Bromus tecto-
rum) in some desert environments of the USA, tussock
grass (Poa flabellata) and pampas grass (Cortaderia sell-
oana) in Spain, guinea grass (Megathyrsus maximus) and
fountain grass (Cenchrus setaceus) in Hawaii, and black
locust (Robinia pseudoacacia) and tree-of-heaven (Ailan-
thus altissima) in southern Europe (Maringer et al. 2012;
Trauernicht et al. 2015). These species exploit and create
novel disturbance niches to outcompete native vegetation
during post-fire recovery. These direct and indirect effects
of fire regime change can alter plant community struc-
ture and composition, often amplifying aspects of the fire
regime, including fire frequency and extent (Wan et al.
2014; Bishop et al. 2020; Mirzaei et al. 2023).

As the vegetation-climate interaction evolves in the
Anthropocene, many or even most communities around
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the world will need to develop new cultural norms
around fire (Dickinson et al. 2015; Trauernicht et al.
2015; Chapin et al. 2022). Given how controversial fire
management can be, even under the best of conditions
(Crandall et al. 2021; Dale and Barrett 2023), it will be
crucial to establish two-way communication that pre-
pares policymakers, managers, and the public for adap-
tive changes in policy and practice, including the loss of
cultural and ecosystem services provided by disappear-
ing historical fire regimes (Cassidy et al. 2022; Bowman
and Sharples 2023).

Uncertain services

One of the clear conclusions from our study is that the
novel fire regimes of the Anthropocene threaten multiple
ecosystem services ranging from carbon sequestration
to air quality. The erosion of these ecosystem services
has already been observed in many regions (Balch et al.
2017; Canadell et al. 2021; Hammond et al. 2022; Hamp-
ton et al. 2022). Novel climatic conditions in peatlands
can limit their recovery from disturbances, decreasing
carbon stocks (Loisel et al. 2021). More severe and fre-
quent fires can threaten carbon storage in Boreal forests
(Walker et al. 2019), though changes to successional tra-
jectories may offset or negate these losses in some cases
(Girardin et al. 2013; Mack et al. 2021). Ozone produced
during combustion can damage plant tissues, potentially
doubling carbon losses by reducing post-fire photosyn-
thesis (Lasslop et al. 2019). Because human land use and
fire regimes are so closely linked, human actions such as
deforestation coupled with cropland development can
decrease carbon stocks at the same time as they modify
the fire regime (Bowman et al. 2011; Cochrane and Bow-
man 2021).

The local impacts of changing fire regimes are both
unequal and increasing (Bytnerowicz et al. 2016; Errigo
et al. 2020; Burke et al. 2021; Chen et al. 2021b). From the
negative health consequences of air pollution to threat-
ened drinking water from post-fire floods and erosion
(Marki and Stilianakis 2008; Tessum et al. 2019; Crandall
et al. 2021; Xie et al. 2022; Bowman and Sharples 2023),
we need to prepare for the socioecological consequences
of fire regime change. These local changes are of course
linked to additional global feedbacks. For example,
enhanced black carbon and soot deposition associated
with increased fire disturbance contributes to decreased
albedo and accelerated ice melting (McCarty et al. 2021;
Aubry-Wake et al. 2022). Likewise, in Indian tropical dry
forests, an increase in fire activity may negatively alter
forest potential for water regulation by changing soil
characteristics (Schmerbeck and Fiener 2015) and atmos-
pheric moisture recycling (Abbott et al. 2019).
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The limits of control: prevention versus treatment
Although our global-scale study may have limited appli-
cation in many specific management contexts, there were
some general patterns that could be informative for poli-
cymakers, managers, and researchers. Despite the sub-
stantial uncertainties associated with fire regime changes,
mitigation efforts such as allowing some fires to burn
to reduce fuel loads, prescribed burning, and fuel treat-
ments will help limit fire impacts and cost (Moritz et al.
2014; Harris et al. 2016; Radeloff et al. 2018; Mietkiewicz
et al. 2020). Likewise, the conservation of large, contigu-
ous ecosystems (e.g., Kruger National Park, South Africa)
allows the use of more effective wildfire management
tools such as prescribed burning and increases resilience
when unexpected wildfire behavior emerges (Driscoll
et al. 2016; Bentley and Penman 2017; Miller 2020).

However, there was a high level of agreement across
fire regions that the risk of extreme fire behavior over-
whelming the capacity of these fire management tools
increases under higher greenhouse gas emissions.
Although the specific consequences vary by fire region
and habitat type, the overall message is clear: rapid
reduction of greenhouse gas emissions is needed to
restore Holocene-like climate conditions (Cyr et al. 2009;
Abbott et al. 2022; Breyer et al. 2023; Burton et al. 2023).
This would reduce the difference between natural and
managed environments and ensure long-term conserva-
tion of ecosystem functions and services, thereby pre-
serving socioeconomic benefits (Fithrer 2000; Gauthier
et al. 2009). Otherwise, the emergence of novel climates,
vegetation communities, and fire regimes outside of the
range of Holocene variability will complicate or com-
promise our ability to conserve habitats, ensure healthy
communities, and preserve terrestrial carbon uptake and
storage.

For example, without a reduction in greenhouse gas
emissions, changes in fire regimes could undermine
climate mitigation policies such as negative emissions
through reforestation and afforestation (Anderegg et al.
2020; Veldman et al. 2019). Any carbon uptake from
recovered or cultivated forests could be negated by the
increased fire frequency or intensity projected for many
regions (Hammond et al. 2022; Smith et al. 2020). Like-
wise, the available tools for fire management will likely
be reduced as extreme fire weather narrows the periods
when prescribed burning can safely take place (Pyne
2007; Abatzoglou et al. 2021; Bowman et al. 2017). These
risks are not hypothetical. Indeed, climate-fire interac-
tions are already eroding climate mitigation efforts in
many regions by altering forest, grassland, and peatland
carbon structure (Bowman et al. 2020; Carcaillet et al.
2020; Loisel et al. 2021; Dahl et al. 2023). For example, in
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tropical biomes where fires have been historically rare,
an increase in extreme wildfires is augmenting tree mor-
tality leading to habitat loss, decreasing biodiversity and
carbon storage (Trauernicht et al. 2015; Silveira et al.
2016; Deb et al. 2018).

Expert assessment utility and limitations in adaptive fire
management

Although this study brought together a diverse group
of fire researchers, it is important to recognize that our
group is not geographically balanced. Despite invitations
to several hundred researchers, we received only a few
responses for some fire regions (Fig. 1b), including the
African subtropical and tropical grassland region, which
accounts for a large portion of global area burned (Ramo
et al. 2021). This reflects the broader geographical and
cultural bias in ecological research generally (Moerman
and Estabrook 2006), and wildfire research specifically
(Bradstock et al. 2002; Hantson et al. 2016; Metcalfe et al.
2018), highlighting the need for more spatially diverse
research networks. It is essential for readers to consider
the limitations arising from the smaller number of par-
ticipants in certain fire regions when interpreting our
results, as well as research from other “global” fire stud-
ies. Furthermore, it is important to recognize that a simi-
lar expert assessment with a different group of experts,
such as fire managers or policymakers, could yield differ-
ent results. The perspectives and opinions shared by our
participants were influenced by their background, knowl-
edge, and expertise, constituting both the value and limi-
tation of this exercise.

Thinking more generally about our goal of establish-
ing effective, two-way communication among research-
ers, managers, and policymakers, is expert assessment a
useful tool? Decision-making in landscape and fire man-
agement requires a nuanced, multi-scale understanding
of human and natural systems. Currently, policymakers
and managers working on fire issues are operating in an
evolving environment with sometimes conflicting tradi-
tional, scientific, societal, and political information and
priorities. As the physical, biological, and human factors
controlling wildfire behavior change rapidly, how can we
improve the rigor and breadth of the knowledge available
to those facing changing fire regimes? The decisions and
beliefs of resource managers and citizens are often based
on news coverage, anecdotal accounts, agency tradition,
or single-expert advice.

As several respondents mentioned in this study, quan-
titative models cannot capture all the factors influencing
the evolution of fire behavior (Harris et al. 2016; Abbott
et al. 2016; Hantson et al. 2016). We believe that various
types of expert elicitations can complement quantitative
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models to generate more robust and reliable guidance
that allows adaptive management. This could range from
informal interpretation of model outputs by expert pan-
els to iterative combinations, such as expert input on
management plans or machine learning models. These
approaches should be (and already are in some cases)
used in various aspects of fire management, from detect-
ing fires to planning and policy, by providing a bench-
mark or improving the initial parameters and weights
(Jain et al. 2020).

We are not proposing a new role for experts in policy-
making and management. Rather we suggest that local
expert knowledge be integrated in a more rigorous and
robust way. Policymakers and managers are making deci-
sions based on available information that is often fil-
tered through informal information networks, especially
trusted relationships and professional networks (Dickin-
son et al. 2015; Boag et al. 2018; Hertel-Fernandez et al.
2019). In the dynamic and dangerous environment of the
Anthropocene, we cannot afford to dismiss knowledge or
exclude stakeholders. For example, local expertise such as
Indigenous knowledge remains insufficiently represented
in scientific publications and fire management policies
(Christianson 2015). Therefore, we invite those in posi-
tions of influence at any level to consider how to better
share information and challenges.

Conclusion

This study investigated the past and future changes in
global fire regimes using expert assessment. We iden-
tified the main drivers of fire regime change during the
Holocene and explored the potential trajectories and
impacts of future fire regimes on different ecosystem
services. Our findings aligned with other studies that fire
regimes have experienced an increase in state changes,
and that fire regimes are likely to degrade ecosystem ser-
vices, particularly under higher greenhouse gas emissions
scenarios. We caution that carbon sequestration poli-
cies should be carefully evaluated in light of the expected
increase in fire activity for a warmer planet. Although
our study primarily focuses on general global patterns,
the results offer a foundation for hypothesis testing in
future research at smaller scales. By integrating our find-
ings with other studies exploring aspects such as the like-
lihood of fire regime changes and their effects, we can
gather more detailed information to address regional-
specific needs.

Synthesis activities that focus on addressing deci-
sion-making needs are vital, bridging the gap between
science and policy. Governments should implement sys-
tematic approaches to involve larger groups of experts
in decision-making processes promptly and efficiently,
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encouraging participation from diverse backgrounds,
including the scientific community, local managers,
and traditional knowledge holders and practitioners.
Given the complexity and multi-factor nature of fires,
we propose conducting similar expert assessment activi-
ties involving fire and land managers and other types of
expertise. These endeavors will provide new insights and
perspectives on pressing issues related to fire.
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