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A B S T R A C T   

The multifunctionality of forest systems calls for appropriately complex modelling approaches to capture social 
and ecosystem dynamics. Using a social-ecological systems framework, we review the functionality of 31 existing 
agent-based models applied to managed forests. Several applications include advanced cognitive and emotional 
decision-making, crucial for understanding complex sustainability challenges. However, far from all demonstrate 
representation of key elements in a social-ecological system like direct interactions, and dynamic representations 
of social and ecological processes. We conclude that agent-based approaches are adequately complex for 
simulating both social and ecological subsystems, but highlight three main avenues for further development: i) 
robust methodological standards for calibration and validation of agent-based approaches; ii) modelling of agent 
learning, adaptive governance and feedback loops; iii) coupling to ecological models such as dynamic vegetation 
models or species distribution models. We round-off by providing a set of questions to support social-ecological 
systems modelling choices.   

1. Introduction 

Managed forests are impacted by changes in social and economic 
systems, while at the same time forest management is a driver of change 
in the very same systems (Nocentini et al., 2017). The idea of social and 
economic dimensions as part of forest management is not new, but so-
cial, economic and ecological issues have been treated as belonging to 
essentially different realms (Filotas et al., 2014). While forests are key 
provisioning ecosystems contributing to human quality of life, 
large-scale intensive forestry practices risk undermining future provi-
sioning of ecosystem services in the presence of climate change and 
biodiversity loss (Canadell and Raupach, 2008). In contrast to the 
traditional view of forestry where forests are primarily managed for 
wood production, an argument that has been put forward in the last 
decade is to understand forests as multifunctional systems where social 
and ecological dimensions are deeply integrated and intertwined (Filo-
tas et al., 2014; Fischer, 2018; Nocentini et al., 2017; Rist and Moen, 
2013). This, in turn, calls for a change in perspective and for new ap-
proaches (Brockhaus et al., 2021; Leach et al., 2018) that can deal with a 
heterogeneity of goals and interactions among actors (Fischer, 2018; 
Gotts et al., 2019). 

With the concept of heterogeneous actors, we refer to the many ways 
in which we as humans relate to and value forests. As has been argued 
within common property resource management, taking a wide range of 
objectives into account matter if we are to understand actor decisions 
and policy impact (Ostrom, 2007). An agent-based model provides the 
ability to consider heterogeneous actors with a variety of goals, and 
emerging patterns from interactions among these actors (Heckbert et al., 
2010). Earlier research has provided insights into the use of agent-based 
models in related fields, like agent-based models of land use and land 
cover change (Matthews et al., 2007; Parker et al., 2003), of coupled 
human and natural systems (An, 2012), physical and human geography 
applications (Torrens, 2010), ecosystem management (Bousquet and Le 
Page, 2004), and agriculture and agri-food supply chains (Huber et al., 
2018; Utomo et al., 2018). While we observe increasing use of 
agent-based models for studying human behavior and forest uses, we are 
missing an overview clarifying the differences between available 
models, their framework implementation, features, scopes, and func-
tions. This review aims to fill that gap and is guided by the following 
questions: 

How do existing agent-based models for managed forest systems 
compare in their ability to simulate a social-ecological system? 
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Specifically, how do current applications provide the possibility to 
simulate:  

a) interactions among and between social and ecological subsystems?  
b) dynamic representation of processes and behavioral change?  
c) flexibility when it comes to the study purpose? 

The study contributes to the literature on the use and scope of ABMs 
in general (Achter et al., 2023; Dai et al., 2020; Filatova et al., 2013; 
Noszczyk, 2019; Savin et al., 2023), along with modelling 
social-ecological systems (Schlüter et al., 2019; Wijermans et al., 2023), 
but with a novel focus on forest systems. The aim is to perform a sys-
tematic comparison of agent-based models useful to understanding 
human-nature interactions in forest systems, conceptualized as 
social-ecological systems (SES). First, we provide a conceptual back-
ground of social-ecological systems, relate it to forest systems and pro-
vide an overview of a motivation for using agent-based approaches for 
studying such systems (Section 2). Next, we describe how the systematic 
comparison of agent-based modelling applications has been done (Sec-
tion 3) and show in the results section how reviewed applications 
compare (Section 4). Lastly, we discuss how the study can guide model 
choice, and provide insights into current frontiers in agent-based ap-
proaches for studying forests as social-ecological systems. 

2. Conceptual background 

2.1. Social and ecological interactions 

The concept of SES refers to social and ecological systems being 
deeply interlinked and mutually dependent, where the way people and 
nature interact is understood as constantly changing relations across 
scales (Berkes, 2017; Berkes and Folke, 1998). The aim from the 
collaborating group of researchers within common pool resource sys-
tems and ecological economics that developed the concept was to pro-
vide a structure for analyzing local resource management (Berkes and 
Folke, 1998). 

SES is based on systems theory, which puts focus on exploring re-
lationships and interactions rather than isolated components of a system 
(Von Bertalanffy, 1972). With that understanding, an SES is more than 
the sum of its ecological and social parts (Reyers et al., 2018). Several 
frameworks have been suggested to study social-ecological systems, one 
prominent being the one developed by Elinor Ostrom (2009). Ostrom’s 
SES framework was developed with the purpose to analyze how multiple 
forms of governance affect resource systems and resource uses across 
multiple dimensions and scales (McGinnis and Ostrom, 2014). Ostrom’s 
SES framework builds on collective action theory and focusses on 
resource user interactions, in contrast to more system-level SES frame-
works (Schlüter et al., 2019). In studying forest systems as natural 
common pool resources, shared and governed by multiple actors, SES 
has become a common approach to understanding complex dynamics of 
ownership and responsibility (Schlager and Ostrom, 1992). 

The framework is a multi-level framework where the social- 
ecological system is represented through variables on two levels, the 
first-tier and second-tier variables. At the first level the framework di-
vides a system into seven categories: resource units, resource system, 
actors, governance system, social, economic, and political setting, action 
situations (interactions and outcomes) and related ecosystems. The 
second-tier variables enable further specification of each subsystem, to 
for example define resource system size and boundaries, interactions 
between resource units, location, history of resource use, government 
organizations, and property-rights systems. Interactions between these 
elements are what leads to outcomes, and that outcomes from a SES are 
on multiple scales in space and time (de Mello et al., 2020; McGinnis and 
Ostrom, 2014; Ostrom, 2007). The complementary social-ecological 
action situation (SE-AS) framework (Schlüter et al., 2019) highlights 
social and social-ecological interactions as key components to 

understand emergent phenomena. While the continued conceptualiza-
tion builds on the variables in Ostrom’s framework, the SE-AS frame-
work emphasizes importantly how action situations are formed, and 
encourages researchers to “critically reflect on the assumptions made 
regarding human behavior when analyzing a SES” (Schlüter et al., 2019, 
p. 5). Decision-making models need to fit the context they aim to 
represent (Wijermans et al., 2023). We thus see these as important 
perspectives when considering modelling forests as social-ecological 
systems. 

2.2. Forests as social-ecological systems 

To conceptualize a social-ecological system understanding of a 
managed forest, let us start by looking at the seven first-tier variables 
(Fig. 1). The underlying assumption is that social and ecological systems 
are deeply intertwined, meaning that forest policy, regulations, social 
relations, and trade flows are all examples of social processes that affect 
and are affected by forest structure, growth, species diversity and 
nutrient cycling. The system as a whole is affected by its social, eco-
nomic and political settings – like economic development, demographic 
trends, political stability, external governance systems, markets, tech-
nology and media organizations (McGinnis and Ostrom, 2014; Ostrom, 
2009). Resource units could be plants, understory vegetation and fauna, 
articulated and defined in different ways: as wood, units of carbon 
storage or classes of land cover. The second-tier variables like resource 
unit mobility, growth rate, economic value, number of units and spatial 
and temporal distribution are used to further specify characteristics of 
the first-level variables (McGinnis and Ostrom, 2014). 

In a managed forest system, important actors are e.g., managers, 
forest owners, households, firefighters, loggers, indigenous groups, and 
local communities. The second-tier variables then emphasize actors’ 
socio-economic attributes, their dependence on the resource, their his-
tory or past experiences, norms, knowledge, and technologies available. 

The governance system includes all organizations and structures that 
affect the use of the resource. It could entail government and non- 
government organizations, structures of property-rights, and regula-
tions for monitoring and sanctions. Forests are not closed systems, but 
are open for inputs to and outputs from other ecosystems in forms of e.g. 
nutrients, pollution, norms and information (Nocentini et al., 2017). 
When it comes to interactions and outcomes in managed forests, we 
could think of important aspects to consider being harvesting patterns, 
information sharing, conflicts investments, lobbying, networking, eq-
uity, and sustainability (McGinnis and Ostrom, 2014). 

2.3. Agent-based models 

An agent-based model (ABM) is a bottom-up approach to model 
heterogeneous agents and their actions and interactions, often with an 
aim to understand patterns that emerge from micro-to macroscale. 
Specifically worth mentioning for studying a SES, agent-based models 
have been shown to be useful to combine quantitative and qualitative 
data (Antosz et al., 2022). The agents in the model are defined by a set of 
rules that guide their behavior, and could represent an organization, a 
person, or a household. They act in a world set to represent the physical 
world such as a landscape with agricultural and forest patches, or be set 
to a specific scenario, for example a forest policy debate. Depending on 
the approach, the agents and the landscape may be given dynamic 
properties that evolve over time. Recent research developments have 
approached the challenge of dynamic cognitive processes by integrating 
machine learning to represent agents’ learning and memory (Con-
stantino et al., 2021; Sotnik, 2018). 

In contrast to traditionally used models within forest management 
studies, like decision support systems (DSS), top-down equation based or 
economic models, ABMs give the possibility to model agents that have 
different objectives, and dynamic interactions between each other and 
with the environment (Rounsevell et al., 2012). While these properties 
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make it possible to capture more complexity within forest systems, 
ABMs have to a large degree been used as a research approach rather 
than operational decision support tools for forest managers, often 
argued due to lack of empirical calibration (Matthews et al., 2007; van 
Vliet et al., 2016). ABM has however advantages that can provide ap-
plications beyond theoretical experiments e.g. by being able to integrate 
stakeholders and participants through participatory modelling (Bommel 
et al., 2015; d’Aquino et al., 2002). Within integrated environmental 
assessment models, ABM is considered a good option for purposes of 
system understanding, social learning and interactions among actors 
(Groeneveld et al., 2017; Kelly et al., 2013). 

3. Methods 

We performed a literature review and a systematic comparison of 
agent-based approaches to modelling forests as social-ecological sys-
tems. Models for studying individual actors’ behavior can be found 
under different names – while agent-based modelling or agent-based 
computational economics are most common in social and economic 
sciences, individual-based modelling is commonly used in ecological 
applications (Grimm, 1999; Heckbert et al., 2010). The structure and 
purpose of the model can be similar, and for this reason we chose to 
review both agent-based, multi-agent systems and individual-based 
models, but only to include models that involve interactions between 
humans and forest systems. The analysis should be understood as 
comparing models that have the potential to be used for 
social-ecological systems modeling of forest systems, as we did not 
require studies to specifically mention the term SES as long as a 

human-forest relationship was represented in the model. 
The literature search was performed in six steps. In the first step, we 

built a search string around the three main themes: model, forest and 
management, see Table 1. 

The addition of “NOT random forest” was done to exclude results 
from the common machine learning algorithm random forest. Additions 
to the search string that were explored but did not add to search results 
included: “agent-based computational economics”, “agent based 
model”, “individual based model”, forestry, silviculture and wood. 

In the second step, we used the final search string and performed 
searches in Web of Science and Scopus and explored different alterna-
tives for limiting the scope of the search, see Table 2. 

Based on the result of the search we performed the literature search 
and decided to limit the first part of the search string, the model theme, 
to include abstract, and the two other parts - forest and management – to 
title only with the aim to obtain a broad but relevant result. We limited 
the search to peer reviewed articles and conference papers. The results 
of the search in the two search engines were exported to Excel and du-
plicates removed. The search in Web of Science added 6 references that 

Fig. 1. Conceptualization of forests as a social-ecological system with examples of each group of variables, adopted after Ostrom (2009) and with inspiration from 
McGinnis and Ostrom (2014). 

Table 1 
Final search string used for the literature search.  

Themes Logical Search string 

model  “agent-based model*” OR “agent-based” OR “ABM” OR “individual-based model*” OR “IBM” OR “social simulation” OR “multi-agent system*” OR “agent- 
based simulation*” 

forest AND forest* OR bioeconomy OR bioenergy NOT “random forest” 
management AND management OR decision-making OR decisionmaking OR decision OR strategy OR behavior OR behaviour OR approach OR human  

Table 2 
A summary of number of results depending on search criteria, on Web of Science 
and Scopus respectively.   

Web of Science Core Collection Scopus Total 

Anywhere 1529 31,290 32,819 
Abstract 330 444 774 
Title + abstract for method 37 48 85 
Duplicates removed   54  
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were not part of the Scopus search, bringing the total number of results 
to 54 articles after this step of the process (Fig. 2). 

We manually identified papers with model applications of forest 
management to be used for further analysis. Reviews and applications of 
purely ecological systems were filtered out. The models being filtered 
out for being purely ecological showed a pattern of being called 
individual-based models, which goes in line with earlier studies (Grimm 
and Railsback, 2006). The term “multi-agent system” was however 
represented in both purely ecological studies, as well as social-ecological 
and economic simulations. After this step of the process, 33 articles 
remained. As we were interested in unique model applications, out of 
the 33 identified papers, 26 studies presenting unique model applica-
tions were kept for further analysis. Finally, through the process of 
reviewing the search results, an additional 5 models were added because 
they were referenced in the reviewed articles. Thus 31 articles 
describing model applications were used for the final analysis (Fig. 2). In 
continuation, we use the term model when referring to a specific appli-
cation used in a reviewed study, and platform when referring to the 
underlying modelling environment or software. 

3.1. Analysis 

The reviewed models were analyzed with respect to time step, spatial 
units, scope (of the model world), validation approach, framework, 
open-source license, integration to other types of models and complexity 
of the system. To analyze the complexity of the system, the model was 
explored in terms of how it represented a) the social system, like char-
acteristics of social actors, government system, ecosystem characteris-
tics, and degree of social agent interaction and b) human-nature 
interaction. Earlier SES literature has emphasized interactions as a key 
component to understand how local relationships between people and 
ecosystems are part in forming emergent patterns affecting the overall 
system (Aggarwal and Anderies, 2023; Schlüter et al., 2019). We 
interpret interactions as being either direct or indirect. Studies of 
ecological communities classify direct and indirect effects, as “direct 
effects, as the name implies, deals with the direct impact of one indi-
vidual on another when not mediated or transmitted through a third 
individual” (Moon et al., 2010, sec. 1; Wootton, 1994). The interactions 
involved in the model approaches were analyzed as direct when for 
example a forest owner, represented as an agent in the model, was able 
to take a management decision with direct effects on land cover, or when 
a forest manager could be directly influenced by her neighbor’s decision. 
An interaction was interpreted as indirect if the model only represented 
changes in the managed forest through actions having indirect effects, 
for example an agricultural subsidy driving forest land use change. 

4. Results 

The selection resulted in 31 agent-based models applied to forests 
with social-ecological components. The resulting articles were published 

during years 2006–2022 (Fig. 3). The reviewed models were presented 
in a wide range of journals within environmental, engineering, geo-
sciences, ecology and forestry fields. Forest Policy and Economics (3 
papers), Ecology and Society (2 papers), Environmental Modelling and 
Software (2 papers), and Energy (2 papers) were the journals that had 
each published more than one reviewed model application. 

4.1. Overview of agent-based models 

The reviewed models showed a broad range of temporal and spatial 
scales, scope, validation methods and frameworks employed. We found 
that models driven on annual timesteps were the most common, often 
motivated as being the temporal scale at which managers are able to 
take decisions. We did however see examples of shorter timesteps – 
daily, like the People and Landscape Model, PALM (Brown et al., 2016) 
and in seconds, in FFMAS as designed with the aim to develop forest fire 
management (El Masri et al., 2011). Not all reviewed models were 
spatially explicit, but in many cases, authors referred to a decision unit 
on which management decisions are taken. Forest stand or property 
were common units, but we also detected more detailed examples in 
meters like the ABM for adaptive forest management, and the NetLogo 
Mouse foraging model exploring forest management effects on mouse 
foraging (Gebetsroither et al., 2006; Morán-López et al., 2016; Wilensky, 
1999). 

Very few of the reviewed agent-based models were applied to scales 
larger than local. One example was CRAFTY-Sweden, where model 
outcomes of forest management and land use were shown nationally 
across Sweden (Blanco et al., 2017). Four of the studies were applied to 

Fig. 2. Visual summary of the process of literature search in the two search engines Web of Science and Scopus.  

Fig. 3. Publishing year for the reviewed agent-based model applications.  
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Table 3 
Overview of the 31 reviewed agent-based models of human-forest interactions, showing each model’s a) purpose, b) time step, c) spatial unit, d) scale, d) platform, e) 
access to specific code for the application and f) whether the model or platform is provided under open-source license.  

Model Focus Time step Spatial unit Scale Platform Code Open source-license 

ABE (Rammer and Seidl, 2015) Decision-making in forest 
management 

Annual Forest stand Local own ✔ GNU- GPL 

AB-GIS (Bone and Dragićević, 2009) Forest management and land-cover 
change 

Annual Forest stand Local Agent 
Analyst   

ABM for adaptive (Gebetsroither et al., 2006) Self-organization processes Annual 25m2 Local NetLogo  GNU- GPL 
ABM for CPRs (Vallino, 2014) Common-pool resource governance NA Forest stand Local NetLogo ✔ CC-BY-NC-SA-4.0 
ABM for PES (Sharma et al., 2019) Auction-based payments for C 

sequestration 
Auction NA Auction NA   

AnyLogic: Bioenergy adap. (Burli et al., 2021) Bioenergy crop adoption Annual Forest stand Regional AnyLogic   
AnyLogic: Harvesting opt. (Rukomojnikov 

et al., 2022) 
Managerial decisions using a forest 
harvester 

Hourly Forest stand Local AnyLogic   

BEN ABM (Kempener et al., 2009) Design and analyze bioenergy 
networks 

Annual NA Local AnyLogic   

ComMod: SCTL (Simon and Etienne, 2010) Scenarios for community-owned 
forests 

Weekly 1 ha Local CORMAS  MIT 

CRAFTY- Sweden (Blanco et al., 2017) Provision of ecosystem services Annual 1 km2 National CRAFTY  GNU- GPL 
CV-STSM (Yospin et al., 2015) Climate and LU effects on vegetation 

change 
Monthly Forest stand Local Envision  GNU- GPL 

DEED (Robinson and Brown, 2009) LU development policies Annual 0.56km2 Local ArcMap   
Envision: Forest fires (Charnley et al., 2017) Forest management effects on fire 

resilience 
Annual 3–10 ha Regional Envision  GNU- GPL 

FABLE (Henderson and Abt, 2016) Markets and landowner behavior Annual Forest stand Local NetLogo  GNU- GPL 
FFMAS (El Masri et al., 2011) Communication in forest fire 

management 
Seconds meters Local NA   

FLAME (Leahy et al., 2013) Landowner goals for timber 
harvesting 

Annual Forest stand Local own   

Forest Actor Interaction ABM ( 
Martínez-Falero et al., 2018) 

Participatory forest management NA pixels NA own   

ForestSim (Zupko and Rouleau, 2019) Forest policy and bioenergy 
sustainability 

Annual Forest stand Regional MASON ✔ Academic Free Lic. 
v.3.0 

HANIP (Yang et al., 2022) Tourism and labor migration effects 
on forests 

Annual 8100 m2 Local Swarm  GNU- GPL 

Heureka + 5 GR (Sotirov et al., 2019) Provision of ecosystem services 5-year Forest stand Local Heureka  EULA 
MASOOR (Edwards and Smith, 2011) Explore outdoor recreation patterns Movement National 

park 
Local own   

MPB Simulation (Pérez & Dragicevic, n.d.) Investigate management and insect 
outbreaks 

Annual Forest stand Local Repast S  New BSD 

MP ABM (Huang et al., 2016) Assess bioenergy crop adoption Annual Forest stand Local NA   
NetLogo Mouse foraging (Morán-López et al., 

2016) 
Forest management effects on mouse 
foraging 

Movement 1 m Local NetLogo ✔ GNU- GPL 

PALM (People and Landscape) (Brown et al., 
2016) 

Assess bioenergy crop adoption Daily Catchment Local own   

Pyroxene: Forest fire (Maillé and Espinasse, 
2011) 

Decision support for forest fire 
management 

Multi Multi Local ArcGIS   

Repast Simphony Meta-model (G. Zhang and 
Li, 2010) 

Explore dynamics of forest fire 
management 

NA NA Local Repast S  New BSD 

RL-ABM (Bone and Dragićević, 2009) Multi-stakeholder management Annual Forest stand Local ArcGIS   
SORTIE + ABM (Bithell and Brasington, 2009) Forest land-use and hydrology Annual 20 m Local own   
SOSIEL Harvest (Sotnik et al., 2021) Adaptive forest management 5-year meters Local SOSIEL ✔ LGPL-3.0 
Wood fuel market ABM (Kostadinov et al., 

2014) 
Roundwood and wood fuel markets Annual NA Local own    

Table 4 
Validation methods reported for agent-based models mentioning that validation has been done for the reviewed application.  

Model Validation 

ABM for adaptive forest management Expert interviews, structural validation with experimental data 
ComMod: SCTL Companion modelling process, data and workshops 
CRAFTY- Sweden National Forest Inventory, survey 
CV-STSM Parameterized based on historical land cover 
DEED Survey 
Envision: Forest fires Calibrated based on remote sensing, inventory of vegetation structure, interviews 
FLAME Against observed harvest data 
Forest actor interaction ABM Against observed data - forest and perceptions 
HANIP Ground truth remote sensing data, surveys, Census-data 
Heureka + 5 GR Survey 
MASOOR GPS tracks, surveys 
MP ABM Survey of landowners 
NetLogo: Mouse foraging Validated against 5 data sets of field data 
PALM Survey 
Pyroxene: Forest fire Terrain data 
RL-ABM Mathematical validation 
Wood fuel market ABM Expert workshops, empirical data, visual debugging  
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regions, involving several different forests or a larger landscape with 
different land uses. Worth mentioning is that some models focused on 
markets, networks and decision processes, which gives a different 
meaning to scope in comparison to the spatially explicit GIS-based 
model (Table 3). 

Validation methods varied and indicated in several cases how the 
modelling process involved mixed-methods and interdisciplinary ap-
proaches including measured data, statistics, surveys, workshops with 
experts and participants, and geographic information. Table 4 provides 
an overview for those ABMs where validation methods were reported. 

4.2. Interactions 

We used degree and types of interactions to compare the ability of 
the different models to simulate complexity within forest systems. In-
teractions were divided into indirect vs direct interactions among social 
actors, compared to indirect vs direct human-nature interactions (see 
Table 5). In direct social interaction, actors are able to e.g. change their 
decisions based on neighbors’ decisions like in the case with the MP 
(Mathematical Programming) ABM (Huang et al., 2016) or may have 
access to a network with contacts and information spreading, like the 
case with the Wood fuel market ABM where actors took friendship into 
account (Kostadinov et al., 2014). We also see examples where actors 
have been given explicit characteristics of empathy and acceptance, in 
the case of CRAFTY-Sweden and the Forest actor interaction ABM 
(Blanco et al., 2017; Martínez-Falero et al., 2018) which then influenced 
their social interactions. Indirect interactions are interpreted when 
models do not include mechanisms for direct contact between agents, 
but agents may still be influenced by the outcome of other agents’ de-
cisions. An example of an indirect social interaction is the setup of the 
Agent-based model for Common Pool Resources, ABM for CPRs (Vallino, 
2014). The model incorporated mechanisms for agents to change 
behavior when a certain percentage of forests have been cut in the whole 
community but did not involve mechanisms for agents to directly 
communicate with each other. For indirect human-nature interactions, 

the model DEED was used to study decision-making in ex-urban devel-
opment, where the agents’ take decisions that have indirect effects on 
forest cover (Robinson and Brown, 2009). A model that accounts for 
direct human-nature interaction explicitly models forest owners making 
decisions on how to manage the forest, such as harvest decisions based 
on bioenergy demands in ForestSim (Zupko and Rouleau, 2019). When 
comparing the directness of human-nature interaction and social actor 
interaction, a third of the models were implementing direct interactions 
in both aspects, see Table 4. It was more common that models applied a 
direct human-nature interaction combined with an indirect/no social 
interaction, than a direct social interaction combined with an indi-
rect/no human-nature interaction, see Table 4. A word of caution is that 
the results show the reviewed models, which means that the underlying 
platforms may provide ability to simulate a larger complexity of in-
teractions. That was the case with for example SOSIEL Harvest (Sotnik 
et al., 2021), which has been described as a platform with advanced 
developments when it comes to agents’ social and cognitive abilities. 
The reviewed study however simulated one forest manager at a time, 
meaning that there was no direct contact between agents within a model 
run. 

While types and degree of interactions tell one aspect of how the 
agent-based models dealt with complexity, in the next section we zoom 
into degrees of complexity within the social and ecological subsystems 
respectively (Fig. 4). 

4.3. Social subsystem 

Agent types considered in the different models vary from no explicit 
social actors, such as CV-STSM (Yospin et al., 2015) where instead land 
cover type is used as a proxy for different agents’ behavior, to a 
maximum of nine actor types in the Wood fuel market ABM (Kostadinov 
et al., 2014). One actor type, like the case of landowners in the FLAME 
model (Leahy et al., 2013), could still allow for different behavior – 
when actor characteristics were drawn from a pool of characteristics 
rather than a set of types. Apart from FLAME, a similar setup was used in 
the Forest actor interaction ABM (Martínez-Falero et al., 2018), the ABE 
(Rammer and Seidl, 2015), and the ABM for CPRs (Vallino, 2014). 

Models varied in factors affecting actors’ behavior. Some used a 
more traditional approach where actors were dominantly behaving 
rationally, for example the FABLE model where agent behavior was 
based on Faustmann/Hartmann equations (Henderson and Abt, 2016). 
Many models included a range of actor objectives as part of their 
decision-making, as seen in the five forest owner types of the 5 GR model 
coupled with the decision support system Heureka (Sotirov et al., 2019). 
The ability of agents to learn from past experiences adds another 
dimension to the aspects of complexity, where 7 models included pro-
cesses of learning agents. One example is the reinforcement learning 
algorithm included in the RL-ABM (Bone and Dragićević, 2010). 

Like the social actors in general, if a government system was present 
it could vary in how dynamically it was represented– either through 
policies and legislation implemented as rules for agent behavior in the 
model, or as separate actors with their own possibility to interact, act 
and change behavior. Half of the reviewed models represented a gov-
ernment system in at least one of the described ways, and 6 of them 
included a specific and dynamic government agent, like AB-GIS (Bone 
and Dragićević, 2009) and ABM for PES (Sharma et al., 2019). 

4.4. Ecological subsystem 

Most of the reviewed models represent a forest landscape through a 
land cover map. The land cover map could be static over the modelling 
period or change in discrete steps as an effect of actor behavior (Burli 
et al., 2021). A next step reviewed for complexity and dynamic repre-
sentation of the ecological subsystem was the representation of different 
tree species or functional types. Here, 18 of the 31 reviewed models 
included a variety of at least functional types, sometimes down to the 

Table 5 
Types of interactions among and between social actors and ecological system. 
The table reflects the reviewed model applications. Since human-nature inter-
action was a criterion for included studies, all reviewed model applications 
involve human-nature interaction either directly or indirectly.    

Human-nature   

Direct Indirect 

Social Direct AnyLogic: Bioenergy 
adaptation 

BEN ABM 

ComMod: SCTL FFMAS 
CRAFTY-Sweden Forest actor interaction ABM 
FLAME  
HANIP  
MP ABM  
PALM  
RePast Simphony 
Metamodel  
RL-ABM  
Wood fuel market ABM  

Indirect ABM for PES ABM for Adaptive Forest 
Management 

AB-GIS DEED 
ABE MASOOR 
ABM for CPRs  
FABLE  
ForestSim  

No AnyLogic: Harvesting CV-STSM 
Envision: Forest fires NetLogo: Mouse foraging 
Mountain Pine Beetle 
Simulation 

Pyroxene 

Heureka+ 5 GR  
SORTIE + ABM  
SOSIEL-Harvest   
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Fig. 4. Agent-based models applied to human-forest interactions with respect to characteristics of the social and ecological system represented in each model. From 
left to right, the figure describes: Social subsystem a) number of actor types, b) government system representation as agent or legislation, c) learning agents and d) 
types of factors determining agent’s behavior and for the ecological subsystem e) land cover, f) functional types/species, g) tree growth, h) nutrient cycling and i) 
recreational features explicitly modelled in the landscape. Greyed actor symbols indicate that actors are indirectly represented, through e.g., a forest management 
decision. A grey + indicates that actor types are not pre-defined, but resulting from a pool of actor characteristics. 
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level of individual species. Of those not representing tree species di-
versity, it could either be motivated by the focus of the model being 
more general, like forest fire coordination in the case of the Repast 
Simphony Meta-model (G. Zhang and Li, 2010) or reflect the state of the 
empirical case as a monoculture forest. 

Tree growth and nutrient cycling are two other factors to describe 
the representation of ecological complexity and feedback within the 
models. Several of the reviewed agent-based models were coupled with 
dynamic vegetation models to deal with these feedback mechanisms. 
Examples of that are the individual-tree based JABOWA III, used in the 
ABM for adaptive forest management (Gebetsroither et al., 2006), the 
ecosystem model LPJ-GUESS in CRAFTY-Sweden (Blanco et al., 2017), 
SORTIE coupled with an ABM (Bithell and Brasington, 2009), and the 
forest landscape model LANDIS-II used in the SOSIEL Harvest applica-
tion (Sotnik et al., 2021) and Pyroxene: Forest fire (Maillé and Espinasse, 
2011). 

Recreational features in the landscape were represented in 4 of the 
31 reviewed models. The ways in which recreation was included varied 
but could for example be a number representing recreational value of an 
element in the forest that the agents took into account in their decision- 
making. The most explicit example was the Multi-Agent Simulation of 
Outdoor Recreation, MASOOR (Edwards and Smith, 2011) which 
explicitly modelled visitor routes within a recreational area. 

5. Discussion 

We find that existing agent-based models are used with a broad range 
of aims, from those building on traditional decision support systems for 
forest management, to applications with a wider range of actor types 
and decision alternatives to model more complex social patterns. To 
model forests as social-ecological systems, the results show that existing 
models focusing on managed forests provide a range of opportunities. 
There is a range of platforms that can be used as a basis for adapting a 
model for a specific study, and specific forest models can be used as 
inspiration when setting up an ABM for a specific purpose. In the 
following section we discuss the implications of the results for modelling 
SES and conclude each sub-section with a question to guide model 
choice. 

5.1. Purposes 

The review shows a broad range of model purposes, from models 
focusing on private and community forest management to landscape 
level spatial planning, supply of timber and non-timber products, rec-
reational activities, and risk management. While some models are built 
on their own platform limited to a specific purpose, others are more 
flexible and could be adapted to other purposes than currently, largely 
depending on the flexibility of the software platform they are pro-
grammed in. As examples, the platforms CRAFTY and SOSIEL are 
designed for providing a basis for exploring land use issues, whereas 
ForestSim and HEUREKA+ 5 GR are developed for forest systems spe-
cifically (Murray-Rust et al., 2014; Sotirov et al., 2019; Sotnik, 2018; 
Zupko and Rouleau, 2019). 

By the varied use of data and methods to parameterize and validate 
models, we observed a large tendency of involving interdisciplinary 
perspectives in the agent-based approaches, which is in line with what 
Savin et al. (2023) discuss in relation to climate policy: Agent-based 
models can work as a framework to integrate multiple perspectives 
which taken together lead to more coherent policy support. Psychology, 
sociology, economics and political science can support in explaining 
resistance to policy measures, for example by integrating bounded ra-
tionality or other behavioral models, role of information, norms, human 
needs and opinion polarization (Gotts et al., 2019; Savin et al., 2023). 

Modelling forests following an SES framework would allow for 
seeing forest management in a system context, and an agent-based 
approach shows promise for involving dimensions of both institutional 

and individual behavior. Understanding human behavior as part of 
complex adaptive systems, of which SES is an example, has been argued 
to lay ground for policy “to create contexts that enable and support a 
diversity of solutions to emerge from local initiatives” (Schill et al., 
2019, p. 1080). In this systematic comparison we have seen examples of 
forest actors being equipped with characteristics that go beyond the 
commonly used toolbox in environmental policy and modelling: 
empathy, environmental concern, beauty appraisal and recreational 
preferences. For these dimensions to be of use to support policy making, 
there is a need for model development especially when it comes to 
model validation, and applications beyond single case studies. For se-
lection of an appropriate model, we would suggest asking: What purpose 
and research question shall the model answer and what corresponding 
functionalities are required? 

5.2. Dynamic social-ecological representations 

Of the reviewed model applications, we see wide variation in the 
complex dynamics included where some models are more developed in 
terms of the social subsystem and others in the ecological subsystem. As 
mentioned earlier, this is a common critique of SES studies – being too 
narrowly focused on one of the subsystems (Cote and Nightingale, 2012; 
Vogt et al., 2015). If sustainability is the purpose of an analysis, the 
separation between subsystems becomes a problem: “Addressing only 
the social dimension of resource management without an understanding 
of resource and ecosystem dynamics will not be sufficient to guide so-
ciety toward sustainable outcomes” (Folke et al., 2005, p. 443). We 
would like to discuss two aspects of dynamic representations in the 
reviewed models: within the forest resource system and the governance 
system. 

The results indicate that the most advanced representations of forest 
system dynamics are seen in ABM approaches integrated with forest 
models or dynamic vegetation models. These model integrations enables 
depth in the analysis of the ecological processes, which may counteract 
the tendency of SES studies to underrepresent and often rely on sec-
ondary data for ecological variables (Nagel and Partelow, 2022). 
Through an overview of forest models in Encyclopedia of Theoretical 
Ecology, Dietze and Latimer (2019) explain the degree to which models 
involve dynamic representations of forest ecosystem dynamics, and 
which processes that are involved by dividing these into two larger 
model types: community ecology models and ecosystem ecology models 
(Dietze and Latimer, 2019). Community ecology models have often been 
developed to simulate forest gap dynamics and light competition as it is 
a limiting resource in many forest ecosystems. Developed to capture 
dynamics on small spatial scales, from individual trees (SORTIE), to 
patch (JABOWA III) and landscape level (LANDIS-II) (Botkin, 1993; 
Canham et al., 1999; Scheller et al., 2007), models with a base in 
community ecology are in the forefront when it comes to modelling 
density interactions in tree growth, seed dispersal with its effects on tree 
composition, and tree crown distribution (Nuttle and Haefner, 2005). 
Ecosystem ecology models on the other hand, have been developed to 
simulate carbon fluxes and water and nutrient cycles. Interaction be-
tween individual species or trees is limited, but soil and rooting dy-
namics are often better captured (Dietze and Latimer, 2019). 

Earlier studies have emphasized that modeling forest dynamics is 
much determined by how tree growth and mortality is represented, for 
example if growth is process-based on relations between photosynthesis 
and ecosystem Net Primary Production (NPP) or empirically based on 
correlation with environmental variables (Medlyn et al., 2011; Porté and 
Bartelink, 2002). Other aspects are for example how models treat small 
scale interactions and stochasticity of tree mortality (Keane et al., 2001) 
and if space is represented based on points, as in JABOWA-III and 
LPJ-GUESS (Botkin, 1993; Smith et al., 2014) or area, as in SORTIE and 
LANDIS-II (Canham et al., 1999; Dietze and Latimer, 2019; Scheller 
et al., 2007). These aspects impact how key dynamic forest processes 
like disturbance from wind, fire and drought are simulated (Seidl et al., 
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2011). 
While coupling an ABM with a forest model or dynamic vegetation 

model comes with advantages in the ability to represent complexity of 
ecological forest processes, it adds additional modelling challenges like 
matching between ecological processes on different spatial and temporal 
scales (Dietze and Latimer, 2019; Medlyn et al., 2011). A wider dis-
cussion on the implications of coupling an ABM to specific forest model 
types is outside the scope of this study, but as a key take away for future 
research, a guiding question for model choice when it comes to 
ecological dynamics is: What type of ecological processes are driving and 
limiting factors for the study’s purpose and research question? 

Agent-based approaches are pointed out as being promising for 
incorporating governance systems but earlier studies have shown that in 
practice, many ABMs incorporate governance as an exogenous variable 
(e.g., a fixed rule) rather than active agents that can change the rules or 
incentives faced by forest manager agents (Rounsevell et al., 2012). We 
see a similar pattern in the reviewed forest ABMs where a governance 
system is present in almost half of the model applications, but more 
commonly through rules for the agents to follow rather than as an 
autonomous governance agent making governing decisions. This follows 
earlier research looking at how institutional behavior is represented 
across different land-based sectors (Brown et al., 2017). While the 
presence of governance as rules allows for the researcher to change and 
explore governance dynamics, judging from the applied setups, we as-
sume this approach leads to a more static representation of governance 
in the social-ecological system. In contrast, governance as an agent as in 
the case of CORMAS, Envision: Forest fires and RL-ABM (Bone and 
Dragićević, 2010; Charnley et al., 2017; Simon and Etienne, 2010), al-
lows for a higher degree of flexibility and dynamic representation of 
governance, as the governance agent can have its own emerging 
behavior across the simulated time frame and in turn interact with the 
resource system and resource users. This would allow for incorporating 
theories on adaptive governance and institution development into sim-
ulations, which responds to previous calls from for example 
common-pool-resource scholars on strengthening governance and col-
lective structures’ aspects both in SES applications and in ABM model-
ling overall (Bourceret et al., 2021; Epstein et al., 2020; Folke et al., 
2005; Janssen and Ostrom, 2006a; Kremmydas et al., 2018). As a 
guiding question for model choice, we suggest researchers to ask: Are 
governance rules static or do they need to be modelled as adaptive governance 
decisions? 

5.3. Social-ecological interactions 

Interactions between social actors and the ecological system are key 
to understanding an SES (Kline et al., 2017). In a review of agent-based 
models used for agricultural policy evaluation, the authors pointed out 
direct actor interactions (rather than indirectly through, e.g., markets, as 
usual in economic models) as a crucial aspect for future research 
(Kremmydas et al., 2018). Through this review we have found ten forest 
ABM applications that include direct interactions among and between 
parts of the social and ecological subsystem. Allowing simulated forest 
actors to be influenced by each other’s decisions, as one example of a 
direct social interaction, opens up for including important social dy-
namics within managed forests like power (Boonstra, 2016), loyalty 
(Beland Lindahl et al., 2013), and trust (Hujala and Tikkanen, 2008). If 
there is a need to develop approaches for empirically based decision 
support, dynamics like social organization and loyalty have shown to 
play an important role in forest management decisions (Beland Lindahl 
et al., 2013; Curtis et al., 2023). 

The representation of social dynamics in the simulation approaches 
can be further enhanced in the applications that include learning agents. 
Desire to learn has been used as a dimension for separating decision- 
making modes across non-industrial private forest owners (Hujala 
et al., 2007), showing the importance for decision-making not only of 
interactions between forest actors but also from actors’ own learning 

processes of earlier experiences and from decision support functions like 
advisory services (Curtis et al., 2023). 

From a modelling point of view, there is a tradeoff between 
complexity considered and interpretability of the outcome, to avoid a 
risk of ‘over parameterization’. A challenge that might make direct in-
teractions and feedbacks difficult to include are mismatches between 
scales, where spatial and temporal scales of management do not match 
scales of ecological processes (Cumming et al., 2006). The question of 
complexity and interactions must thus take temporal and spatial scales 
into account, but also in reference to the degree of dynamics contained 
in the simulation setup. Based on this, we recommend two key questions 
to ask when choosing a model: 1) Should actors and their behavior be 
influenced by other agent’s decisions? 2) How important are ecological 
feedbacks and social interactions for understanding the research problem? 

5.4. Frontiers 

Finally, we discuss common features and insights that the study has 
gleaned into frontiers in development of forest ABMs. 

To begin with, methods for calibration and validation of the 
reviewed forest agent-based models are varied including workshops, 
surveys, expert interviews, remote sensing and field measurements, 
indicating that ABMs have a strong potential of combining theory with 
empirical data (Janssen and Ostrom, 2006b). But 14 of the reviewed 
applications do not mention validation at all. Despite efforts such as the 
ODD, a protocol to document agent-based models, and the recently 
developed OsDD to take sustainability aspects into account (Grimm 
et al., 2006, 2020; Secchi et al., 2023), our overview suggests that cur-
rent reporting of and standardized methods for model validation in 
forest ABMs are largely missing. 

Validation of agent-based models has been a topic of debate for a 
long time, especially for demonstrating the usefulness of agent-based 
approaches for solving real-world problems in policy processes (Brown 
et al., 2017; Elsawah et al., 2020; Heppenstall et al., 2021; Leombruni 
and Richiardi, 2005; Moss and Edmonds, 2005; Polhill and Salt, 2017; 
Troost et al., 2023). Scholars have for example encouraged the 
Enhancing Realism of Simulation, EROS, principle, focusing on 
including psychological theories when designing agent behavior (Jager, 
2017). At the same time, constructivist scholars studying policy pro-
cesses have highlighted the role of values, norms, and actors’ different 
perspectives as important aspects in shaping how policies are developed 
and implemented (for an interesting discussion related to modelling, see 
Malbon and Parkhurst, 2023). 

As we have seen, forest agent-based models are designed to focus on 
different parts of a forest SES. Validation can support in determining 
whether to have confidence in a model for its intended purpose (For-
rester and Senge, 1979; Troost et al., 2023) as well as clarifying which 
assumptions, values and norms that are represented in the model. This 
could be done either through empirical, or structural validation. To be 
more concrete, Troost et al. (2023) have suggested the KIA protocol for 
validation of agent-based models. The protocol takes a holistic approach 
to model validation, in being a process that goes in parallel with model 
development choices. Having the protocol alongside an SES framework 
could be mutually beneficial – supporting for example in clarifying 
which parts of the system we are interested in – the output of the SES, or 
the inner structures, relationships, and processes? The SES framework 
can in turn support in defining the context and purpose that we aim the 
model to be valid within. Coming back to the question of model choice, a 
pragmatic question to help guiding in this regard in addition to the KIA 
protocol, is: What type of data is available for calibration and validation? 

A second aspect for further development is an agent’s cognitive 
ability when it comes to memory and learning. In various research areas, 
the dynamic aspect of knowledge is highlighted. Knowledge is 
exchanged and adjusted through social interaction, adapted by actors to 
local policy contexts, and an object of cognitive bias in policy making 
and implementation (Dressel et al., 2020; Ostrom, 2007; Rodríguez 
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Valencia et al., 2019). 
By incorporating the dynamic processes of memory and learning into 

modelling, we would be better able to capture how behavior is adapted 
as actors communicate and learn in complex adaptive systems like an 
SES (Schlüter et al., 2019). In this review, a few forerunning model 
applications such as the one based on the SOSIEL platform (Sotnik, 
2018; Sotnik et al., 2021) have incorporated the potentials of machine 
learning into agent behavior, but learning is still a frontier of develop-
ment in ABMs in particular and SES modelling in general (Lippe et al., 
2019). 

From the reviewed studies, we found those agent-based models 
commonly being in the forefront of memory and learning are engaging 
with literature on knowledge representation, for example the bodies of 
work on cognitive architectures (Kotseruba and Tsotsos, 2020), goal 
reasoning (Addison, 2024), social networks (Li et al., 2023; Manzo and 
Matthews, 2014), and practice diffusion and adoption (H. Zhang and 
Vorobeychik, 2019). An example of a cognitive architecture that we 
could point readers to, specifically for agent-based model application, is 
the Behaviour with Emotions and Norms, BEN (Bourgais et al., 2020). 

Forest agent-based models coupled to ecological models such as 
dynamic vegetation models or species distribution models showed the 
greatest abilities of representing ecological processes dynamically. This 
meant simulating land cover and land use changing over time rather 
than agents interacting with a static landscape based on initial land 
cover data. This so-called hybrid approach allows for feedback loops 
between ecological and social processes, a key aspect in SES theory 
(Martin and Schlüter, 2015; Miller and Frid, 2022) but is so far only 
implemented in a few forerunner models. A useful discussion on chal-
lenges and steps in setting up a hybrid approach and a suggested pro-
cedure can be found in Martin and Schlüter (2015). 

5.5. Limitations 

The review is based on published models, and as flexibility is one of 
the strengths with agent-based approaches, it is possible that despite a 
reviewed study not representing a certain feature, one could develop 
within a specific agent-based platform additional actor types, landscape 
processes, ecological interactions, and cognitive abilities. 

6. Conclusions 

This study has provided a review and comparison of agent-based 
approaches to modelling forests as complex social-ecological systems. 
The rich set of reviewed models demonstrates the ability of agent-based 
models to be used for interdisciplinary forest research. 

The reviewed model applications target a broad range of research 
questions, which means that they focus on representing different aspects 
of a managed forest system. Despite all models including human-forest 
interactions, only a few show the ability to represent key elements of 
a social-ecological system like relations, through direct interactions, and 
dynamic representation of social and ecological processes to incorporate 
feedback mechanisms. For more socially evolving models we noticed a 
need for developing the representation of adaptive governance, in order 
to capture institutional dynamics of the overall SES. Dynamic ecological 
processes are already being captured in more advanced ways in the 
applications coupled with separate vegetation models. We can thus 
observe that agent-based modelling of social-ecological systems is very 
much a field under development. Taken together, the review shows that 
ABMs have the ability to be adequately complex for modelling dynamic 
processes in both social and ecological subsystems. 

When it comes to flexibility, we see that the models based on existing 
agent-based frameworks have advantages with it being relatively easy to 
adjust the approach to other purposes beyond the reviewed application. 
Overall, the results show that existing models focusing on managed 
forests provide a range of opportunities, either to be used as platforms 
where the model could be adapted for the requirements of a particular 

study or as inspiration for when setting up an ABM for a specific purpose. 
Our comparison points to three key areas for further development of 

agent-based approaches to modelling managed forests: i) addressing 
calibration and validation of models; ii) modelling of agent learning and 
the dynamics of such feedback loops including adaptive governance 
agents; iii) coupling to ecological models such as dynamic vegetation 
models or species distribution models. 

Whether the research project uses a social-ecological systems 
framework or a similar approach for studying human-nature in-
teractions, the following set of questions for reflection aims at sup-
porting an informed selection of a relevant agent-based model approach 
in relation to the research purpose at hand:  

• Purpose: What purpose and research question shall the model answer 
and what are the corresponding functionalities that are required?  

• Ecological processes: What type of ecological processes are driving and 
limiting factors for the study’s purpose and research question?  

• Social processes: Are the governance rules static or need to be 
modelled as adaptive governance decisions? Should actors and their 
behavior be influenced by other agent’s decisions? 

• Complexity: How important are social-ecological feedbacks and in-
teractions for understanding the research problem?  

• Pragmatism: What type of data is available for calibration and 
validation? 

Funding 

This work was supported by the NordForsk Project “Green forests 
policies: a comparative assessment of outcomes and trade-offs across 
Fenno-Scandinavia” (project 103443). 

Software availability 

NA. 

CRediT authorship contribution statement 

Hanna Ekström: Writing – review & editing, Writing – original 
draft, Visualization, Project administration, Formal analysis, Data 
curation, Conceptualization. Nils Droste: Writing – review & editing, 
Supervision, Conceptualization. Mark Brady: Writing – review & edit-
ing, Supervision, Conceptualization. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

All data (reviewed articles) are shared within the manuscript 

Acknowledgements 

The authors would like to thank the reviewer and editor for 
providing very helpful and valuable feedback that supported strength-
ening the final manuscript. 

The research presented in this paper is a contribution to the Strategic 
Research Area “Biodiversity and Ecosystem Services in a Changing 
Climate”, BECC, funded by the Swedish government. 

References 

Achter, S., Borit, M., Cottineau, C., Polhill, J.G., Radchuk, V., Meyer, M., 2023. How to 
Conduct More Systematic Reviews of Agent-Based Models and Foster Theory 

H. Ekström et al.                                                                                                                                                                                                                                



Environmental Modelling and Software 175 (2024) 105998

11

Development—Taking Stock and Looking Ahead. Environmental Modelling & 
Software, 105867. https://doi.org/10.1016/j.envsoft.2023.105867. 

Addison, U., 2024. Human-inspired goal reasoning implementations: a survey. Cognit. 
Syst. Res. 83, 101181 https://doi.org/10.1016/j.cogsys.2023.101181. 

Aggarwal, R.M., Anderies, J.M., 2023. Understanding how governance emerges in social- 
ecological systems: insights from archetype analysis. Ecol. Soc. 28 (2) https://doi. 
org/10.5751/ES-14061-280202. 

An, L., 2012. Modeling human decisions in coupled human and natural systems: review 
of agent-based models. Ecol. Model. 229, 25–36. https://doi.org/10.1016/j. 
ecolmodel.2011.07.010. 

Antosz, P., Bharwani, S., Borit, M., Edmonds, B., 2022. An introduction to the themed 
section on ‘Using agent-based simulation for integrating qualitative and quantitative 
evidence.’. Int. J. Soc. Res. Methodol. 25 (4), 511–515. https://doi.org/10.1080/ 
13645579.2022.2052651. 

Beland Lindahl, K., Baker, S., Waldenström, C., 2013. Place perceptions and 
controversies over forest management: exploring a Swedish example. J. Environ. Pol. 
Plann. 15 (2), 201–223. https://doi.org/10.1080/1523908X.2012.753316. 

Berkes, F., 2017. Environmental governance for the anthropocene? Social-ecological 
systems, resilience, and collaborative learning. Sustainability 9 (7). https://doi.org/ 
10.3390/su9071232. Article 7.  

Berkes, F., Folke, C., 1998. Linking Social and Ecological Systems: Management Practices 
and Social Mechanisms for Building Resilience. Cambridge University Press. 

Bithell, M., Brasington, J., 2009. Coupling agent-based models of subsistence farming 
with individual-based forest models and dynamic models of water distribution. 
Environ. Model. Software 24 (2), 173–190. https://doi.org/10.1016/j. 
envsoft.2008.06.016. 

Blanco, V., Holzhauer, S., Brown, C., Lagergren, F., Vulturius, G., Lindeskog, M., 
Rounsevell, M.D.A., 2017. The effect of forest owner decision-making, climatic 
change and societal demands on land-use change and ecosystem service provision in 
Sweden. Ecosyst. Serv. 23, 174–208. https://doi.org/10.1016/j.ecoser.2016.12.003. 
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Janssen, M.A., Norberg, J., Schlüter, M., 2019. A more dynamic understanding of 

H. Ekström et al.                                                                                                                                                                                                                                

https://doi.org/10.1111/j.1749-6632.2009.05286.x
https://doi.org/10.1111/j.1749-6632.2009.05286.x
https://doi.org/10.5849/forsci.15-018
https://doi.org/10.5849/forsci.15-018
https://doi.org/10.1111/gean.12267
https://doi.org/10.1016/j.energy.2016.09.084
https://doi.org/10.1016/j.energy.2016.09.084
https://doi.org/10.1016/j.agsy.2018.09.007
https://doi.org/10.1016/j.agsy.2018.09.007
https://doi.org/10.1080/02827580701395434
https://doi.org/10.1080/02827580802334209
https://doi.org/10.1080/02827580802334209
http://refhub.elsevier.com/S1364-8152(24)00059-8/sref58
http://refhub.elsevier.com/S1364-8152(24)00059-8/sref58
http://refhub.elsevier.com/S1364-8152(24)00059-8/sref58
https://doi.org/10.1016/S1574-0021(05)02030-7
https://doi.org/10.5751/ES-01861-110237
https://doi.org/10.1023/A:1012539409854
https://doi.org/10.1016/j.envsoft.2013.05.005
https://doi.org/10.1111/j.1530-9290.2009.00120.x
https://doi.org/10.5751/ES-09329-220325
https://doi.org/10.1016/j.forpol.2013.08.001
https://doi.org/10.1007/s10462-018-9646-y
https://doi.org/10.1007/s10462-018-9646-y
https://doi.org/10.1016/j.agsy.2018.03.010
https://doi.org/10.1016/j.agsy.2018.03.010
https://doi.org/10.1017/sus.2018.12
https://doi.org/10.1155/2013/563068
https://doi.org/10.1016/j.physa.2005.02.072
https://doi.org/10.1016/j.physa.2005.02.072
https://doi.org/10.1007/s12144-022-03130-x
https://doi.org/10.1007/s10707-018-00337-8
https://doi.org/10.1007/s10707-018-00337-8
https://doi.org/10.4018/jaeis.2011070104
https://doi.org/10.1080/01442872.2022.2080814
https://doi.org/10.1080/01442872.2022.2080814
http://refhub.elsevier.com/S1364-8152(24)00059-8/sref75
http://refhub.elsevier.com/S1364-8152(24)00059-8/sref75
https://www.frontiersin.org/articles/10.3389/fenvs.2015.00066
https://www.frontiersin.org/articles/10.3389/fenvs.2015.00066
https://doi.org/10.3390/f9070399
https://doi.org/10.1007/s10980-007-9135-1
https://doi.org/10.5751/ES-06387-190230
https://doi.org/10.1002/wcc.108
https://doi.org/10.1007/s10980-021-01282-y
https://www.nature.com/scitable/knowledge/library/direct-and-indirect-interactions-15650000/
https://www.nature.com/scitable/knowledge/library/direct-and-indirect-interactions-15650000/
https://doi.org/10.1111/oik.02884
https://doi.org/10.1086/427320
https://doi.org/10.1016/j.envsoft.2014.05.019
https://doi.org/10.1016/j.envsoft.2014.05.019
https://doi.org/10.5751/ES-13493-270439
https://doi.org/10.5424/fs/2017261-09443
https://doi.org/10.5424/fs/2017261-09443
https://doi.org/10.1080/10807039.2018.1468994
https://doi.org/10.1086/428298
https://doi.org/10.1073/pnas.0702288104
https://doi.org/10.1126/science.1172133
http://refhub.elsevier.com/S1364-8152(24)00059-8/sref92
http://refhub.elsevier.com/S1364-8152(24)00059-8/sref92
http://refhub.elsevier.com/S1364-8152(24)00059-8/sref92
https://doi.org/10.1007/978-3-319-66948-9_8
https://doi.org/10.1007/978-3-319-66948-9_8
https://doi.org/10.1016/S0304-3800(01)00476-8
https://doi.org/10.1016/S0304-3800(01)00476-8
https://doi.org/10.1016/j.gloenvcha.2015.10.003
https://doi.org/10.1146/annurev-environ-110615-085349
https://doi.org/10.1146/annurev-environ-110615-085349
https://doi.org/10.1016/j.foreco.2013.08.033
https://doi.org/10.1016/j.foreco.2013.08.033
https://doi.org/10.1080/13658810802344101
https://doi.org/10.1007/s13280-019-01176-z
https://doi.org/10.1098/rstb.2011.0187
https://doi.org/10.1098/rstb.2011.0187
https://doi.org/10.1117/12.2631137
https://doi.org/10.1002/wcc.811
https://doi.org/10.1002/wcc.811
https://doi.org/10.1016/j.ecolmodel.2006.10.009


Environmental Modelling and Software 175 (2024) 105998

13

human behaviour for the Anthropocene. Nat. Sustain. 2 (12), 12 https://doi.org/ 
10.1038/s41893-019-0419-7. 

Schlager, E., Ostrom, E., 1992. Property-rights regimes and natural resources: a 
conceptual analysis. Land Econ. 68 (3), 249–262. https://doi.org/10.2307/ 
3146375. 

Schlüter, M., Haider, L.J., Lade, S.J., Lindkvist, E., Martin, R., Orach, K., Wijermans, N., 
Folke, C., 2019. Capturing emergent phenomena in social-ecological systems: an 
analytical framework. Ecol. Soc. 24 (3). https://www.jstor.org/stable/26796977. 

Secchi, D., Grimm, V., Herath, D.B., Homberg, F., 2023. Modeling and Theorizing with 
Agent-Based Sustainable Development. Environmental Modelling & Software, 
105891. https://doi.org/10.1016/j.envsoft.2023.105891. 

Seidl, R., Fernandes, P.M., Fonseca, T.F., Gillet, F., Jönsson, A.M., Merganičová, K., 
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Lasch, P., Meredieu, C., Moreira, F., Schelhaas, M.-J., Mohren, F., 2011. Modelling 
natural disturbances in forest ecosystems: a review. Ecol. Model. 222 (4), 903–924. 
https://doi.org/10.1016/j.ecolmodel.2010.09.040. 

Sharma, B.P., Cho, S.-H., Yu, T.E., 2019. Designing cost-efficient payments for forest- 
based carbon sequestration: an auction-based modeling approach. For. Pol. Econ. 
104, 182–194. https://doi.org/10.1016/j.forpol.2019.04.018. 

Simon, C., Etienne, M., 2010. A companion modelling approach applied to forest 
management planning. Environ. Model. Software 25 (11), 1371–1384. https://doi. 
org/10.1016/j.envsoft.2009.09.004. 

Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., Zaehle, S., 2014. 
Implications of incorporating N cycling and N limitations on primary production in 
an individual-based dynamic vegetation model. Biogeosciences 11 (7), 2027–2054. 
https://doi.org/10.5194/bg-11-2027-2014. 

Sotirov, M., Sallnäs, O., Eriksson, L.O., 2019. Forest owner behavioral models, policy 
changes, and forest management. An agent-based framework for studying the 
provision of forest ecosystem goods and services at the landscape level. For. Pol. 
Econ. 103, 79–89. https://doi.org/10.1016/j.forpol.2017.10.015. 

Sotnik, G., 2018. The SOSIEL Platform: knowledge-based, cognitive, and multi-agent. 
Biologic. Inspir. Cognit. Archit. 26, 103–117. https://doi.org/10.1016/j. 
bica.2018.09.001. 

Sotnik, G., Cassell, B.A., Duveneck, M.J., Scheller, R.M., 2021. A new agent-based model 
provides insight into deep uncertainty faced in simulated forest management. 
Landsc. Ecol. https://doi.org/10.1007/s10980-021-01324-5. 

Torrens, P.M., 2010. Agent-based models and the spatial sciences. Geogr. Comp. 4 (5), 
428–448. https://doi.org/10.1111/j.1749-8198.2009.00311.x. 

Troost, C., Huber, R., Bell, A.R., van Delden, H., Filatova, T., Le, Q.B., Lippe, M., 
Niamir, L., Polhill, J.G., Sun, Z., Berger, T., 2023. How to keep it adequate: a 
protocol for ensuring validity in agent-based simulation. Environ. Model. Software 
159, 105559. https://doi.org/10.1016/j.envsoft.2022.105559. 

Utomo, D.S., Onggo, B.S., Eldridge, S., 2018. Applications of agent-based modelling and 
simulation in the agri-food supply chains. Eur. J. Oper. Res. 269 (3), 794–805. 
https://doi.org/10.1016/j.ejor.2017.10.041. 

Vallino, E., 2014. The tragedy of the park: an agent-based model of endogenous and 
exogenous institutions for forest management. Ecol. Soc. 19 (1). https://www.jstor. 
org/stable/26269497. 

van Vliet, J., Bregt, A.K., Brown, D.G., van Delden, H., Heckbert, S., Verburg, P.H., 2016. 
A review of current calibration and validation practices in land-change modeling. 
Environ. Model. Software 82, 174–182. https://doi.org/10.1016/j. 
envsoft.2016.04.017. 

Vogt, J.M., Epstein, G.B., Mincey, S.K., Fischer, B.C., McCord, P., 2015. Putting the “E” in 
SES: unpacking the ecology in the Ostrom sociale-cological system framework. Ecol. 
Soc. 20 (1). https://www.jstor.org/stable/26269770. 

Von Bertalanffy, L., 1972. The history and status of general systems theory. Acad. Manag. 
J. 15 (4), 407–426. https://doi.org/10.5465/255139. 
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