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Ecology is a science of scale, which guides our description of both ecological processes 
and patterns, but we lack a systematic understanding of how process scale and pattern 
scale are connected. Recent calls for synthesis between population ecology, community 
ecology, and ecosystem ecology motivate the integration of phenomena at multiple 
organizational levels. Furthermore, many studies leave out the scaling of a critical pro-
cess: species interactions, which may be non-local through movement or foraging and 
must be distinguished from dispersal scales. Here, we use simulations to explore the 
consequences of three different process scales (species interactions, dispersal, and the 
environment) on emergent patterns of biodiversity, ecosystem functioning, and their 
relationship, in a spatially-explicit landscape and stable equilibrium setting. A major 
result of our study is that the spatial scales of dispersal and species interactions have 
opposite effects: a larger dispersal scale homogenizes spatial biomass patterns, while a 
larger interaction scale amplifies their heterogeneity. Interestingly, the specific scale at 
which dispersal and interaction scales begin to influence landscape patterns depends 
on the scale of environmental heterogeneity – in other words, the scale of one process 
allows important scales to emerge in other processes. This interplay between process 
scales, i.e. a situation where no single process dominates, can only occur when the 
environment is heterogeneous and the scale of dispersal small. Finally, contrary to our 
expectations, we observe that the spatial scale of ecological processes is more clearly 
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Spatial scale is a fundamental notion in ecological processes and patterns. We use a spatially 
explicit model to study how three different process scales – species interactions, dispersal, and 
the environment – interact and lead to emergent patterns. We find that dispersal homogenizes 
spatial patterns, while long-range species interactions tends to increase heterogeneity. 
Moreover, the scale at which dispersal and interactions begin to influence landscape patterns 
depends on the scale of environmental heterogeneity. Finally, we find that the interplay of the 
three processes is not well captured by classic metrics like the species–area relationships, while 
the more explicit metric of spatial autocorrelation does show their effect.
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reflected in landscape patterns (i.e. distribution of local outcomes) than in global patterns such as species–area relationships 
(SARs) or large-scale biodiversity–functioning relationships. Overall we conclude that long-range interactions often act dif-
ferently and even in opposite ways to dispersal, and that the landscape patterns that emerge from the interplay of long-ranged 
interactions, dispersal and environmental heterogeneity are not well captured by often-used metrics like the SAR.

Keywords: dispersal, landscape structure, local vs regional scales, spatial patterns, species-area relationships

Introduction

Scale is fundamental to ecology, from the spatial and tem-
poral scales at which we observe and manage ecosystems 
(Henle et al. 2014, Estes et al. 2018, Gonzalez et al. 2020) to 
the intrinsic scales at which processes occur within and across 
ecosystems (Wiens 1989). Much of current research efforts 
describe ecological patterns across scales, such as species–area 
(SAR) or biodiversity–ecosystem functioning (BEF) relation-
ships (Lomolino 2000, Gonzalez  et  al. 2020). However, the 
scaling of ecological patterns is largely phenomenological – we 
can describe how patterns scale but not why (Lomolino 2000, 
Urban 2005). Although links between scales of patterns and 
processes have been explored in recent years (Hart et al. 2017, 
Delsol et al. 2018, Catano et al. 2020), as we will discuss, a sys-
tematic and unified treatment of scale in ecology is incomplete. 
A critical question remains: how is the scaling of ecological pat-
terns, such as patterns of biodiversity and ecosystem function-
ing, generated by scales of specific processes, and why?

In answering this question, a crucial process is often 
overlooked: the spatial scale of species interactions. While 
dispersal and environmental variation are often understood 
to operate at various spatial scales, existing research gen-
erally assumes that species only interact locally (Gotelli 
1995, Hanski 1999, Loreau 2010) (although exceptions 
exist, e.g. studies using multi-layer networks to link inter-
action networks at local scales to their realization at the 
global scale (Poisot  et  al. 2012, Pilosof  et  al. 2017)). Yet 
many species move, forage, or otherwise interact with each 
other at a range of spatial scales (Rand et al. 2006, Fauchald 
2009), even in the absence of dispersal. A simple distinc-
tion is that dispersing species establish new ‘home’ ranges 
when they move across the environment, while mobile 
species always return to their ‘home’ range. Many move 
daily across multiple habitat types, such as seabirds con-
necting marine and terrestrial ecosystems (Fauchald 2009), 
or predatory insects moving between different habitats in 
the landscape (Rand  et  al. 2006). Non-local competition 
can therefore arise from foraging across multiple localities. 
Additionally, species interact indirectly across long distances 
via intermediary species, (e.g. plants interacting indirectly 
via pollinators or herbivores), and many such intermedi-
ary interactions are not explicitly studied, thus being best 
represented by long range interactions. As a result, scales of 
species interactions, such as competition, likely have conse-
quences for population persistence, affecting the spatial dis-
tribution of biodiversity and ecosystem functioning in ways 
that are distinct from other process scales (Guzman et  al. 
2019, Martinez-Garcia et al. 2020).

How do the spatial scales of dispersal, environmental het-
erogeneity, and species interactions interactively influence 
ecological patterns? Answering this question is unlikely to be 
achieved via observational studies, as different combinations 
of ecological processes may generate identical patterns, but 
computational models can explore patterns that emerge as 
processes interact across scales. Indeed, the scale of dispersal 
relative to the environment has been studied most extensively, 
in particular within a metacommunity context (Hart  et  al. 
2017, Thompson et al. 2017, 2020).

These studies generally find that high rates of disper-
sal blur differences between local communities, leading to 
losses of biodiversity and ecosystem functioning. Although 
there are reasons to expect increased scales of dispersal and 
species interactions to have similar consequences, as both 
processes are influenced by many of the same variables (e.g. 
animal mobility) and serve to spread out the effects of spe-
cies interactions, there are also reasons to expect the opposite 
(de Roos et al. 1998). A key difference is that large disper-
sal scales can allow populations to permeate through whole 
landscapes over a few generations, whereas individuals with 
large interaction scales are still bound to specific localities. 
As a result, increasing scales of interactions may amplify 
spatial heterogeneity in an ecological system (Snyder and 
Chesson 2004), counter to the blurring effect of larger dis-
persal scales.

In addition to scales of species interactions, we will address 
an additional major gap which prevents a complete knowl-
edge of scaling in ecology: consideration of a wider range 
of ecological patterns within a single study than has been 
examined previously. Two well-recognized ecological pat-
terns are SAR and BEF relationships. The SAR is the earli-
est and most widely-examined ecological pattern to explicitly 
consider scale (Arrhenius 1921, Lomolino 2000). Although 
SARs have been described as one of ‘ecology’s few universal 
regularities’ (Schoener 1986), accumulating evidence reveals 
considerable variation within and among biological systems 
(Lomolino 2000, Drakare et al. 2006, Franzén et al. 2012). 
Likewise, BEF theory has revealed consistent patterns, typi-
cally a saturating relationship between community diversity 
and biomass production (Cardinale  et  al. 2011), but most 
work has focused on BEFs at local scales, with only recent 
work highlighting the importance of scale (Gonzalez  et  al. 
2020). Previous studies have examined how one pattern or 
the other are affected by process scales (Franzén et al. 2012, 
Scheiner et al. 2011, Ben-Hur and Kadmon 2020), but no 
study has examined how SAR and BEF relationships change 
in tandem and if effects that are masked through one pattern 
are apparent in the other. As a consequence, it is unclear how 
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both SAR and BEF relationships are affected by the interplay 
of processes acting at different scales, making it difficult to 
assess how process scales affect the overall behavior of ecosys-
tems as different measures highlight different aspects of eco-
systems. Resolving these issues will be useful for both basic 
and applied biodiversity problems, for instance allowing us 
to scale up to landscape scales our predictions of biodiversity 
loss and its effect of ecosystem productivity, that are often 
based on local scales (Chase et al. 2018).

Here, we use a modified Lotka–Volterra metacommunity 
model to explore the consequences of the scaling of ecological 
processes for biodiversity, ecosystem functioning, and their 
relationship across spatial scales. Our simulations consist 
of species interacting in a spatially-explicit landscape, with 
‘patches’ emerging from the environmental structure of the 
landscape. Although metacommunities tend to be modelled 
as systems of discrete patches embedded within an inhospita-
ble matrix, Leibold and Chase (2018) describe this approach 
as useful (easing computation and interpretation) but limited 

– they foreshadow a ‘coming’ in ecology in favour of models 
that allow ‘patches’ to emerge from the structure of the envi-
ronment, which our model achieves. We first study the het-
erogeneity of local outcomes across the landscape: patterns 
of patch biodiversity, patch functioning, and relationships 
between them (local BEF). We can then scale up to the whole 
landscape scale and every scale in between. By varying the 
spatial scales over which metacommunity processes (abiotic 
environment, competitive interactions, and dispersal) play 
out, we test the hypothesis that ecological patterns depend 
on how processes interact across scales, including scales of 
species interactions, and lead to different patterns from those 
generated by commonly-assumed hierarchical process scales 
(i.e. scales of interactions < environment < dispersal; Fig. 1).

SARs depend on spatial turnover in species composition, 
and compositional turnover is driven by ecological processes 
(Shmida and Wilson 1985). Thus, we would expect that eco-
logical processes should strengthen SARs in scenarios where 
they increase compositional turnover. We predict that the 

(a) (b)

(c)

Figure 1. Conceptual diagram of spatial scales of ecological processes. (a) Illustration of the spatial scale of species interactions I, dispersal 
D and environmental heterogeneity E relative to the total size of the landscape (i.e. width of curves). (b) In the classic scenario, interactions 
take place within a patch, while dispersal is thought to act within a neighborhood and environmental factors vary broadly over the land-
scape. (c) Comparison of ecological scenarios along scales of I, D and E. Yellow and green represent two different species, with circle and its 
rim representing the resident species and the favoured species, respectively. Metacommunity theory has explored different scenarios for the 
relative scales of dispersal and environment (i.e. the ratio D/E), notably distinguishing ‘species sorting’ (local environmental factors deter-
mine species distribution) and ‘mass effects’ (population fluxes homogenize the landscape). Our work highlights the relative importance of 
species interactions scale (e.g. expressed through the ratio I/E, which was previously considered only in particular ecological settings (e.g. 
vegetation patterns or territoriality). Ranged interactions may for instance induce exclusion of weaker competitors in a neighboring patch, 
even without a population flux of a stronger competitor into that patch.
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strongest slopes of the SAR will occur when scales of disper-
sal < environment < species interactions, because 1) interac-
tions are not constrained to abiotically suitable patches and 
2) weaker dispersal prevents the homogenization of species 
composition across the landscape. Additionally, we pre-
dict that the consequences for BEF relationships will differ 
between local and regional scales. On local scales, we expect 
BEFs to weaken as interaction scales increase relative to the 
others, given that species that are locally absent but present in 
nearby areas can affect local functioning. On regional scales, 
we expect BEFs to strengthen as interaction scales increase, 
since regional competition would keep only the most suitable 
species at a given location. Hence, more species would mean 
that multiple species are productive within a given region.

Material and methods

Model

We use a modified Lotka–Volterra metacommunity model to 
explore the consequences of the spatial scaling of three eco-
logical processes – abiotic environment, species interactions, 
and dispersal – for biodiversity and ecosystem functioning. 
Our specific assumptions and parameters are motivated by 
two important choices. First, we focus on a classic setting of 
ecological assembly, i.e. the patterns that arise when many 
species, originating from a regional pool, come together and 
reach an equilibrium state, with some species going locally or 
regionally extinct. Furthermore, we take species interactions 
in the pool to be disordered, that is, heterogeneous but with-
out a particular functional group or trophic level structure 
(Barbier et al. 2018). We do not exclude that different patterns 
could emerge for more ordered interactions (e.g. a realistic 
food web) or for parameter values that lead to more complex 
dynamical regimes (e.g. population cycles or chaos, driven 
by stronger species interactions or environmental perturba-
tions). We note that our communities, in the chosen param-
eter regime of moderate competition, contain many species 
in a stable equilibrium (i.e. due to the assembly process). Our 
methodology thus differs from the extensive literature that 
has considered models with random interactions in order to 
study stability–complexity relationships (May 1972), includ-
ing more recent works in a spatial context (Gravel et al. 2016, 
Baron and Galla 2020), as we rather focus on the abundance 
and diversity patterns arising from community assembly.

Second, we consider the possibility of species interacting 
over large spatial scales. Conventional metacommunity mod-
els describe discrete local communities of habitat patches con-
nected by dispersal, within which species interact (Leibold et al. 
2004). In doing so, they implicitly assume that the spatial 
range of species interaction is smaller than the scale of disper-
sal and contained within a patch, for all species and types of 
interactions (Guzman et al. 2019). To relax these assumptions, 
we construct a metacommunity model where populations 
of species can disperse and interact at different spatial scales, 
without specifying a mechanism underlying these ecological 
processes. Species interactions that manifest beyond local scales 

are abstracted from mechanisms such as individual foraging, 
vector species (e.g. pathogens) (Schupp 1992), and spatial 
resource fluxes (Gounand et al. 2017, Guzman et al. 2019).

The model details the dynamics of S different species dis-
tributed across a spatially-explicit lattice landscape of 320 × 
320 cells. The dynamical equation for the biomass Ni of spe-
cies i at position x  in the landscape at time t is given by a 
generalized Lotka–Volterra equation of the form

�
�

� �
�

�
�
�

�

�
��t

N t N t r d A N ti i i ij j
j

S

( , ) ( , ) ( ) ( , ) ( , )      x x x y x y y ��
�

� ��i iN t( , )x

  (1)

where x  and y  represent vectors of spatial (x, y) coordinates in 
the landscape. Equation 1 models the effects of three ecologi-
cal processes on the biomass of species i: its intrinsic growth 
rate ri( )

x , which is influenced by abiotic environmental con-
ditions at location x , dispersal to and from location x , which 
is controlled by the diffusion coefficient δi, and interactions 
with all other species j, including when they are located else-
where in the landscape, Aij( , )

 x y . Although at face value cells 
in our model resemble patches in traditional metacommunity 
models, given that discrete populations are necessary to simu-
late Lotka–Volterra dynamics, here it is best to interpret cells 
as neighborhoods on a landscape. Each neighborhood may 
take on a unique environmental value and hold unique den-
sities of individuals of different species. Viewed in this way, 
landscape dynamics can be simulated more continuously, with 
the numerical limitation of needing to discretize dynamics at 
their finest resolution. While ‘patches’ can emerge in autocor-
related environments (i.e. a spatial clustering of cells that are 
suitable to a given species), our model is also generalizable to 
landscapes with a diversity of environmental structures.

Environment

Abiotic conditions in each location are encoded by an envi-
ronmental variable V ( )x . This variable is continuous and 
varies smoothly over space, with parameters allowing one to 
tune the typical spatial scale of this variation (Vasseur and 
Yodzis 2004). For more details on the construction of the 
environment, see the Supporting information. 

Each species has a Gaussian fundamental niche that deter-
mines its abiotic fitness in each location, with an optimal 
environmental value Hi and abiotic niche width ωi

f
V H

i
i

i

( ) exp
( ( ) )


x

x
� �

��

�
�
�

�

�
�
�

2

22�
  (2)

Each fitness value is bound between 0 and 1 and reaches its 
maximum at an optimal environmental condition (i.e. when 
V Hi( )x − ). We take the growth rate as r fi i( ) ( ) x x= . In 
other words, V ( )x  sets the actual structure of environmental 
conditions across the landscape, whereas ri( )

x  is how species 
experience the environment and its structure.
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Interactions

We choose to limit ourselves to competitive interactions, 
defined by the matrix Cij, which represents the per-capita 
competitive effect of species j on species i. The diagonal of the 
matrix (the impact of a species on itself ) is set to 1, whereas all 
other interactions are taken independently from a random uni-
form distribution between 0 and c . We choose c = 1 to allow 
for moderate interactions between different species (inter-spe-
cific competition is always weaker than intra-specific), suggest-
ing that pairwise coexistence is often possible for species with 
different growth rates ri, but the total impact of many com-
petitors is still strong enough to allow for extinctions. Previous 
work has shown that, in disordered communities, the out-
comes of ecological assembly are robust to many details such 
as the nature of interactions (e.g. mutualism, predation), and 
depend only on a few statistical properties such as the mean 
and variance of interaction effects (Barbier et al. 2018).

Furthermore, interactions are assumed to occur over a 
characteristic spatial scale encoded by a spatial kernel K. This 
scale may represent the distance an animal forages from its 
nest (without establishing a new nest), the scale at which trees 
gather resources with their roots, or the effective distance an 
immobile species interacts with its neighbors via an interme-
diary species (where the intermediary is not explicitly mod-
eled). We use a Gaussian kernel whose standard deviation 
defines the interaction range such that

K k( , ) exp
|| || 
 

x y
x y|�
�

� �
��

�
�
�

�

�
�
�

0

2

22
  (3)

where || || x y−  indicates the norm of (distance between) the 
vectors x  and y , and γ is the spatial range (scale) of the 
interactions. We note that while this modeling strategy is not 
physical as it implies that interactions occur instantaneously 
across distances, this is not expected to bias our results since 
we are focusing on the equilibrium state of the system, where 
hypothetical lag effects should be minimal.

We normalize the interactions by k0 such that the over-
all effect of the kernel is always the same (i.e. the integral 
over K always equals 1). This normalization means that for 
large-scale interactions, local competition becomes weaker. 
However, some amount of (especially intra-specific) compe-
tition must remain locally strong to prevent species densi-
ties from growing exponentially and exploding. Therefore, 
we define interactions as partially local and partially regional, 
with β governing the fraction of interactions that are regional:

A C K Cij ij ij( , ) ( , ) ( ) .   x y x y� � � �� � �| 1   (4)

We choose β to ensure that the effect of interactions changes 
with their spatial scale (subsection Scales below), but local 
competition is never negligible (more details in the Supporting 
information).

Dispersal

Finally, dispersal is modeled by the diffusion (Laplace) 
operator,

�i iN t� ( , ),x   (5)

where δi is the diffusion or dispersal coefficient of the species. 
For simplicity, we set the dispersal coefficient to be the same 
for all species.

Contrary to interactions, we do not use an explicit spatial 
kernel here, because intensity and spatial scale are unavoidably 
entangled in the case of dispersal (Supporting information). 
The coefficient δi sets the spatial scale over which dispersal 
impacts ecological dynamics. Note that two aspects of our 
modeling choices mean that our choice of dispersal by diffu-
sion is not qualitatively different from applying a large disper-
sal kernel: our focus on the equilibrium state, and having initial 
conditions where all species are introduced to every point in 
the landscape. The former aspect of equilibrium means that 
any potential non-equilibrium dynamics driven by species 
moving quickly across space due to a large dispersal kernels are 
not applicable. The latter aspect means that there is no limit to 
dispersal, i.e. a short or long-ranged dispersal kernel does not 
affect which parts of the landscape can be reached by a species.

Scales

In this study we are concerned with spatial scales of three 
ecological processes:

1) E: environmental heterogeneity
2) D: dispersal
3) I: species interactions

Table 1. Parameters, default values and ranges.

Parameter Interpretation
Baseline value 
(range)

General
S species number 20
L landscape size (cells) 

(area = L2)
320

δi dispersal coefficient [0.01, 100]
Environment
Hi optimal environment value ∼ Uniform(20, 80)
ωi abiotic niche width ∼ Normal(10, 2)
ρ spectral color 0.95
kc spectral cutoff 0.04

K ( )x local abiotic conditions [0, 100]

k0 normalization constant –
Interactions

c max interaction strength 1.0

β fraction of regional 
interactions

0.9

γ spatial scale of interactions [1, 100]
Cij interaction matrix ∼ Uniform(0, c )
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To properly compare the interplay of different process 
scales, we must first compute their values for a given set of 
model parameters (Table 1). The scale of the environment 
combines two features often used in the literature to generate 
realistic, spatially-autocorrelated landscapes (Thompson et al. 
2021): spectral color ρ, which indicates the relative impor-
tance of long-range and short-range variations in the environ-
ment, and spectral cutoff kc, which indicates the finest grain 
of variation (Supporting information). The effective environ-
mental scale E is controlled by these two parameters.

In the main text, we focus on a single value for the envi-
ronment scale E = 32, and vary the other two scales on a loga-
rithmic scale, with values of 1, 3.2, 10, 32 and 100, where 
the system itself has the scale (length) of 320 cells. Our dis-
tribution of I and D are equally spaced along a log scale and 
allow us to have a clear separation between the scales of each 
ecological process, while also being substantially smaller than 
the system size (320 cells) and larger than the smallest scale 
in the system (1 cell). Details on the construction of the envi-
ronment are given in the Supporting information. We choose 
a value of E = 32 specifically as it is the most straightforward 
to demonstrate our results (see the Supporting information 
for other values). The scale of interactions is set by, and coin-
cides with, the width of the Gaussian kernel γ, such that 
I = γ. The scale of dispersal is mainly determined by the dif-
fusion coefficient δi, and it is expected to scale as D i� �  
(Zelnik et al. 2019). The normalization constant is, however, 
not trivial, and as we show in the Supporting information, it 
is approximately 10. We therefore use: D i� 10 � . Fixing 

the environmental scale and varying the scale of interactions 
and dispersal allows us to isolate the effects of interaction and 
dispersal scale without confounding the effects of different 
landscape structures or differences between species.

Parameterization and simulations

To initialize our simulations, we first add environmental struc-
ture to a two-dimensional landscape of size 320 × 320 cells 
(see the Supporting information for details). We do not define 
patches explicitly, but rather allow them to emerge from the 
spatial structure of the environment. We then seed S = 20 spe-
cies onto the landscape, with initial biomass at each location 
drawn from a uniform distribution between 0 and 1, result-
ing in roughly equal biomasses at the landscape scale. For 
simplicity, we use periodic boundary conditions for the two-
dimensional system (i.e. a torus topology), for both dispersal 
and interactions. We do not expect this choice to impact the 
results, due to the large size of the system considered.

We use 20 replicate landscapes, allowing environmental 
structure to vary among replicates while keeping the envi-
ronmental scale constant. Replicates with other values of 
environmental scale are presented in the Supporting infor-
mation. Each landscape replicate uses a different set of spe-
cies and their interactions, chosen at random. Each replicate 
landscape was used to systematically vary the spatial scale of 
interactions I and dispersal coefficient D, with 25 different 
combinations (five values of D and five values of I, as given 
in Fig. 2), giving a total of 500 simulations. We ascertain the 
generality of our findings by comparing across replicates.
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Figure 2. Distribution of total community biomass across the landscape as we change dispersal D (columns) and interaction I (rows) scales. 
Dashed black line shows where the environment scale E = 32 is larger than both D and I. Black frames around panels designate parameter 
values that we further examine in other figures. For better legibility, biomass levels above three are not shown.
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We run each simulation, where a simulation is defined as 
a model run with a unique combination of process scales and 
replicate landscape, to a maximum time of T = 1000, or until 
equilibrium is reached. For practical purposes, we define an 
equilibrium as when the maximal change in biomass of any 
species in any location over a time-span of T = 1 is less than 
10−5. A full list of parameter values can be found in Table 1. 
All simulations were performed using MatLab 2019a.

Measurements

For each simulation we measure individual and total com-
munity biomass, species richness, and sample the landscape 
to calculate (SAR curves) as well as (BEF curves). For species 
richness, SARs, and BEFs, we define a species to be extinct at a 
given location if its biomass is below than a threshold of 10−3.

To calculate SAR curves, we sample at 40 different spa-
tial scales from 1 × 1 (single cells) to 320 × 320 (the entire 
landscape) on a logarithmic scale, and computed the species 
richness at each. For a given scale, we randomly choose 100 
locations in the landscape, and sampled a region centered 
around the location chosen. We averaged over the 100 loca-
tions to obtain the mean richness value for a given scale.

We calculate both local and regional BEF curves, based 
on random sampling of the landscape. We do this in a simi-
lar way to the SAR curves, measuring species richness but 
also total community biomass. For the local BEF, we use a 1 
× 1 cell area with 102 400 random locations chosen, while 
for the regional BEF we use an intermediate area of size 10 × 
10 with 1024 locations sampled. In this way the BEF mea-
surement is done consistently for different region sizes. For 
both local and regional BEF curves, we measure every cell 
on average once.

A striking outcome observed in our results is that spatial 
patterns of biodiversity and functioning in landscapes are 
not well captured by landscape summary measures, such as 
SARs. To explain these patterns, we calculate how correlated 
the biomass is of a given species as distance between sampling 
locations increases (i.e. spatial correlation), which can be used 
to quantify the properties of spatial patterns we observe. To 
calculate species’ spatial correlations, we do the following: 1) 
we normalize the species’ distribution by subtracting its aver-
age biomass (taken over the whole system); 2) we obtain a 
correlation map by calculating the convolution of a spatial 
distribution with itself, using a two-dimensional Fast Fourier 
Transform; 3) we normalize the correlation map by dividing 
the resulting two-dimensional map by its maximum value 
(i.e. we set a correlation value of 1 at the origin); and 4) we 
define the one-dimensional correlation function as the aver-
age between a vertical and horizontal transects through the 
correlation map. To define the scale of correlation for a given 
species, we locate the distance at which the correlation func-
tion reaches half its height, i.e. the distance from the origin 
where its value is the average of the maximum value (which 
is always 1) and its minimal value (typically around 0). A 
step-by-step illustration of calculating the spatial correlation 
is provided in the Supporting information.

Results

Local outcomes: functioning and diversity across 
localities

Our first major result is that, although they can arise from 
similar biological mechanisms (e.g. individual mobility), 
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Figure 3. Species distribution patterns for five selected parameter sets, representing different scales of dispersal (D) and interaction (I), as 
designated in Fig. 2. Top row: total community biomass. Middle row: local species richness. Bottom row: distribution of three of the 20 
species in original species pool (their biomass are encoded in the red, green and blue color channels, respectively; thus, cyan regions corre-
sponds to coexistence of species 2 and 3). For better legibility, biomass levels above three are not shown.
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dispersal and interaction scales have opposite impacts on 
biodiversity and functioning patterns across the landscape 
(Fig. 2, Supporting information). We start from the case of 
weakly-connected communities with local interactions where 
all landscape patterns result from environmental variation 
(top-left panel, Fig. 2). Increasing the spatial scale of dispersal 
leads to a blurring of total community biomass over the land-
scape (from left to right, Fig. 2). In contrast, increasing the 
scale of species interactions leads to a sharpening of spatial 
patterns, amplifying underlying environmental heterogene-
ity (top to bottom, Fig. 2). The antagonism between these 
two effects can be seen by the fact that they counteract each 
other when increasing both scales at once, leading to similar-
looking outcomes (along the diagonal, Fig. 2), but dispersal 
eventually wins out – the states along the right column are 

virtually identical, whereas the same is not true across the 
bottom row. Critically, it is not until the scales of dispersal or 
interactions exceed the scale of environmental heterogeneity 
(i.e. outside the dashed-lined boundary in Fig. 2) that the 
scale of either process significantly alters spatial patterns in 
biomass (Supporting information).

We then focus on a subset of our scenarios above to show 
how process scales impact not only total biomass but also indi-
vidual species distributions (Fig. 3). We observe that increas-
ing dispersal scale predictably makes larger, more coherent 
domains (i.e. fairly defined areas with similar characteristics) 
with typically higher local diversity. Increasing interaction 
scale creates a more granular landscape with a broader range 
of diversities, including many low-diversity patches and a few 
high-diversity ones. Indeed, large interaction scales lead to 
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more spotty species distributions, with rare species persisting 
in some locations where they would not in other scenarios 
(Fig. 3 bottom row). Two notable examples include species 1 
(red patches) persisting only when interactions are large and 
dispersal is small, and species 2 (individually green, but here 
cyan due to its coexistence with species 3, blue) taking on a 
more clumped distribution with large interaction scales.

Regional outcomes: functioning and diversity at the 
landscape scale

The outcomes described above allow us to identify spatial 
patterns in local outcomes in the landscape, but what are 
outcomes for the landscape as a whole? Given the additive 
nature of biomass across localities, two regions could have 
identical biomass at the landscape scale even if one region 
has high variation among localities that span extremes of 
high and low values, whereas another varies little with bio-
mass values that are intermediate. Here, we see that biomass 
is highest when interaction scales are large (Supporting 
information), an effect that is quickly eroded as dispersal 
scales increase. Interestingly, these high-biomass landscapes 
had extreme variation in biomass among localities, includ-
ing areas of extremely low biomass (dark blue in Fig. 2) 
and extremely high biomass (red in Fig. 2). Therefore, high 
biomass is driven by a disproportionate subset of local com-
munities in a landscape. Furthermore, these high biomass 
landscapes were unremarkable in regional species richness 
in the landscape and actually had fewer species per locality 
on average than other scenarios (Supporting information). 
For those who may be interested in comparing our findings 
to those typically reported in traditional metacommunity 
models more explicitly (Mouquet and Loreau 2003), we 
note that the diversity plots in the Supporting information 
essentially show local (i.e. alpha) and regional (i.e. gamma) 
diversity, respectively, whereas compositional turnover 
among localities (i.e. beta diversity) is essentially differences 
between them.

Cross-scale outcomes: BEF and SAR

Next, we turn to two types of cross-scale outcomes (Fig. 4). 
First, we consider the relationship in BEF curves (i.e. total 
biomass versus species diversity) at neighborhood (i.e. single 
cell) scales. In doing so, we find that BEF curves (Fig. 4, left 
panel) reflect underlying process scales. In particular, they 
exhibit a hump-shaped relationship for large interaction 
scales, suggesting that patches with the largest total biomass 
are not the most diverse, but rather have a few high-perform-
ing species. This result ties into our previous observation that 
the interaction scale tends to amplify environmental hetero-
geneity, and may thus put more weight on selection effects, 
where abiotic conditions select the best-performing species at 
the exclusion of others. We also examined BEF curves mea-
sured at larger scales, i.e. when spatially aggregating 100-cell 
neighborhoods, and found qualitatively identical patterns 
(Fig. 4, middle panel).

We also look at a pattern aggregated over continuously 
increasing spatial scales – the SAR (Fig. 4, right panel). We 
would expect that changes in the slope or shape of the SAR 
as the aggregation scale (x-axis) exceeds the spatial scales of 
our ecological processes, as has been demonstrated for the 
stability–area relationships (Delsol  et  al. 2018). However, 
we do not observe a clear link between process and pattern 
scales, beyond the fact that the inflection point (in particu-
lar, for low D and I) corresponds to the environmental scale 
E (vertical gray line in Fig. 3). The main impact of process 
scale is that, by amplifying landscape heterogeneity, a large 
interaction scale I leads to a stronger SAR when large interac-
tion scales are coupled with short dispersal scales. Specifically, 
as predicted, at the smallest scale the D < E < I scenario 
(magenta curve) yields the lowest species richness compared 
to all other scenarios, whereas at the scale of the entire land-
scape, its richness is very high.

Aggregated measures of biodiversity and functioning at 
regional scales miss much of the information captured by 
local measures, such as the distribution and turnover in bio-
mass (Fig. 2–3). Yet these local patterns can be quantified. 
Figure 5 presents the results of the spatial correlation of spe-
cies biomass distributions, which measures how the biomass 
of a species correlates over the distance between sampling. 
We observe clear trends in scale, with consistent patterns of 
growing (shrinking) correlation with higher dispersal (inter-
action) scales. These results of Fig. 5 quantify what we earlier 
observed in Fig. 2, namely that we see larger emergent scales 
of total community biomass due to high D, and the opposite 
due to high I.

Discussion

This study focuses on a critical question: how is the scaling 
of ecological patterns, such as patterns of biodiversity and 
ecosystem functioning, related to scales of specific processes, 
and why? We have modelled how intrinsic scales of ecologi-
cal processes align with the emergence of ecological patterns 
in a metacommunity, where we control the spatial scale of 
environmental heterogeneity, dispersal, and species interac-
tions. In doing so, below, we highlight the following three 
take-home messages of our results:

• the scale of one process (here, environment) can cause the 
emergence of characteristic scales of other processes (dis-
persal, interactions)

• two interlinked ecological patterns (biodiversity and 
ecosystem function) and their relationship to each other 
are oppositely affected by two forms of organismal 
movement

• averaging ecological patterns at any one scale misses a rich 
patterning of spatial vari ance that is closely tied to process 
scales

Below, we expand upon each finding and place them 
within existing knowledge, examine the mechanisms that 
underlie our findings, contrast results among ecological 
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variables, and end by placing our results within a context of 
ecosystem preservation.

A main finding of our study is that the spatial scale of 
interactions amplifies environmental heterogeneity, sharpen-
ing observed spatial patterns, in contrast to dispersal scales. 
Importantly, observed spatial patterns did not reflect the 
absolute value of the spatial scale of each ecological process, 
but rather, their values relative to the environment; decreas-
ing the spatial scale of the environment shifts the boundary 
of blurring/sharpening effects of dispersal and species interac-
tions (Supporting information). We find this effect because 
environmental conditions are quite literally the template upon 
which dispersal and species interactions mold species distribu-
tion. Large-scale (i.e. at scales above the template) processes 
are more important than small-scale ones in determining 
overall patterns, meaning that only when dispersal or inter-
actions have large scales can they impact large-scale patterns.

We examined the impacts of process scales on two classes 
of patterns: first, on the spatial scaling of patterns (SAR and 
BEF), and second, on the spatial structure of species biomass 
in the landscape. Unexpectedly, the latter class of patterns 
appears to better reflect the scale of ecological processes, such 
as the distribution and turnover of biomass and biodiversity 
across the landscape. These patterns would be lost by exam-
ining mean biodiversity and function at specific aggregation 
scales (e.g. local versus regional; Supporting information), 
but were well captured via spatial autocorrelation (Fig. 5). 
From these analyses, one take-home message is that increas-
ing the scale of species interactions actually amplifies varia-
tion on small scales. In other words, large-scale processes do 
not necessarily beget large-scale patterns.

The question of how process scales affect observed pat-
terns can also be spun around: what information about pro-
cess scales can be inferred from the various patterns we see? 
Considering the opposing effects that dispersal and interac-
tion scales have on pattern scales (Fig. 2), it is not clear that 
such an inference is possible. However, given that patterns 
scales change differently (Supporting information), combin-
ing several measures together may provide an answer, for 
instance by finding when changes in spatial correlations of 
biodiversity and biomass no longer behave similarly. In this 
context, it is perhaps to be expected that no clear connec-
tion was found between well known patterns such as BEF 
and SARs, and process scales. Over the past few decades, 
ecologists have been cautioned from interring processes from 
patterns (McIntire and Fajardo 2009). Our results demon-
strate exactly why this is important: a lack of a 1:1 mapping 
between a pattern and any one specific process.

Indeed, our finding that the SAR curves did not exhibit 
transitions at particular spatial scales, that would allow us to 
identify the typical scales of the underlying processes (other 
than the environment), runs counter to other contexts, such 
as the invariability–area relationship (Delsol et al. 2018). In 
particular, we do not find a triphasic SAR curve that is often 
reported (Rosenzweig 1995, Delsol et al. 2018). This is the 
case since our model does not consider individual sampling 
and dispersal limitation, which typically lead to stronger SAR 
slopes at small and large scales, respectively. We thus see the 

strongest slopes at intermediate spatial scales, consistent with 
results under similar settings (Crawley and Harral 2001), 
and hinting that we are largely seeing community dynam-
ics typical of species-sorting (Leibold et al. 2004). Centering 
on the average SAR slope itself, on the one hand, we found 
that large interaction scales may enhance the SAR by ampli-
fying landscape heterogeneity and creating low-diversity 
strips along the edges of species ranges. On the other hand, 
this spatial heterogeneity could also promote coexistence as a 
weaker competitor might thrive in the margins (Maciel and 
Martinez-Garcia 2021). This suggests that edge effects may 
play a prevalent role in the case of long-range interactions, 
and deserves more extensive investigation. Overall, the scales 
of biotic processes (interaction and dispersal) are mainly 
reflected inasmuch as they change overall community prop-
erties, such as total diversity across the landscape.

Knowledge of the spatial scale of ecological processes is 
critical to understanding the maintenance of ecosystems. To 
illustrate this argument, one can imagine a landscape man-
ager interested in preserving some baseline level of function-
ing in a landscape at a specific spatial extent, for example, 
primary production. If the spatial scale of interest does not 
encompass the intrinsic scales of processes that govern func-
tioning, then landscape alteration beyond that scale might 
impact functioning in an unanticipated and undesirable 
manner; these scales will differ among ecosystems based on 
how species’ traits and the physical landscape affect how 
organisms experience scales of E, D and I. In other words, the 
scales important to the maintenance of ecosystem function 
may be mismatched from the (typically small) spatial scales at 
which ecosystem functioning is observed and managed, but 
the degree to which this is true depends on process scaling. 
Predictions of our model could be best tested empirically in 
microcosm or mesocosm setups or using data syntheses, for 
example, by examining the spatial structure of species rich-
ness and biomass depending on process scales of focal taxa 
(e.g. small versus large-bodied animals using remotely sensed 
data, experiments with insects where mobility is restricted).

Our results suggest that it will be difficult to manage land-
scapes to preserve biodiversity and ecosystem functioning 
simultaneously, despite their causative relationship, for two 
related reasons. First, the fact that increasing dispersal and 
interaction scales had opposing effects on either ecosystem 
property presents a unique management challenge, given that 
both scales are tied to organismal movement, albeit on distinct 
timescales (i.e. daily versus once-per-generation). Second, eco-
systems attained the highest biomass in scenarios which also 
led to the lowest levels of biodiversity, specifically, when inter-
action scales were large and dispersal scales were small. We 
note that this second issue may only be relevant when interac-
tions are largely competitive, since our modeling, and thus 
results, did not consider mutualistic interactions which would 
likely change the observed tradeoff between biodiversity and 
biomass. How would a manager plan a landscape to enhance 
interaction scales (preserving function) while simultaneously 
minimizing scales of dispersal (preserving biodiversity)? This 
can, for instance, be relevant for managing predation of pest 
herbivores in agricultural landscapes (Rand et al. 2006). This 
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type of intervention might be most successful in species with 
body plans for long-distance movement, but that can remain 
philopatric for behavioural reasons (which can be environ-
mentally determined; i.e. territorial hunters).

Our metacommunity model differs from traditional meta-
community models in several important ways. Traditional 
metacommunity models tend to include discrete local 
patches embedded within an implicit inhospitable matrix, 
interconnected by rates of dispersal, often from a spatially-
implicit regional pool of dispersers. By contrast, ‘patches’ in 
our model emerge from the environmental template (Fig. 3), 
the structure of which may be viewed differently by differ-
ent species according to their fundamental niche. Further, 
these patches may have fuzzy boundaries, within-patch het-
erogeneity, as well as different shapes and sizes. Individuals 
may be lost to the matrix (i.e. habitat falling outside of the 
fundamental niche) if they disperse there or may form step-
ping stone populations to reach new patches. In doing so, 
dispersal limitation is more likely to emerge as the spatial 
grain of the environment exceeds the scales at which species 
disperse, a major result of our study. These features align with 
the recent calls (Logue et  al. 2011, Leibold et  al. 2018) to 
develop more realistic metacommunity models applicable to 
a wider range of systems, beyond discrete, patchy, island-like 
systems. Given these strengths, the next step is to extend a 
model like ours to multi-trophic systems, beyond ‘horizontal’ 
(sensu Vellend 2016) competitive communities. Our model 
is naturally amenable to multi-trophic systems, as predators 
often perceive the landscape at a different scale than their 
prey (i.e. a different interaction scale) and would perceive 
the scale of the environment via spatial distributions of their 
prey. Additionally, there is an opportunity to move beyond 
Lotka–Volterra dynamics for modelling species interactions, 
towards more mechanistic consumer–resource approaches 
(Lafferty  et  al. 2015). Most metacommunity models have 
been applied to competing species (Guzman  et  al. 2019), 
with multi-trophic extensions becoming more common in 
recent years (Thompson and Gonzalez 2017).

Our conclusions are twofold. First, we bring forward 
an important spatial scale – the range of species interac-
tions – that has been largely neglected in previous analyses 
(e.g. metacommunity theory). This interaction range can be 
derived from many of the same ecological mechanisms as dis-
persal, such as individual mobility, yet these two processes 
lead to opposite ecological effects. This suggests that we must 
carefully distinguish whether mobility actually leads to popu-
lation dispersal or to large-range interactions, and re-evaluate 
possible consequences of evolution or environmental change 
in these processes. Finally, we saw that the spatial scale of 
ecological processes might not appear clearly in the scale of 
resulting patterns such as SAR or BEF relationships, though 
they may sometimes be reflected in local outcomes. While 
we focused on a few important biodiversity and functioning 
patterns, our study paves the way for future work investigat-
ing systematically under which conditions various ecologi-
cal pattern scales may or may not reflect the spatial scale of 
underlying processes.
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