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Abstract Clear-cutting has been the dominant harvesting method used in boreal 
forest silviculture. Reducing the potential negative effects of intensive forestry activ-
ities on ecosystems, e.g., the simplification and homogenization of stand structure, 
requires diversifying silvicultural practices to promote forest resilience in the face of 
climate change. Priority therefore lies in developing, evaluating, and adapting partial 
cutting as a potential silvicultural option for ensuring the sustainable management of 
boreal forests. In this chapter, we summarize the findings of two large-scale experi-
ments conducted in Canadian boreal forests that tested new silvicultural approaches 
and explore their implications for forest management. We discuss the effects of 
these treatments on tree growth, tree mortality, regeneration, and biodiversity, and 
we examine the challenges of existing silvicultural approaches in the context of 
climate change.
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16.1 Context 

Ecosystem-based management (EBM) is a vehicle for achieving sustainable forest 
management and aims to balance ecological, social, and economic objectives 
(Franklin et al., 2018; Gauthier et al., 2008; Palik & D’Amato, 2017). EBM emerged 
from the natural disturbance emulation paradigm (Bergeron et al., 2001), in which 
silvicultural treatments are used to mimic the main disturbances and the natural 
range of variation of the ecological attributes of a forest area (Angelstam, 1998; 
Kuuluvainen et al., 2012; Fig.  16.1). In the boreal forest, natural disturbances such 
as fire, insect outbreaks, and windthrow are the driving forces that generate signif-
icant ecosystem changes at various spatial and temporal scales, depending on their 
frequency and severity and the size of the affected area (De Grandpré et al., 2000). 
These disturbance patterns determine the dynamics, structure, and composition of 
forests. Thus, silvicultural practices can simulate the composition and structure of 
post-disturbance forests by modifying stand attributes and producing variability 
within forest landscapes (Lecomte & Bergeron, 2005; Puettmann et al., 2015).

Over the past two decades, timber harvesting has become the main disturbance 
in boreal forest ecosystems. Currently, clear-cutting remains the main silvicultural 
treatment within the boreal biome, used within 83% of the harvested area in Canadian 
forests (Fig. 16.2; CCFM, 2018). Clear-cut systems offer the advantage of low costs 
relative to the harvested volume (Rosenvald & Lõhmus, 2008). The regeneration is 
assured either by plantation or by protecting the natural advanced regeneration (Groot 
et al., 2005). It is also used to simulate stand-replacing disturbances such as wildfires, 
i.e., high severity events affecting extensive areas, although clear-cut systems cannot 
fully mimic all postfire characteristics (Buddle et al., 2006). Although fire is the most
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Fig. 16.1 This model represents silvicultural options for maintaining landscape-level forest struc-
tures and age distributions similar to those that would exist under a natural disturbance regime. 
Structural cohorts (green bubbles) correspond to the various postfire stand successional stages, and 
silvicultural options (brown bubbles) are presented along a gradient of harvest intensity. This illus-
tration is inspired and adapted from the principle of the multicohort model and the ASIO model 
(Angelstam, 1998; Bergeron et al.,  2002)

common disturbance in many boreal regions, this is not the case for all boreal forest 
landscapes. Consequently, forest management based entirely on clear-cut systems 
can alter structural and biodiversity characteristics at the stand and landscape scales 
(Bouchard & Pothier, 2011; Lindenmayer & Franklin, 2002). Consequently, even-
aged management regimes having short forest rotations can produce habitat degra-
dation, provoke the loss of productivity in some regions, and lead to structurally 
homogeneous stands (Fig. 16.2; Fischer & Lindenmayer, 2007; Nolet et al., 2018; 
Seedre et al., 2018). To address these concerns, forest management strategies in 
several boreal countries have prioritized the need to develop, diversify, and apply 
new silvicultural treatments within an EBM framework.

Partial-cutting treatments are a group of forestry practices included in existing 
boreal EBM strategies (Grenon et al., 2010). From an ecosystem management point 
of view, partial cuttings remove a portion of trees in a forest stand and maintain 
some characteristics of a closed forest cover (Fig. 16.2; Bose et al., 2014; Moussaoui 
et al., 2019). Partial cuttings that involve the removal of 30% to 50% of the stand 
basal area can therefore emulate natural disturbances of intermediate severity and 
extent, e.g., as observed following windstorms and insect outbreaks. Depending on 
management objectives, partial cutting is a generic term that can include commer-
cial thinning (Nyland, 2016), selection cutting systems (Majcen, 1994), uniform and 
irregular shelterwood cutting systems (Raymond et al., 2009), HARP (harvesting 
with regeneration protection), and variable retention harvesting (Groot et al., 2005). 
Most of these treatments were initially developed in Europe and are being adapted
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Fig. 16.2 Some of the potential advantages (+) and disadvantages (−) of using partial and clear-
cutting harvests in the boreal forest. Clear-cutting is represented as it is applied in boreal eastern 
Canada, where harvest trails are restricted to less than 25% of the area to protect soils and advance 
regeneration

to the context of the North American boreal forest, in particular adjustments related 
to mechanized operations. This adaptation to new boreal contexts requires an under-
standing of the effects of partial cutting on residual tree growth and mortality, natural 
regeneration, and biodiversity before this approach can be considered as a tool for 
ensuring the sustainable management of boreal forests. 

In this chapter, we synthesize observations from two large-scale experiments 
undertaken in the Canadian boreal forest, which assessed the short-, medium-, and 
long-term effects of various experimental partial-cutting treatments on stand growth, 
mortality, regeneration, and biodiversity. We then provide a perspective on future 
research directions and the implementation of these harvesting approaches in the 
Canadian boreal forest.
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16.2 Large-Scale Experiments and Innovative Silviculture: 
Two Case Studies in Black Spruce Forests 

The need to evaluate the silvicultural potential of partial cutting in Canadian boreal 
forests led to the establishment of two large-scale experiments within three forest 
regions in Québec, Canada (Saguenay, Côte-Nord [North Shore]): MISA (Managing 
innovative silvicultural alternatives) and RECPA (Réseau expérimental de coupes 
partielles en Abitibi) [Abitibi partial cutting network]. Both experiments comprise 
multiple replicates and long-term monitoring plots to investigate partial-cutting 
modalities adapted to mechanized operations in the black spruce (Picea mariana 
(Mill.) BSP)–dominated forests of Québec. 

The MISA experiment, established by the Canadian Forest Service of Natural 
Resources Canada in 2003, involved three novel shelterwood treatments adapted to 
mechanized harvesting (Meek, 2006), standard clear-cutting, a seed-tree method, 
and untreated controls (Fig. 16.3; Montoro Girona et al., 2017). The shelterwood 
system aims to promote natural regeneration in the understory before a final harvest 
through the gradual opening of the canopy (Larouche et al., 2013; Matthews, 1991; 
Raymond et al., 2013; Smith et al., 1997). This approach maintains part of the residual 
stand as a seed source and as a means of offering partial shade to protect seedlings 
during the regeneration period and preventing the establishment of competing early-
successional shade-intolerant species (Doucet et al., 1996; Raymond et al., 2000). 
Within an EBM context, shelterwood harvesting can be used to replicate the effect 
of a successional process occurring after low- to moderate-intensity secondary 
disturbances, such as insect outbreaks or windthrows, which promote the devel-
opment of two-cohort stands (Drever et al., 2006; Kuuluvainen & Grenfell, 2012; 
Oliver & Larson, 1996; Smith et al., 1997). Incidentally, the shelterwood system 
allows residual trees to increase their volume before the final harvest and could be 
a promising silvicultural option for stands of black spruce—one of the most widely 
distributed species in North America (found from Québec to Alaska) and a shade-
tolerant species that depends on exposed mineral soil for regeneration via seeds. 
Shelterwoods may provide an adequate solution for management strategies to main-
tain a high level of forest retention, particularly for the management of woodland 
caribou habitat (Courtois et al., 2004). This experiment was conducted in mature 
even-aged black spruce stands on upland sites, following a complete randomized 
block design with 36 experimental units of 3 ha each (Fig. 16.4).

The Abitibi partial cutting network (RECPA) was established in 1998 across 
northwestern Québec to test the operational feasibility of partial-cutting treatments 
in black spruce–feathermoss forests having an uneven-aged structure (Bescond 
et al., 2011; Fenton & Bergeron, 2007). RECPA included two experimental partial-
cutting treatments: harvesting with advance regeneration protection (HARP) (Groot 
et al., 2005; Thorpe et al., 2007) and an experimental conservation of canopy cover 
(CCCC) treatment. This experiment also included clear-cut harvesting that removed
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Fig. 16.3 Characteristics and spatial patterns of the three experimental shelterwood treatments and 
a seed-tree method applied in the MISA experiment

all merchantable stems (diameter at breast height; DBH > 9 cm). Both HARP and 
CCCC are applied to promote natural regeneration and stand growth. HARP is a 
partial-cutting treatment that involves removing stems with (generally) a DBH greater 
than 14 cm; this approach is used operationally in irregular boreal stands character-
ized by an abundance of saplings and small merchantable stems (Riopel et al., 2010). 
Moreover, HARP also promotes the development of both old-growth characteristics 
and the maintenance of high levels of biodiversity (Fenton et al., 2013; Opoku-
Nyame et al., 2021). CCCC is a partial-cutting treatment in which stems from all 
diameter classes are harvested to maintain a similar proportion as that present before 
harvest (Arseneault et al., 2012). Although some partial-cutting treatments offer the 
potential of being effective at ensuring a regular input of deadwood and provide 
a compromise between conservation and harvesting in boreal forest stands (Fenton 
et al., 2013), some modalities, e.g., operational aspects, remain and affect the survival 
of residual stems. These modalities are insufficiently understood in the context of 
the Canadian boreal forest (Bose et al., 2014; Thorpe & Thomas, 2007). The RECPA 
experiment comprised six study sites, each site comprising three blocks (a partial 
cutting, clear-cutting, and untreated plot) of 50 ha each.



16 Innovative Silviculture and Sustainable Forest Management 423

Fig. 16.4 a Naturally regenerating black spruce stand after clear-cutting, b partial cutting ten years 
post-treatment, c trail opening and canopy conditions after mini-strip shelterwood cuttings (50% 
removal). Photo credits Miguel Montoro Girona

16.3 Is Partial Cutting a Viable Alternative for Sustainable 
Forest Management? 

16.3.1 Tree Growth 

EBM aims to ensure both wood production and the maintenance of ecosystem 
functions. Thus, evaluating EBM performance must involve quantifying and under-
standing the effect of silvicultural treatments on tree growth. The effects of partial 
cutting on residual stand wood production in boreal forests are increasingly under-
stood; several partial-cutting studies have been conducted involving various treat-
ments and species in Scandinavia (Lähde et al., 2002; Pape, 1999; Peltola et al., 2002; 
Pukkala et al., 2009) and North America (Bourgeois et al., 2004; Goudiaby et al., 
2012; Raulier et al., 2003; Schneider et al., 2008; Thorpe & Thomas, 2007). After
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partial cutting, residual stem growth generally increases because of decreased stand 
density and competition. For black spruce—the most harvested conifer in eastern 
Canadian forests owing to its excellent wood properties—residual stem growth 
depends on the partial-cutting intensity; the gain in tree growth is often marginal 
or insignificant for partial cuttings that involve about 30% of the basal area being 
removed, whereas marked residual stem growth is observed for cuts of 50% basal 
area (Goudiaby et al., 2012; Pamerleau-Couture et al., 2015; Soucy et al., 2012; 
Vincent et al., 2009). Normally, tree growth response is not consistent over time (i.e., 
the response is delayed by three to five years after treatment), across space (e.g., edge 
effect, site index and climate), and among stands (i.e., high individual tree variability 
related to ecological status, age, and genetics) (Montoro Girona et al., 2016, 2017). 

In the MISA experiment, the novel shelterwood treatments enhanced the radial 
growth of black spruce stems, especially in younger stands (80–100 years old), and 
the growth response did not differ in relation to harvesting intensity or the type 
of silvicultural treatment applied among shelterwoods and seed trees. The radial 
growth response, 8 to 10 years postcutting, was 41% to 62% higher than that in 
untreated plots. The main factors affecting the growth response were stand structure, 
silvicultural treatment, tree position relative to skidding trails, growth before cutting, 
and time (Montoro Girona et al., 2016). Trees at the edge of the skidding trails showed 
twice the increase in growth compared with trees within residual strips, and this effect 
was greater in younger stands. Trail edges are characterized by less competition and 
a greater access to light and nutrients than within strips. On the other hand, trees 
located along trail edges may face greater exposure to wind and experience more 
frequent stem and root injuries caused by machinery during cutting and scarification 
operations than trees within strips (Cancino, 2005; Chen et al., 1993; Gardiner et al., 
1997; Harper et al., 2016). In the MISA experiment, the positive response of black 
spruce along the trails suggests that the improved access to light and soil resources 
counterbalanced these potential trailside stresses (Fig. 16.5a). These observations 
confirm that silvicultural planning and stand selection in mature black spruce forests 
must consider both the spatial distribution of trails, to promote edge effect, and stand 
age, to maximize growth response.

In the RECPA experiment, residual stand volume showed net growth over the ten 
years that followed both the HARP and CCCC treatments in all studied sites (Mous-
saoui et al., 2020). Average tree-ring width after HARP in black spruce stands was 
double that of preharvest stands (Thorpe et al., 2007). In uneven-aged black spruce– 
dominated stands, greater tree radial growth after partial cutting can be limited by 
tree age and intertree competition (Pamerleau-Couture et al., 2015). In uneven-aged 
black spruce stands, although heavy partial cutting can re-attain the preharvest basal 
area 45 years after harvest (Groot, 2014), this return to the initial basal area can take 
65 to 105 years on poorer quality sites corresponding to a more limited establishment 
of post-harvest growing stock (Thorpe et al., 2010). In Québec, HARP tends to reduce 
forest rotation. Results obtained 20 years post-treatment in the HARP experiment 
indicate that this reduction in forest rotation could be 40 to 50 years for stands having 
a median forest rotation of 80 to 90 years. This finding suggests, therefore, that in
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Fig. 16.5 Response of black spruce stands after experimental silvicultural treatments in MISA; 
a tree rings show the strong radial growth response of edge trees during the first ten years after 
treatment; b windthrow damage observed ten years after the seed-tree method; c black spruce 
seedlings established ten years after the experimental shelterwood and scarification. Photo credits 
Miguel Montoro Girona

terms of residual tree growth, by considering site quality, partial-cutting treatments 
had a positive effect to promote radial growth after cutting. 

16.3.2 Post-Harvest Mortality and Windthrow 

A significant risk associated with partial cutting is post-harvest mortality due to 
windthrow disturbance (Fig. 16.5b). Partial cutting increases wind penetration into 
the residual stand, heightening the risk of windthrow (Gardiner, 1995; Riopel et al., 
2010; Ruel, 1995). This effect is most evident during the first five years post-treatment 
(Jönsson et al., 2007; Macisaac & Krygier, 2009; Ruel, 2000; Thorpe et al., 2008) or  
where wind exposure is increased by large nearby openings or wind-favoring topog-
raphy. Factors influencing windthrow include wind exposure (Ruel, 2000; Scott & 
Mitchell, 2005), edaphic conditions (Mitchell, 1995; Ruel, 1995; Stokes et al., 1995), 
stand composition (Burns & Honkala, 1990; Raymond et al., 2000; Riopel et al.,
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2010), stand density (Cremer et al., 1982; Maccurrach, 1991), as well as stem mass, 
size, and height/diameter ratio (Riopel et al., 2010). In addition, tree injuries incurred 
during harvest operations may contribute to increase mortality for stems located next 
to skid trails (Bladon et al., 2008; Thorpe et al., 2008). 

In the MISA experiment, 76% of the post-harvest mortality, ten years after 
treatment, could be explained by harvest treatment, machinery-caused injuries, and 
distance to adjacent cuts (Montoro Girona et al., 2019). Windthrow accounted for 
80% of post-harvest mortality. Therefore, an expected increase in mortality with 
greater harvest intensity must be included in silvicultural guidelines for applying 
uniform shelterwood treatments and seed-tree harvesting (e.g., see Stathers et al., 
1994). Retention levels should aim at 45% to 65% of the initial basal area to mini-
mize losses, and stand selection should prioritize sites having conditions that favor 
the lowest probability of windthrow. Moreover, low retention levels increase the risk 
of tree mortality and produce high overturn rates, thereby compromising silvicultural 
objectives (Urgenson et al., 2013). 

The success of partial cutting depends mainly on the survival of residual trees. 
Ten years after harvest, the uniform shelterwood treatments tested in the MISA 
experiment resulted in a mortality that was 15% to 20% higher than that observed in 
the control stands; however, this mortality was still within the range of that observed 
in natural stands in this area (De Grandpré et al., 2008). In the MISA experiment, 
seed-tree harvesting experienced the highest levels of mortality (45%–75% of the 
residual stems), primarily because of the higher exposure of residual trees to wind, 
relative to uniform shelterwood treatments, in which only trees along the trails and 
the edges close to clear-cut areas were highly exposed. Trees along smaller and more 
exposed residual strips are more vulnerable to wind damage (Jönsson et al., 2007) and 
experience higher rates of overturn in residual stands (Achim et al., 2005). Anyomi 
and Ruel (2015) and Urgenson et al. (2013) observed similar patterns, finding that 
high harvest intensity, such as that using seed trees and the removal of 75% of the basal 
area, produced 60% to 80% post-harvest mortality; these levels correspond to twice 
the amount of windthrow than that observed for intermediate intensity harvesting 
(40%–60% removal)—levels removed in the shelterwood system, for example. 

Much of the research conducted in the RECPA experiment focused on the impacts 
of partial cutting on residual tree mortality over the short, medium, and long term 
(Lavoie et al., 2012). Moussaoui et al. (2020) demonstrated that ten years post-
harvest, stem losses in black spruce forests depend largely on preharvest stand struc-
tures and site conditions, in agreement with previous results coniferous-dominated 
stands (Riopel et al., 2010). Moreover, the RECPA experiment showed that ten 
years after harvesting, depending on harvest treatment intensity, partial cutting could 
increase post-harvest tree recruitment and growth or reduce stand basal area because 
of a high rate of standing tree mortality (Moussaoui et al., 2020). For example, 
no cases of high mortality (basal area occupied by dead trees) were observed ten 
years after harvest when treatment intensity (HARP or CCCC), i.e., the percentage 
of harvested basal area, was ≤48%. In a study comparing mortality after dispersed 
and group-retention partial cuttings in Canadian boreal forests, Lavoie et al. (2012) 
observed that increased wind penetration into residual stands heightened post-harvest
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mortality; a combination of factors likely caused this increase, including fine-textured 
soils, flat topography, and the dominance of shade-intolerant species. Moussaoui et al. 
(2020) suggest that partial cutting in black spruce forests should be avoided in sites 
where the organic layer thickness approaches 17 cm or more to ensure an increase 
in the decennial stand yield after harvesting. From the results of both experiments, 
post-harvest tree mortality in boreal forests can be predicted using pre-existing stand 
conditions, even before considering the influence of the intensity and configuration 
of a partial-cutting treatment. Understanding the factors involved in this complex 
phenomenon is important for reducing post-harvest losses. 

16.3.3 Regeneration 

Successful natural regeneration is fundamental to sustainable forest management, 
as it enables the resilience of forest ecosystems. Natural regeneration is central to 
most management strategies in the boreal biome (Bose et al., 2014; Kuuluvainen, 
1994; McDonald & Urban, 2004; Messier et al., 1999; Prévost,  1996; Prévost et al., 
2010). Natural regeneration of boreal forests involves numerous processes, including 
seed production and dispersal, germination rates, seedling establishment, and early 
seedling and sapling growth and mortality (Blanco et al., 2009; Thiffault et al., 2015). 
Stand structure and silvicultural treatment determine ecological factors such as light 
availability, and substrate influences the quality of the environment for seedling 
establishment and growth. The availability and distribution of seedbeds composed 
of exposed mineral soil are crucial elements for the successful regeneration of boreal 
stands (Kolabinski, 1991; Martin et al., 2020; Raymond et al., 2000). Moreover, new 
openings in the forest cover caused by partial cuttings alter light availability and 
the physical conditions in the forest and its understory (Barik et al., 1992; Coates, 
2000, 2002; Parent & Messier, 1995). Numerous studies have examined the role of 
increased light availability on the understory (Beaudet et al., 2011; Canham et al., 
1990; Chazdon, 1988) and its effect on the growth of regenerating trees (Beaudet & 
Messier, 1998; Kobe et al., 1995). Studies have also quantified the influence of 
opening size on cohort biomass (Webster & Lorimer, 2002), variations in canopy 
openings after partial cutting (Beaudet & Messier, 2002; Domke et al., 2007), and 
gap formation rates (Raymond et al., 2006; Runkle, 2000; Van Der Meer & Bongers, 
1996). 

The MISA experiment evaluated how the creation of canopy openings from the 
uniform shelterwood treatments affected the density, stocking, and size of black 
spruce seedlings after partial cutting (Fig. 16.5c; Montoro Girona et al., 2018). 
The experiment demonstrated that uniform shelterwood and seed-tree treatments 
produced an abundant regeneration of black spruce seedlings and provided a more 
effective silvicultural option than clear-cutting in that regard; for example, experi-
mental shelterwood-treated stands produced three times more regeneration outcomes 
than that observed in clear-cut stands (Montoro Girona et al., 2018). The shelterwood 
treatment involving a series of narrow cut strips (mini-strip shelterwood) was the most
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effective in terms of regeneration stocking after ten years. The MISA results indicated 
that regeneration outcomes depend more on substrate than light during the first ten 
years post-harvest. Following partial cutting, all sites were scarified using a 10-ton 
excavator equipped with a 1 m3 bucket in the skidding trails and along their edges 
where the residual spacing of trees allowed. Scarification promoted the stocking and 
density of black spruce regeneration by exposing the mineral soil, thereby emulating 
the effects of fire on the organic layer. Thus, partial cutting combined with patch 
scarification created the required substrate (mineral soil) and light conditions (lateral 
shadowing from the residual strip) to promote black spruce regeneration. No major 
competition with deciduous trees and shrubs was observed; however, future research 
must be undertaken to measure the changes over the longer term. 

Piché (2017) described the effects of partial cutting on regeneration establish-
ment ten years after treatments within the REPCA experiments. Stocking was 
similar between partial-cutting and clear-cutting treatments, whereas seedling growth 
remained low on paludified sites. The regional climate and physical characteristics 
of the soils found in the Clay Belt region of eastern Canada favor the accumulation of 
organic matter and the rise of the local water table (Bescond et al., 2011; Fenton et al., 
2005, 2009; Payette & Rochefort, 2001). Moreover, the anchoring and intertwining 
of black spruce root systems is reduced; this leads to decreased natural establish-
ment and productivity (Lafleur et al., 2010; Lecomte et al., 2009). Understanding the 
forest dynamics of this region and adapting partial-cutting modalities will require 
further studies, particularly in forest stands prone to paludification. Furthermore, the 
recent assessment of the effects of partial cutting ten years after treatment on stand 
development (recruitment, growth, and mortality) in RECPA stands revealed that tree 
recruitment increases significantly with greater residual sapling density. Moussaoui 
et al. (2020) found that a minimum density of 800 saplings/ha appears sufficient to 
promote the healthy recovery of black spruce stands and a high stand yield after 
partial cutting. Therefore, black spruce stands having a diversified diametrical struc-
ture with an abundance of saplings will respond positively to partial cutting over the 
short term. 

16.3.4 Biodiversity 

Silvicultural treatments modify the biotic (e.g., species composition, diversity, and 
community structure) and abiotic (e.g., light availability, soil temperature, and water 
availability) environment of forest stands (Kim et al., 2021). The effects of soil distur-
bance on vegetation colonization are site specific and depend largely on disturbance 
size and intensity, preharvest species composition, and species’ functional traits. 
Seedbed conditions and existing seed banks also significantly influence shrub colo-
nization following soil disturbance, as illustrated in multiple successional studies 
(Lafleur et al., 2010, 2015; Lecomte et al., 2006; Prévost,  1996). 

Understory vegetation is a good indicator for understanding changes in forest 
dynamics caused by silviculture, as it is directly influenced by the dominant tree
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cover (Fraver et al., 2007; Hernández-Rodríguez et al., 2021; Macdonald & Fenniak, 
2007). Previous studies in western Canada have focused on the response of plant 
communities after a clear-cutting of mixedwood forests in Manitoba (Kembel et al., 
2008) and partial cutting in Alberta (Caners et al., 2013) and British Columbia 
(Man et al., 2010). In eastern Canada, forest succession after partial cutting has been 
studied in maple (Acer saccharum Marsh)-dominated stands (Archambault et al., 
2003), mixed yellow birch (Betula alleghaniensis Britt.)–balsam fir (Abies balsamea 
(L.) Mill.) forests (Dubois et al., 2006), balsam fir–dominated stands (Raymond et al., 
2000), and black spruce–dominated ecosystems (Fenton et al., 2013). 

In the RECPA experiment, much of the research has focused on the impacts 
of partial cutting on biodiversity (Bescond et al., 2011; Fenton & Bergeron, 2007; 
Fenton et al., 2013; Paradis & Work, 2011). Partial cutting at a minimum of 40% to 
60% retention maintained habitat attributes for various organisms (Bose et al., 2014; 
Fenton et al., 2013). Species-specific responses to partial cutting can be positive 
for both understory plants (Bescond et al., 2011) and small mammal populations 
(Cheveau et al., 2004), which are relatively resilient to low retention levels (<40%). 
Similar benefits were documented for vascular plants and mosses (Arseneault et al., 
2012; Bescond et al., 2011; Fenton & Bergeron, 2007; Opoku-Nyame et al., 2021), 
epiphytic lichens (Boudreault et al., 2002), and birds (Lycke-Poulin, 2008) in the  
RECPA experiment. Maintaining arthropod assemblages similar to those of older, 
unmanaged forests requires, however, higher retention levels (>60%; Jacobs & Work, 
2012; Paradis & Work, 2011). In the context of EBM, findings from the RECPA 
experiment for a variety of species groups indicate that a 50% retention level appears 
appropriate for maintaining biodiversity; however, long-term monitoring is required 
to inform adaptation strategies for sustainably managing forests in the context of 
a changing climate, as well as to include the larger body size species to improve 
our understanding of the biodiversity patterns at the landscape scale for different 
structural stands. 

16.4 Research Perspectives 

In this chapter, we have addressed some critical aspects of novel silvicultural treat-
ments that aim to promote residual tree growth, minimize windthrow damage, favor 
regeneration, and maintain biodiversity in the boreal forest. Although we have 
focused on the MISA and RECPA experiments, other large-scale experiments, such as 
EMEND (Spence et al., 1999), SAFE (Brais et al., 2004), and EVO (Vanha-Majamaa 
et al., 2007), provide invaluable insights into alternative management systems appli-
cable to the boreal forest. Nonetheless, a more complete assessment of sustainable 
forest management in the context of climate change requires additional research on 
a number of fronts: 

Economic implications The selection and application of silvicultural treatments 
are highly dependent on financial and economic profitability. Future work should
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include analyses of the cost/benefit ratios related to implementing partial cutting in 
the boreal context and develop cost-effective means of planning, conducting, and 
monitoring partial-cutting treatments on an operational basis. Finally, the impact of 
partial cuttings on wood quality and value must be addressed to analyze final product 
values in the wood market. 

Long-term monitoring of growth and yield Climate change will alter the growth 
dynamics of stands and species; new estimates of optimal rotations will probably 
be required. Large-scale experimental designs comprising permanent sampling plots 
offer the opportunity for a long-term monitoring of tree growth and stand dynamics 
(e.g., Achim et al., 2021; Pappas et al., 2022; Thiffault et al., 2021). Further inves-
tigations of the growth response in black spruce stands after partial cutting should 
examine the extent (distance) of the edge effect along residual strips; such research 
would help maximize post-treatment wood production. Another pressing question 
concerns the full estimate of postcutting growth response over time. Currently, 
existing dendrochronological series of black spruce from postcutting growth studies 
do not exceed 12 years (Montoro Girona et al., 2016, 2017; Pamerleau-Couture et al., 
2015; Thorpe et al., 2007); longer-term assessments are required for planning the 
timing of the final cut and optimizing the effect of the treatment on radial growth. 

Forest regeneration under climate change As climate change will lead to altered 
precipitation and temperature patterns and likely favor more frequent summer 
drought periods. Partial cutting could help reduce seedling vulnerability to drought; 
however, no studies have addressed this question to date. Climate change will create 
novel stand compositions, and the greater presence of hardwoods in boreal forest 
stands must be addressed (Brumelis & Carleton, 1988; Riopel et al., 2011; Solarik 
et al., 2020). The opening of the canopy, for example, stimulates the germination and 
survival of paper birch (Betula papyrifera Marsh.) (Perala & Alm, 1990). Even if 
hardwood species are generally found in relatively open areas receiving higher irra-
diance, some species can survive for a few years under conditions of 10% sunlight 
(Messier et al., 1999). Thus, early regeneration in unmanaged boreal forests char-
acterized by infrequent fires is dominated by more shade-tolerant softwood species. 
Deciduous competition could affect the growth of black spruce seedlings and thus 
requires a careful analysis of regeneration after partial cutting. 

Insect outbreaks Climate change is shifting spruce budworm (Choristoneura 
fumiferana (Clemens)) habitats to a more northern range and into areas currently 
dominated by black spruce (Navarro et al., 2018). Because of the potential signif-
icant impacts of spruce budworm outbreaks on residual stands and the postcutting 
regeneration, it is necessary to understand the spruce budworm–related effects in 
interaction with novel silvicultural practices. Between 1990 and 2016, harvesting
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affected 24 million ha in Canada. Consequently, a large portion of the North Amer-
ican boreal forest exists at an early development stage; it is thus important to under-
stand the vulnerability of regeneration after cutting to insect outbreaks (Cotton-
Gagnon et al., 2018; Lavoie et al., 2019). A recent study has demonstrated that 
partial cuttings can reduce the impact of insect outbreaks on regeneration (Lavoie 
et al., 2021); however, much more research is required to better understand these 
insect-regeneration interactions under future climate change. 

Windthrow Climate change projections indicate increasing windthrow and wind 
damage in forests will significantly impact stand dynamics in the near future (Saad 
et al., 2017). Pursuing the research efforts conducted over the last 20 years (Achim 
et al., 2005; Gardiner et al., 2008; Solarik et al., 2012) is essential to understand better 
the factors driving forest vulnerability to wind damage, especially following partial 
cutting. These studies would contribute to minimizing the uncertainties associated 
with climate change in forest management strategies and help create decision support 
tools that consider those risks in planning. Finally, management measures that reduce 
windthrow risk must be tested further to provide effective tools for silviculturists in 
preventing losses due to wind damage. 

Carbon sequestration Increasing the C sequestration capacity of a forest requires 
an understanding of the effects of management and climate together with predictions 
as to how these effects might change in forest ecosystems over both the short and 
long term (Hof et al., 2021). Silvicultural treatments and systems could create or 
maintain stands of suitable structure and composition to promote C sequestration 
and mitigate and adapt ecosystems to the effects of global change (Paradis et al., 
2019). Partial cutting with cut-to-length or tree-length harvesting systems has been 
identified as a potential solution for increasing biomass and soil C content (Ameray 
et al., 2021); however, the long-term effects are not fully understood, particularly in 
terms of the modality and the intensity of partial cutting. 

16.5 Conclusions 

The large-scale experiments presented in this chapter are essential for quantifying 
the multiple ecological and economic outcomes of forest management alternatives. 
From the existing data, partial cutting offers viable silvicultural alternatives to clear-
cutting when required by sustainable forest management objectives. The experi-
mental treatments reviewed here promote residual tree growth, reduce windthrow-
related losses, favor regeneration, and help maintain biodiversity. Nonetheless, the 
clear-cut system remains the main silvicultural regime within the boreal biome. 
Although it is an appropriate approach in many contexts, clear-cutting can create frag-
mented landscapes, promote young and even-aged stands to the detriment of multi-
cohort stand structures, and benefit some commercial species rather than ensuring a 
more diverse composition. Moreover, current even-aged management tends to reduce 
forest structural variability. A more diverse silviculture that integrates partial cutting
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into the portfolio of available treatments could increase forests’ adaptive capacity 
and resilience in the face of climate change, allowing to maintain a larger spectrum 
of forest composition and structures at different scales across the landscape. 
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