
MethodsX 12 (2024) 102601

Contents lists available at ScienceDirect

MethodsX

journal homepage: www.elsevier.com/locate/methodsx

Using Scopus and OpenAlex APIs to retrieve bibliographic data for

evidence synthesis. A procedure based on Bash and SQL

Robin Harder

Environmental Engineering Group, Department of Energy and Technology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden

a r t i c l e i n f o

Method name:

API-CODEBASE

Keywords:

Systematic map

Systematic review

Citation map

Bibliographic analysis

Bibliometric analysis

a b s t r a c t

Evidence synthesis methodologies rely on bibliographic data. The process of searching and re-

trieving bibliographic data can be supported by using bibliographic APIs. This paper presents a

collection of code that serves both as a recipe book and a finished working example of how to

interact with Scopus and OpenAlex APIs for the purpose of supporting evidence synthesis. While

the procedure and code base presented here were developed as part of an evidence synthesis

project in the field of nutrient recovery from human excreta and domestic wastewater for reuse

in agriculture, the procedure and code base should be useful more broadly for evidence syntheses

or bibliographic analyses also in other fields.

• This paper presents a working example of how to interact with Scopus and OpenAlex APIs

• The code base is written in SQL (MySQL) and Unix Shell (Bash)

• The procedure was developed in an MacOS environment but should be portable to other

environments

Specifications Table

Subject area: Environmental Science

More specific subject area: Evidence Synthesis

Name of your method: API-CODEBASE

Name and reference of original method: Not applicable

Resource availability: doi:10.17632/b4j39ccj8t.1

Method details

Introduction

Global research output is rapidly growing year after year. Bibliometric analysis methodologies, such as citation analysis, help

assess the development of the scientific literature in a given research field by understanding the inter-relationships and impacts

of publications, authors, institutions, countries, and journals [3] . Evidence synthesis methodologies, such as systematic maps and

reviews, aim at collating, describing and summarizing relevant research on a specific topic or research question [8] . Evidence synthesis

can be supported by machine learning algorithms, such as topic modelling, to provide substantial enhancement to the productivity

of evidence synthesis [4 , 5 , 10 , 14].

All of above research methodologies rely on bibliographic data from sources such as Scopus [1] , Web of Science [2] , Dimensions

[7] , Crossref [6] , or Microsoft Academic Graph [17] . All of these sources of bibliographic data vary in comprehensiveness, selectivity,
E-mail address: robin.harder@slu.se

https://doi.org/10.1016/j.mex.2024.102601

Received 22 December 2023; Accepted 2 February 2024

Available online 3 February 2024

2215-0161/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.mex.2024.102601
http://www.ScienceDirect.com/science/journal/22150161
http://www.elsevier.com/locate/methodsx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mex.2024.102601&domain=pdf
https://doi.org/10.17632/b4j39ccj8t.1
mailto:robin.harder@slu.se
https://doi.org/10.1016/j.mex.2024.102601
http://creativecommons.org/licenses/by/4.0/

R. Harder MethodsX 12 (2024) 102601

and overlap [15] . A relatively new data source is OpenAlex, which was launched in January 2022, and is considered a replacement

for Microsoft Academic Graph, which was retired in December 2021 [11 , 13].

Retrieval of bibliographic data from bibliographic data sources can typically take place through a website. When handling searches

that yield several thousands of records, however, data export from these websites can become rather cumbersome. This is because

the number of records that can be exported at once is typically limited, thus requiring repetitive manual exporting of a few hundred

or thousand records at a time. Moreover, the website export functionality does not necessarily cover all bibliographic data that is

potentially available from the respective source.

As an alternative to manual data retrieval through a website, application programming interfaces (APIs) provide a way to retrieve

bibliographic data using a customized computer algorithm that directly communicates with the respective data source. Bibliographic

APIs are available for a large number of bibliographic data sources and provide a standardized way of interacting with these sources.

While good documentation is typically available from the respective API provider, custom algorithms are still required to extract data

elements from the retrieved records in a way that is purposeful for a given research goal (e.g., [16]). In this regard, the Scholarly

API Cookbook by the University of Alabama Libraries [12] provides a valuable and comprehensive collection of code examples (i.e.,

recipes) that demonstrate how to work with various scholarly APIs.

In this paper, a collection of working code is provided that was developed in the context of the project ‘End-of-wastewater’ –

this project aimed at: (1) collating and summarizing scientific research on technologies that facilitate the recovery and reuse of plant

nutrients and organic matter found in human excreta and domestic wastewater; and (2) to present this evidence on an online evidence

platform in a way that can be navigated easily [9] . Unfortunately, the Scholarly API Cookbook was discovered only after finalizing the

code base presented here. Otherwise, certain aspects might have been implemented somewhat differently. Either way, the procedure

and code base shared here provide a working example for interacting with scholarly APIs that should be useful more broadly than

the evidence synthesis project within which it was developed. In that sense, it can serve as both a recipe book and an example of a

finished dish.

Basic choices and preparations

Literature reviews can be facilitated by tools such as EPPI-Reviewer. EPPI-Reviewer is a web-based software for research synthesis

that provides broad functionality and generally is very useful for screening and coding records. As our dataset in the project ’End-of-

wastewater’ grew to over 150 000 records, however, we experienced two major challenges: (1) screening and coding could not be

performed with a sufficiently high speed; and (2) import and export of records and screening and coding results to and from EPPI-

Reviewer became rather impractical. For these reasons, we started to develop our own bespoke web-based tool for rapid screening

and coding. It is in this context that we also needed procedures to interact with scholarly APIs.

The procedure presented in this paper is underpinned by three basic choices: (1) the scholarly APIs to tap into, (2) the programming

language used to interact with the chosen APIs, and (3) the database management system used to handle the retrieved bibliographic

data.

Scholarly API

While some APIs are openly accessible and do not require special authentication (e.g., Crossref, OpenAlex), other APIs require an

affiliation with a subscribing institution, and a registration for an API key to use for authentication in API queries (e.g. Scopus, Web

of Science). Before choosing and interacting with a scholarly API, it is important to review not only access and functionality, but also

usage policies regarding aspects such as use cases, query limits, and data reuse policies. Table 1 shows the outcome with regard to

our evidence synthesis in the project ‘End-of-wastewater’.

Based on Table 1 , Scopus and OpenAlex were chosen: Scopus as the preferred data source for the systematic map (as OpenAlex was

still experimental at the time the systematic map was compiled), and OpenAlex as the preferred data source for the online evidence

platform (as this use case is not allowed by the Scopus APIs, and OpenAlex has since moved beyond experimental). To access the

Scopus APIs, one is required to register and get an API key at https://dev.elsevier.com/ .
Table 1

Review of access, functionality and usage policies for data sources considered in the ‘End-of-wastewater’ project.

Data Source Specific APIs Access Functionality Usage Policies

Scopus Abstract Retrieval API

Author Retrieval API

Affiliation Retrieval API

Subscription (Available)

Subscription (Available)

Subscription (Available)

Sufficient

Sufficient

Sufficient

Partly Fulfilled

Partly Fulfilled

Partly Fulfilled

Web of Science API Lite

API Expanded

Free

Subscription (Not Available)

Limited

Limited

Not Checked

Not Checked

Crossref REST API Free Limited Not Checked

OpenAlex Works API

Authors API

Institutions API

Sources API

Free

Free

Free

Free

Sufficient

Sufficient

Sufficient

Sufficient

Fulfilled

Fulfilled

Fulfilled

Fulfilled

2

https://dev.elsevier.com/

R. Harder MethodsX 12 (2024) 102601

Fig. 1. The five stages and six steps in relation to the data sources and database management system (database table names refer to the implemen-

tation for OpenAlex; API names refer to OpenAlex with Scopus API names in brackets).

Note that, while the use of these two data sources was deemed sufficient in the project ’End-of-Wastewater’, other evidence

synthesis projects may want to also tap into additional data sources.

Programming language

Programming languages that are suitable to be used in combination with scholarly APIs include Python, Unix Shell, Matlab,

Mathematica, R, and C. The procedure described in this paper is based on Unix Shell (Bash running in a MacOS environment).

Database management system

The database management system of choice for managing the retrieved bibliographic data was MySQL (locally installed in a

MacOS environment). In order for the code presented here to be useful, one is required to have access to a MySQL database, either

remotely or as a local installation. The respective installer files can be found at https://dev.mysql.com/ . The respective database

schemes and tables are provided in the Supporting Information.

Procedure

With above choices and preparations in place, the general procedure consists of five stages (A-E) with six steps (0–5) each, as

illustrated in Fig. 1 . The five stages are outlined in Table 2 and the six steps in Table 3 .

As stated in Table 3 , Step 0 in each stage is the initialization step. In Stage A, the input are search queries. In stages B-E, the input

are the record IDs retrieved in previous stages. These IDs are saved in text files ‘IDs.txt’, which serve as input for retrieving records

in Stages B to E (see Fig. 1).
Table 2

The five stages of the procedure (first line per stage for Scopus, second line per stage

for OpenAlex).

Step Name API Description

A Search Works Scopus Search API

Search Works API

Retrieve search results.

Not implemented.

B Retrieve Works Abstract Retrieval API

Works API

Retrieve abstract records.

Retrieve works records.

C Retrieve Institutions Affiliation Retrieval API

Institutions API

Retrieve affiliation records.

Retrieve institution records.

D Retrieve Authors Author Retrieval API

Authors API

Retrieve author records.

Retrieve author records.

E Retrieve Sources Serial Title Retrieval API

Sources API

Not implemented.

Retrieve source records.

3

https://dev.mysql.com/

R. Harder MethodsX 12 (2024) 102601

Table 3

The five steps from API to temporary repository as basis for further literature analysis and review.

Step Name Description

0 Initialisation Stage A: search queries. Stage B: works (abstract) IDs identified in Stage A. Stage C: institutions (affiliation) IDs extracted in

Stage B. Stage D: authors (author) IDs extracted in Stage B. Stage E: source IDs extracted in Stage B.

1 Retrieve Records Retrieve records using the respective API.

2 Create Insert

Statements

Create SQL insert statements to insert the retrieved records into a database.

3 Insert into Database Actual insertion to the database management system.

4 Process Records Extract relevant information from the recordsets previously retrieved from Scopus or OpenAlex, respectively, and inserted into

the database.

5 Store in Local

Repository

Save the information relevant for the analysis locally and temporarily in accordance with the applicable use terms and

conditions.

Box 1

CURL statement to retrieve record from API. Example: Elsevier Abstract Retrieval API using eid.

Box 2

CURL statement to retrieve record from API. Example: OpenAlex Authors API using authorID.

Box 3

Bash batch file to retrieve records from API. Example: Elsevier Abstract Retrieval API using eid.

Steps 1 to 5 are described in broad terms in the remainder of this section. Detailed information per API is provided in the Online

Supporting Material.

Retrieve records

Record retrieval through the API is based on a CURL statement, as shown in Box 1 for Scopus and in Box 2 for OpenAlex. This

CURL statement was adjusted in order to be embedded in a Bash batch file intended to loop through all IDs in the input text file

‘IDs.txt’, see Box 3 . Note that a small pause is introduced after each record, which is considered good practice. Each record is written

to an individual output file in the ‘API’ subfolder.
4

R. Harder MethodsX 12 (2024) 102601

Box 4

Bash batch file to create insert statements. Example: OpenAlex Authors API using authorID.

Box 5

Bash batch for actual database insertion. Example: Generic.

Fig. 2. Workflow for extracting target data elements. Focus on data elements to be extracted.

Create SQL insert statements

For each output file in the ‘API’ folder, an SQL insert statement is created based on a Bash batch file (see Box 4) and the respective

SQL insert statement is saved as file in the ‘SQL’ folder (see Fig. 1).

Insert records into database management system

Another Bash batch file (see Box 5) then processes files in the ’SQL’ folder (see Fig. 1).

Extract relevant data elements

Once records are imported to the database, target data elements are extracted based on the workflow shown in Fig. 2 . For

author and institution (affiliation) records, all relevant elements can be extracted directly into corresponding columns in the database

table. For works (abstract) records, the first step is to split the record based on the JSON or XML structure. Some elements, notably

core information (e.g., doi, publication year, title) can be directly extracted to corresponding columns in the database table. Other

elements require a loop to process multiple elements. For key terms (e.g., author keywords, index terms), multiple elements are
5

R. Harder MethodsX 12 (2024) 102601

concatenated into an individual corresponding column in the database table. For authors, institutions (affiliations), and references in

the bibliography, a row is generated in an auxiliary table for each author, affiliation, or reference, respectively.

Box 6 provides an example of SQL code used to extract core information from abstract records. To streamline processing, individual

Box 6

SQL code for extracting data elements. Example: Scopus Abstract Retrieval API.

SQL statements are called from Bash batch files, see Box 7 .

Box 7

Bash batch file to run SQL statements. Example: Scopus Abstract Retrieval API – References.

Store extracted data elements in local repository for further analysis

For the retrieval APIs, target data elements are stored in a temporary local repository along with the retrieved records (see Fig. 3),

which is considered good practice. For the search APIs, only the record IDs of the search hits are stored in the local repository (not

shown in Fig. 3).

Box 8 provides an example of SQL code used to store data elements in the local repository. Like in the previous step, to streamline

Box 8

SQL code to store extracted data in local repository. Example: Scopus Affiliation Retrieval API.

processing, individual SQL statements are also called from Bash batch files.

Challenges and portability

The procedure and code base presented in this paper was very useful to support the evidence synthesis efforts in the project

‘End-of-Wastewater’. In combination with a bespoke screening and coding tool (that was also developed in the project and was fed

with the bibliographic data retrieved through the APIs), it allowed us to increase the speed of screening and coding by about tenfold

in comparison with using EPPI-Reviewer. However, developing this code was not trivial. Here, a few of the challenges are described

along with considerations regarding the portability of the code base.
6

R. Harder MethodsX 12 (2024) 102601

Fig. 3. Workflow for extracting and storing target data elements along with retrieved records. Focus on database tables.

Issues with JSON format

MySQL supports a data type JSON, which would be ideally suited to store the JSON data retrieved through the APIs. The advantage

of the JSON data type is that it allows for precise navigation across data elements using their position in the JSON structure. However,

for both Scopus and OpenAlex, roughly a third of the records did not pass the JSON validation that is performed automatically when

attempting to store a value in a JSON field. This meant that the retrieved records had to be stored as LONGTEXT instead. Without

the added benefit of simple and precise navigation throughout the JSON structure, individual data elements had to be extracted with

the help of search terms that confine the target data element to the left and right. Finding the right search terms was an iterative

process, until it was precise enough not to extract at the wrong place in the JSON structure. For the Scopus Abstract API, this proved

to be such a challenge that the solution was to resort to retrieving records in XML rather than JSON format. The XML format features

data element delimiters that are easier to target in plain text than JSON data element delimiters.

OpenAlex still under development

OpenAlex was still under development while the API retrieval code base was written. In the beginning, journals and so forth were

referred to as ‘venue’ rather than ‘source’. At some point, ‘venues’ were discontinued and became ‘sources’. This meant that part of

the code had to be adjusted to reflect these changes. Also, at some point there were changes to author and institution IDs, which

meant that the complete set of records had to be downloaded once more in order to get a fully consistent recordset.

Performance of the SQL queries

The SQL queries were developed with a sole focus on correctly extracting the target data elements from the retrieved records.

Aspects of performance were not considered. The procedure and code work well for up to approximately 10 ′ 000 records at a time.

Running more than this number of records at a time comes with the risk of hitting MySQL connection timeout limitations. In order

to process more than 10 ′ 000 records, it is advised to split processing into chunks of no more than 10 ′ 000 records at a time.

Quality of the data extraction

The data extraction procedure has undergone a number of iterations, which meant that a number of small errors and bugs were

successively discovered and fixed. In the current form, the procedure should be rather robust in correctly extracting the target data

elements. However, it cannot be guaranteed that the data extraction procedure is absolutely fault-proof.
7

R. Harder MethodsX 12 (2024) 102601

Portability and adaptation of the procedure and code base

The code base was developed in a MacOS environment with MySQL running locally. In principle, both SQL and Bash code should

also run on UNIX or Windows platforms. However, this was not tested. But with this documentation of the procedure and the code

base in hand, the seasoned reader should be able to adapt and adjust the procedure and code base for different needs.

Ethics statements

This work did not involve human subjects, animal experiments, or data collected from social media platforms.

Data availability

No data was used for the research described in the article.

CRediT authorship contribution statement

Robin Harder: Conceptualization, Methodology, Software, Data curation, Writing – original draft, Visualization, Project admin-

istration, Funding acquisition.

Acknowledgments

Funding: This work was conducted as part of the project ‘End-of-wastewater’, which has received funding from the Kamprad

Family Foundation under grant agreement 20200021 .

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to

influence the work reported in this paper.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.mex.2024.102601 . The

code base associated with this article can be found at doi:10.17632/b4j39ccj8t.1 .

References

[1] J. Baas, M. Schotten, A. Plume, G. Côté, R. Karimi, Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science

studies, Quant. Sci. Stud. 1 (1) (2020) 377–386, doi: 10.1162/qss_a_00019 .

[2] C. Birkle, D.A. Pendlebury, J. Schnell, J. Adams, Web of science as a data source for research on scientific and scholarly activity, Quant. Sci. Stud. 1 (1) (2020)

363–376, doi: 10.1162/qss_a_00018 .

[3] N. Donthu, S. Kumar, D. Mukherjee, N. Pandey, W.M. Lim, How to conduct a bibliometric analysis: an overview and guidelines, J. Bus. Res. 133 (2021) 285–296,

doi: 10.1016/j.jbusres.2021.04.070 .

[4] J.H. Elliott, T. Turner, O. Clavisi, J. Thomas, J.P.T. Higgins, C. Mavergames, R.L. Gruen, Living systematic reviews: an emerging opportunity to narrow the

evidence-practice gap’, PLoS Med. 11 (2) (2014) e1001603, doi: 10.1371/journal.pmed.1001603 .

[5] C. Hamel, M. Hersi, S.E. Kelly, A.C. Tricco, S. Straus, G. Wells, B. Pham, B. Hutton, Guidance for using artificial intelligence for title and abstract screening while

conducting knowledge syntheses, BMC Med. Res. Methodol. 21 (1) (2021) 285, doi: 10.1186/s12874-021-01451-2 .

[6] G. Hendricks, D. Tkaczyk, J. Lin, P. Feeney, Crossref: the sustainable source of community-owned scholarly metadata, Quant. Sci. Stud. 1 (1) (2020) 414–427,

doi: 10.1162/qss_a_00022 .

[7] C. Herzog, D. Hook, S. Konkiel, Dimensions: bringing down barriers between scientometricians and data, Quant. Sci. Stud. 1 (1) (2020) 387–395,

doi: 10.1162/qss_a_00020 .

[8] B. Macura, M. Su š kevi čs, R. Garside, K. Hannes, R. Rees, R. Rodela, Systematic reviews of qualitative evidence for environmental policy and management: an

overview of different methodological options, Environ. Evid. 8 (1) (2019) 24, doi: 10.1186/s13750-019-0168-0 .

[9] B. Macura, J. Thomas, G.S. Metson, J.R. McConville, S.L. Johannesdottir, D. Seddon, R. Harder, Technologies for recovery and reuse of plant nutri-

ents from human excreta and domestic wastewater: a protocol for a systematic map and living evidence platform, Environ. Evid. 10 (1) (2021) 20,

doi: 10.1186/s13750-021-00235-x .

[10] I.J. Marshall, B.C. Wallace, Toward systematic review automation: a practical guide to using machine learning tools in research synthesis, Syst. Rev. 8 (1) (2019)

163 s13643-019-1074–79, doi: 10.1186/s13643-019-1074-9 .

[11] Priem, Jason, Heather Piwowar, and Richard Orr. 2022. ‘OpenAlex: a fully-open index of scholarly works, authors, venues, institutions, and concepts’.

[12] V.F. Scalfani, K.W. Walker, L. Simpson, A.M. Fernandez, V.D. Patel, A. Ramig, C. Gomes, M.T. Moen, A.M. Nguyen, Creating a scholarly API cookbook: supporting

library users with programmatic access to information, Issues Sci. Technol. Librarian. (104) (2023), doi: 10.29173/istl2766 .

[13] T. Scheidsteger, R. Haunschild, Which of the metadata with relevance for bibliometrics are the same and which are different when switching from Microsoft

academic graph to OpenAlex?’, El Profesion. La Inf. (2023) e320209, doi: 10.3145/epi.2023.mar.09 .

[14] J. Thomas, A. Noel-Storr, I. Marshall, B. Wallace, S. McDonald, C. Mavergames, P. Glasziou, et al., Living systematic reviews: 2. combining human and machine

effort, J. Clin. Epidemiol. 91 (2017) 31–37, doi: 10.1016/j.jclinepi.2017.08.011 .

[15] M. Visser, N. Jan van Eck, L. Waltman, Large-scale comparison of bibliographic data sources: Scopus, web of science, dimensions, crossref, and microsoft

academic, Quant. Sci. Stud. 2 (1) (2021) 20–41, doi: 10.1162/qss_a_00112 .

[16] M. Walther, B. Melsheimer, Automated author affiliation processing using scopus data, Procedia Comput. Sci. 146 (2019) 53–59,

doi: 10.1016/j.procs.2019.01.079 .

[17] K. Wang, Z. Shen, C. Huang, C.-H. Wu, Y. Dong, A. Kanakia, Microsoft academic graph: when experts are not enough, Quant. Sci. Stud. 1 (1) (2020) 396–413,

doi: 10.1162/qss_a_00021 .
8

https://doi.org/10.13039/501100009750
https://doi.org/10.1016/j.mex.2024.102601
https://doi.org/10.17632/b4j39ccj8t.1
https://doi.org/10.1162/qss_a_00019
https://doi.org/10.1162/qss_a_00018
https://doi.org/10.1016/j.jbusres.2021.04.070
https://doi.org/10.1371/journal.pmed.1001603
https://doi.org/10.1186/s12874-021-01451-2
https://doi.org/10.1162/qss_a_00022
https://doi.org/10.1162/qss_a_00020
https://doi.org/10.1186/s13750-019-0168-0
https://doi.org/10.1186/s13750-021-00235-x
https://doi.org/10.1186/s13643-019-1074-9
https://doi.org/10.29173/istl2766
https://doi.org/10.3145/epi.2023.mar.09
https://doi.org/10.1016/j.jclinepi.2017.08.011
https://doi.org/10.1162/qss_a_00112
https://doi.org/10.1016/j.procs.2019.01.079
https://doi.org/10.1162/qss_a_00021

	Using Scopus and OpenAlex APIs to retrieve bibliographic data for evidence synthesis. A procedure based on Bash and SQL
	Method details
	Introduction
	Basic choices and preparations
	Scholarly API
	Programming language
	Database management system

	Procedure
	Retrieve records
	Create SQL insert statements
	Insert records into database management system
	Extract relevant data elements
	Store extracted data elements in local repository for further analysis

	Challenges and portability
	Issues with JSON format
	OpenAlex still under development
	Performance of the SQL queries
	Quality of the data extraction
	Portability and adaptation of the procedure and code base

	Ethics statements
	CRediT authorship contribution statement
	Acknowledgments
	Declaration of Competing Interest
	Supplementary materials
	References

