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Abstract
Designs that produces spatially balanced, or well-spread, samples are desirable
as they increase the probability of obtaining a sample highly representative of the
population. Spatially correlated Poisson sampling (SCPS) is a method for select-
ing well-spread samples. In the SCPS method, the sampling outcomes (inclusion
or exclusion of units) are decided sequentially. After each decision, the inclusion
probabilities of surrounding units are updated. A specific order for deciding the
sampling outcomes is not enforced for SCPS, that is, the order can be chosen
randomly or be fixed. A new modified method called locally correlated Poisson
sampling (LCPS) is suggested. In this new method, the order of the decisions
makes sure the inclusion probabilities are updated (more) locally. As a result,
a stronger negative correlation between inclusion indicators of nearby units is
achieved. Simulations on various data sets show that the resulting samples from
LCPS, in general, are more spatially balanced and produce lower variance than
samples from SCPS and the local pivotal method.
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1 INTRODUCTION

For environmental surveys, there has been a long-standing interest in using spatial information to achieve some kind of
spatial regularity in the sample. Commonly, variants of systematic or stratified designs have been used in order to get a
sample which is more representative of the landscape that is surveyed.

The usefulness of sampling designs which can achieve representative samples is not limited to environmental surveys.
In many other applications, where x and y coordinates are not applicable, stratification is used as a way to achieve a
representative sample with respect to some, often just a few, categorical variables. In other cases, a systematic sample is
used in order to capture the distribution of some single numerical, auxiliary variable.

In recent years, many sampling methods which produce well-spread samples over multiple auxiliary variables have
been introduced. If these auxiliary variables have some explanatory power on the target variable, such designs will often
lead to a decrease in the design-based variance for the target variable (Stevens & Olsen, 2004).

Stevens and Olsen (2004) introduced the general random-tessellation stratified design, which uses a function to map
a two-dimensional space to an ordered list, selecting units using systematic 𝜋ps-sampling, that is, a systematic with-
out replacement design with inclusion probabilities proportional to size. While the mapping preserves some degree of
the spatial structure, it cannot fully capture the structure of the population. The cube method, developed by Deville
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and Tillé (2004), uses auxiliary information in multi-dimensional space to select balanced samples, that is, samples
where the Horvitz–Thompson estimate of a total of an auxiliary variable is approximately equal to the population total.
Grafström and Tillé (2013) adapted the cube method in order to produce well-spread samples in addition to balanced
samples. Balanced acceptance sampling (BAS) (Robertson et al., 2013) selects a sample from a continuous or finite popu-
lation using quasi-random numbers, that is, pseudo-random numbers which are evenly distributed over an interval. BAS
allows for importance sampling through acceptance/rejection sampling. Benedetti and Piersimoni (2017) introduced a
sampling design which selects a sample with a probability proportional to the distance between sample units, however
not allowing for prescribed inclusion probabilities. Jauslin et al. (2022) proposes a method which selects balanced samples
from streamed or sequential populations.

Correlated Poisson sampling (CPS) was introduced by Bondesson and Thorburn (2008), as a 𝜋ps method usable in
real-time sampling situations. The method is list-sequential, that is, a decision is taken one unit at a time, and the con-
ditional probabilities for the remaining undecided units are updated according to the outcome of the decision, using the
splitting method (Deville & Tillé, 1998). From CPS, Grafström (2012) developed spatially correlated Poisson sampling
(SCPS), where the outcome of a decision prioritized updating the probabilities for the units close in auxiliary variable
space, introducing negative correlation for these units’ inclusion indicators. The SCPS method produces well-spread
samples respecting the prescribed inclusion probabilities (Grafström & Schelin, 2014).

The local pivotal method (LPM) (Grafström et al., 2012) operates similarly to SCPS through the splitting method,
however only affecting two units at each iteration of the algorithm, whereas CPS/SCPS may affect multiple units. The
LPM comes in two variants, LPM 1 and LPM 2. In LPM 1, for each iteration of the algorithm, two pairwise nearest
neighbors are selected at random and compete against each other. Depending on the outcome, their probabilities are
updated, moving probability mass in the direction of the winner. For the second variant, LPM 2, a unit is chosen at
random, and its competitor is randomly selected among its closest neighbors. Generally, LPM 1 performs the better of the
two, as both competitors are each other’s nearest neighbors, creating a stronger negative correlation between inclusion
indicators close in auxiliary variable space.

In this article, a modification of the SCPS is proposed, called locally correlated Poisson sampling (LCPS). Inspired by
the difference between LPM 1 and LPM 2, the units which are affected at each iteration of the LCPS algorithm are selected
in a way that guarantees that the updating is done for the smallest possible neighborhood of units. As such, each decision
only affects units in a more local area, introducing a stronger negative correlation between the inclusion indicators of these
units. Compared to LPM and SCPS, two of the top-performing methods for producing well-spread samples (Benedetti
et al., 2015), the proposed modification makes LCPS more efficient than both, when evaluated against a variety of data sets.

In Section 2, the sampling algorithms for LPM and SCPS are presented. Then, in Section 3, the LCPS is introduced,
and some properties of the design are presented. The methods are compared through simulation in Section 4, followed
by a brief discussion in Section 5.

2 SCPS AND LPM

Let U be a population of units labeled 1, 2, … ,N with a prescribed inclusion probability vector 𝝅. Furthermore, lets
assume that there exists some fully known set of auxiliary variables, on which there exists a distance measure d. Let
𝝅
(t) be a conditional inclusion probability vector at step t ≥ 0 such that 𝝅(0) = 𝝅. Using the splitting method (Deville &

Tillé, 1998), it is possible to split 𝝅(t−1) into two parts, and selecting a new conditional inclusion probability vector

𝝅
(t) =

{
𝝅
(t−1) + (1 − 𝜆

(t))u(t) with probability 𝜆
(t)
,

𝝅
(t−1) − 𝜆

(t)u(t) with probability 1 − 𝜆
(t)
,

where u(t) is the updating vector.

2.1 Spatially correlated Poisson sampling

Let i(t) be the step unit at step t ≥ 1. For SCPS, i(t) has some predetermined order, say i(t) = t, or can be considered
randomly drawn from the set of undetermined units

U(t) =
{

j ∈ U ∶ 𝜋(t−1)
j ∈ (0, 1)

}
. (1)

For simplicity, i will denote i(t), and Ui(t) = U(t) ⧵ i(t).
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Using the maximal weight strategy (Grafström, 2012), at each step t with step unit i, 𝜆(t) = 𝜋
(t−1)
i ,u(t)i = 1. The negative

elements of u(t) is decided by the distance

D(t)
i = min

j∈Ui(t)
d(i, j) s.t.

∑
k∈Ui(t)∶d(i,k)≤d(i,j)

w(t)
i

(
𝜋
(t−1)
k

)
≥ 1, (2)

where

w(t)
i (x) =

{
x∕
(
1 − 𝜋

(t−1)
i

)
, x ∈

[
0, 1 − 𝜋

(t−1)
i

]
,

(1 − x)∕𝜋(t−1)
i , x ∈

(
1 − 𝜋

(t−1)
i , 1

]
.

(3)

For units j ∈ R(t)i =
{

k ∈ Ui(t) ∶ d(i, k) < D(t)
i

}
, the updating elements are u(t)j = −w(t)

i (𝜋
(t−1)
j ), while the units j ∈

{
k ∈

Ui(t) ∶ d(i, k) = D(t)
i

}
on the border equally shares the remainder −

(
1 −

∑
j∈R(t)i

w(t)
i (𝜋

(t−1)
j

))
, while ensuring u(t)j ≥

−w(t)
i

(
𝜋
(t−1)
j

)
.

2.2 The local pivotal method

In LPM 2, a unit i is randomly drawn from the set of unresolved units U(t), defined as (1). Let Ui(t) = U(t) ⧵ i. A single
competitor j is randomly drawn from the set of nearest neighbors

{
j ∈ Ui(t) ∶ min

k∈Ui(t)
d(i, k) = d(i, j)

}
,

where d(i, j) is the Euclidean distance between units i, j in auxiliary space. If 𝜋(t−1)
i + 𝜋

(t−1)
k ≤ 1, then and

u(t)i = 𝜋
(t−1)
i + 𝜋

(t−1)
j ,

u(t)j = −u(t)i ,

𝜆
(t) =

𝜋
(t−1)
i

𝜋
(t−1)
i + 𝜋

(t−1)
j

,

whereas if 𝜋(t−1)
i + 𝜋

(t−1)
j > 1, then

u(t)i = 2 −
(
𝜋
(t−1)
i + 𝜋

(t−1)
j

)
,

u(t)j = −u(t)i ,

𝜆
(t) =

1 − 𝜋
(t−1)
j

2 −
(
𝜋
(t−1)
i + 𝜋

(t−1)
j

) .
For LPM 1, instead of drawing i from all unresolved units, a pair i, j is drawn from the set of pairwise nearest neighbors

{
i, j ∈ U(t) ∶ min

k∈U(t)⧵i
d(i, k) = min

l∈U(t)⧵j
d(j, l) = d(i, j)

}
.

Thus, the average distance that probability is moved will be lower in LPM 1 compared to LPM 2.

3 LOCALLY CORRELATED POISSON SAMPLING

The ideas behind LPM and SCPS are that it is possible to improve the spatial balance by introducing negative correlation
in the inclusion indicators of units close in auxiliary space (Grafström, 2012; Grafström et al., 2012). The SCPS method

 1099095x, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2832 by Sw

edish U
niversity O

f A
gricultural Sciences, W

iley O
nline L

ibrary on [05/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 11 PRENTIUS

F I G U R E 1 In LPM, probability mass is moved in the conditional probability vector between pairs of units close in auxiliary space,
exemplified through Euclidean distance in R2. The set of possible pairs for LPM 1 is highlighted through solid lines, where possible pairs of
possible competing units are highlighted through solid and dotted lines for LPM 2.

F I G U R E 2 For SCPS, probability mass is moved in the conditional probability vector between sets of units close in auxiliary space,
exemplified through Euclidean distance in R2. A step unit is decided, and probabilities will be moved within a radius of this unit. Four such
radii are shown as dotted or solid lines, in a setting where each unit has (conditional) probability mass 1/3. For LCPS, the step unit is decided
among the set of units with the smallest possible radius, highlighted through a solid line.

does this by sequentially updating the probability vector, moving probability mass to or from units close to a step unit,
prioritizing those who are closest. LPM 2 operates similarly, by moving probability between a step unit and it’s closest
neighbor, whereas for LPM 1, decisions are only taken between units which are pairwise nearest neighbors. In Figure 1,
it can be seen that the movement of probability mass is on average lower in LPM 1 compared to LPM 2, where the former
generally also produces the most spatially balanced samples (Grafström et al., 2012).

By choosing the step unit for SCPS in a way that reduces the movement of probability mass

i(t) = arg min
j∈U(t)

D(t)
j ,

it is possible to increase the spatial balance of the samples that SCPS produces. This modification of SCPS is called LCPS.
In Figure 2, the step unit with smallest distance is highlighted by the solid circle.

Grafström (2012) proved that if a population can be partitioned into distinct regions with integer probability mass,
in which the maximum distance between units within a region is smaller than any distance to a unit outside the region,
SCPS would produce fixed sized samples for each region. For LCPS, this property can be extended to hold for any single
such distinct region.

Theorem 1. For a population U, in which there exists a subset Um ⊂ U as an isolated region in auxiliary space
such that for all units i ∈ Um

max
j∈Um

d(i, j) < min
k∈U⧵Um

d(i, k), (4)

where nm =
∑

i∈Um
𝜋i is integer, LCPS will produce a sample from Um with a fixed size nm.
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Proof. Assume that there exists a partition Um for which nm is integer and (4) holds. For a unit i ∈ Um, the
weights that can be provided by other units can be described by the triangular function wi(x), defined as (3).

As long as weights wi(𝜋j), j ∈ Um ⧵ i can be found summing to (at least) one for any arbitrary unit i ∈ Um,
LCPS will decide this unit before deciding any unit outside of Um which would move probability mass to or
from Um.

If there exists one other unit j ∈ Um ⧵ i, and Um has integer probability mass, j must have probability
𝜋j = 1 − 𝜋i, and as such wi(𝜋j) = 1. As wi(x) is linearly increasing/decreasing around 1 − 𝜋i, it is not possible to
introduce more units without either moving 𝜋j along the same side of wi(x), or having the sum of the weights
be larger than 1, while keeping the probability mass integer. ▪

Furthermore, LCPS provides the same bounds on partitions as LPM 2, for cases where the probability mass in a
partition is not integer (Grafström et al., 2012).

Theorem 2. Let U1, … UM be a partitioning of U, such that for all partitions Um

max
i,j∈Um

d(i, j) < min
i∈Um,k∉Um

d(i, k), (5)

and let nm =
∑

i∈Um
𝜋m. If Ii is the inclusion indicator of a unit i, then the sum of inclusion indicators satisfies

⌊n⌋ −∑
l≠m

⌈nl⌉ ≤ ∑
i∈Um

Ii ≤ ⌈n⌉ −∑
l≠m

⌊nl⌋, (6)

for all partitions Um, where ⌊⋅⌋, ⌈⋅⌉ are the floor and ceiling functions respectively.

Proof. Let Um be a partition of a population U satisfying (5). We consider first the case of the upper bound of
(6). If the upper bound doesn’t hold, it must be possible for a partition Um to push more than nm − ⌊nm⌋ into
another partition. From Theorem 1, we know that if the probability mass nm is integer, then no probability
mass will leave Um.

Assume that Um has been resolved internally to the extent that no further decisions can be taken within Um
without affecting units outside of Um. Let U∗

m and n∗m be the remaining, undecided units, and their probability
mass. In order to break the upper bound, it must be possible to remove strictly more than n∗m − ⌊n∗m⌋ from U∗

m.
For an arbitrary unit i ∈ U∗

m, the amount which will be removed from U∗
m upon exclusion of i is

𝜋iWi, where

Wi = 1 −
∑

j∈U∗
m⧵i

min
(

𝜋j

1 − 𝜋i
,

1 − 𝜋j

𝜋i

)

= 1 −
∑

j∈U+
m

1 − 𝜋j

𝜋i
−

∑
j∈U−

m

𝜋j

1 − 𝜋i
∈ (0, 1), (7)

and

U+
m = {j ∈ U∗

m ⧵ i ∶ 𝜋i + 𝜋j > 1},
U−

m = {j ∈ U∗
m ⧵ i ∶ 𝜋i + 𝜋j < 1}.

Units in U+
m will have their probabilities updated to 1, whereas units in j ∈ U−

m will have their probabilities
updated to 𝜋j∕(1 − 𝜋i). Using these components, we can rewrite n∗m as

n∗m = |U+
m| + ∑

j∈U−
m

𝜋j

1 − 𝜋i
+ 𝜋iWi, (8)

where the cardinality |U+
m| is probability mass which will definitely be kept in in Um, and the summation term

is the remaining “free” probability mass in U∗
m after the exclusion of i.
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As the sum of the two latter terms in (8) is strictly less than one,

n∗m − ⌊n∗m⌋ = ∑
j∈U−

m

𝜋j

1 − 𝜋i
+ 𝜋iWi,

which is the same quantity as the maximum amount of probability mass which can be removed from U∗
m, and

thus the upper bound of (6) holds.
Similarly for the lower bound; in order to break the lower bound, it must be possible to add strictly more

than ⌈n∗m⌉ − n∗m from U∗
m. For an arbitrary unit i ∈ U∗

m, the amount which will be added to U∗
m upon inclusion

of i is (1 − 𝜋i)Wi. Units in U−
m will have their probabilities updated to 0, whereas units in j ∈ U+

m will have their
probabilities update to 1 − (1 − 𝜋j)∕𝜋i. Rewriting n∗m as

n∗m = 1 + |U+
m| − ∑

j∈U+
m

1 − 𝜋j

𝜋i
− (1 − 𝜋i)Wi,

where the summation term is the probability mass which is left in undecided units, it is obvious that

⌈n∗m⌉ − n∗m =
∑

j∈U+
m

1 − 𝜋j

𝜋i
+ (1 − 𝜋i)Wi,

as these sum of these terms is strictly less than one. Since the maximum amount of probability which can be
added to U∗

m after the inclusion of i is

∑
j∈U+

m

1 − 𝜋j

𝜋i
,

it is not possible to add strictly more than ⌈n∗m⌉ − n∗m and the lower bound of (6) holds. ▪

4 SIMULATION

The proposed method was evaluated through simulation, measuring the spatial balance of the produced samples through
two methods, one using Voronoi polytopes (Grafström et al., 2012; Stevens & Olsen, 2004), and the other using a modified
Moran’s I index (Tillé et al., 2018). The spatial balance measure based on Voronoi polytopes does not have a fixed range,
and the spatial balance of samples can only be interpreted relative to each other, where lower is better. The modified
Moran’s I index gives values on [−1, 1], where a value of −1 indicates a perfectly spatially balanced sample, and 1 a
perfectly clustered sample.

The LCPS method was applied, together with LPM 1, LPM 2, SCPS, and simple random sampling without replacement
(SRS), on seven artificial populations, as well as on three openly available real data sets. The LPM and SCPS implemen-
tations were provided by the R package BalancedSampling, which also contains a C++ implementation of LCPS
(Grafström et al., 2022).

The seven artificial populations, shown in Figure 3, were constructed as follows:

a. Poisson cluster process: Three parent locations were randomly located on the unit square. Around each parent location,
a random number of children are spawned according to a Poisson distribution with mean 40, and placed relative to
the parent according to a normal distributions with variance 0.1. The number of observations were then reduced to
135. Any unit falling outside of the unit square were mirrored back onto the unit square.

b. Poisson cluster process: As (a), but with 20 parents, a Poisson distribution with mean of 20 children spread around the
parents with variance 0.01.

c. Regular grid: A rectangular grid of 10 × 10 units.
d. Uniform: 120 units placed uniformly over the unit square.
e. Normal: 120 units placed according to a standard normal distribution along both axes.
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(a) (b) (c)

(d) (e) (f)

(g)

F I G U R E 3 Artificial populations used in the simulation: (a) Poisson cluster process, (b) Poisson cluster process, (c) regular grid,
(d) uniform, (e) normal, (f) triangular/uniform, (g) line.

f. Triangular/uniform: 200 units placed uniformly on one axis, and according to a (right-angled) triangular distribution
on the other.

g. Line: 105 units placed along a straight line, with coordinates xi = (i − 53)(1 + abs(i − 53)∕50), i = 1, … , 105, that is,
decreasing distance between units towards the center.

The three real data sets, with auxiliary variables provided in Table 1, were the following:

1. Baltimore: House sale price and characteristics from Baltimore, MD 1978, consisting of 211 observations, provided by
the R package spData (Bivand et al., 2021).

2. Wheat: Wheat yield data from an agricultural field experiment by Mercer and Hall, consisting of 500 observations in
a regular grid, provided by the R package spData (Bivand et al., 2021).

3. Meuse: Heavy metal concentrations along the flood plain of the river Meuse, consisting of 155 observations, provided
by the R packagesp (Bivand et al., 2013). Two observations were excluded, as they were missing data on organic matter.

From each population, 10,000 samples were taken with sample sizes 10, 20, and 40, using the previously mentioned
methods. For each sample, mean spatial balance measures were calculated, and are presented in Tables 2 and 3. In Table 4,
the relative mean squared errors (MSE) are presented for the Horvitz–Thompson estimators of the variable of interest in
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T A B L E 1 Variable descriptions for data sets.

Data set Variable Description

Baltimore PRICE Sales price of house in ($1000)

X, Y X- and Y-coordinates of the house

NROOM Number of rooms

NBATH Number of bathrooms

NSTOR Number of storeys

GAR Number of car spaces in garage

AGE Age of dwelling (years)

LOTSZ Lot size (100 sq. ft.)

SQFT Interior living space (100 sq. ft.)

Meuse cadmium Topsoil cadmium concentration (ppm)

x, y X- and Y-coordinates of plot location

elev Relative elevation above local river bed (m)

dist Distance to the Meuse (normalized to [0, 1])

om Organic matter, (pc)

Wheat yield Wheat yield

lon, lat X- and Y-coordinates of plot location

Note: Variable of interest marked by italics.

T A B L E 2 Mean spatial balance using Voronoi polytopes for the five sampling methods and various populations.

n Meth. (a) (b) (c) (d) (e) (f) (g) Bal. Whe. Meu.

10 SRS 0.503 0.464 0.267 0.311 0.331 0.330 0.407 0.481 0.295 0.336

LPM1 0.223 0.137 0.082 0.112 0.134 0.119 0.073 0.318 0.087 0.173

LPM2 0.220 0.144 0.084 0.114 0.138 0.121 0.078 0.329 0.088 0.172

SCPS 0.215 0.149 0.070 0.106 0.133 0.111 0.070 0.325 0.074 0.164

LCPS 0.213 0.133 0.070 0.102 0.123 0.107 0.062 0.298 0.072 0.164

20 SRS 0.479 0.560 0.245 0.352 0.354 0.345 0.390 0.434 0.307 0.383

LPM1 0.173 0.139 0.071 0.127 0.151 0.114 0.068 0.257 0.076 0.190

LPM2 0.183 0.148 0.073 0.132 0.156 0.120 0.073 0.272 0.078 0.193

SCPS 0.183 0.156 0.060 0.128 0.153 0.113 0.069 0.267 0.064 0.188

LCPS 0.164 0.138 0.059 0.124 0.144 0.106 0.056 0.243 0.061 0.184

40 SRS 0.385 0.604 0.173 0.361 0.364 0.350 0.318 0.414 0.298 0.394

LPM1 0.158 0.201 0.055 0.163 0.147 0.120 0.070 0.228 0.072 0.188

LPM2 0.168 0.202 0.057 0.170 0.164 0.128 0.086 0.246 0.075 0.202

SCPS 0.168 0.205 0.045 0.173 0.168 0.127 0.080 0.244 0.062 0.201

LCPS 0.154 0.200 0.043 0.165 0.150 0.118 0.066 0.222 0.057 0.186

Note: Lower values implies more spatial balance. n = sample size. Meth. = Sampling method.
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T A B L E 3 Mean spatial balance using a modified Moran’s I index for the five sampling methods and various populations.

n Meth. (a) (b) (c) (d) (e) (f) (g) Bal. Whe. Meu.

10 SRS −0.042 −0.030 −0.049 −0.044 −0.042 −0.035 −0.049 −0.029 −0.024 −0.039

LPM1 −0.294 −0.251 −0.356 −0.324 −0.312 −0.250 −0.402 −0.186 −0.166 −0.266

LPM2 −0.275 −0.228 −0.333 −0.303 −0.291 −0.236 −0.382 −0.175 −0.157 −0.249

SCPS −0.302 −0.235 −0.407 −0.352 −0.339 −0.280 −0.436 −0.204 −0.200 −0.293

LCPS −0.350 −0.294 −0.439 −0.391 −0.376 −0.307 −0.479 −0.221 −0.214 −0.322

20 SRS −0.024 −0.021 −0.023 −0.028 −0.026 −0.023 −0.030 −0.023 −0.016 −0.025

LPM1 −0.375 −0.340 −0.397 −0.426 −0.410 −0.333 −0.502 −0.264 −0.222 −0.355

LPM2 −0.346 −0.306 −0.377 −0.389 −0.373 −0.309 −0.469 −0.242 −0.209 −0.326

SCPS −0.380 −0.311 −0.459 −0.433 −0.409 −0.363 −0.522 −0.279 −0.270 −0.367

LCPS −0.439 −0.384 −0.480 −0.491 −0.467 −0.401 −0.584 −0.307 −0.288 −0.417

40 SRS −0.014 −0.013 −0.016 −0.018 −0.014 −0.012 −0.014 −0.015 −0.010 −0.015

LPM1 −0.500 −0.362 −0.443 −0.556 −0.555 −0.458 −0.561 −0.366 −0.300 −0.460

LPM2 −0.451 −0.331 −0.432 −0.472 −0.481 −0.416 −0.505 −0.330 −0.283 −0.409

SCPS −0.478 −0.345 −0.546 −0.474 −0.483 −0.447 −0.573 −0.368 −0.360 −0.441

LCPS −0.555 −0.419 −0.563 −0.571 −0.573 −0.512 −0.626 −0.415 −0.387 −0.511

Note: Lower values implies more spatial balance. n = sample size. Meth. = Sampling method.

T A B L E 4 Relative MSE’s of the Horvitz–Thompson estimators of the variable of interest for the four sampling methods and each of
the three data sets.

n Meth. Bal. Whe. Meu.

10 LPM1 0.574 0.831 0.377

LPM2 0.575 0.850 0.370

SCPS 0.576 0.846 0.329

LCPS 0.510 0.815 0.351

20 LPM1 0.475 0.839 0.351

LPM2 0.493 0.813 0.328

SCPS 0.453 0.833 0.281

LCPS 0.423 0.804 0.287

40 LPM1 0.409 0.776 0.273

LPM2 0.430 0.780 0.276

SCPS 0.413 0.768 0.252

LCPS 0.370 0.769 0.246

Note: n = sample size. Meth. = Sampling method.

each of the real data sets. The relative MSE is defined relative to the MSE of the SRS, as

Relative MSE(∗) = MSE(∗)∕MSE(SRS),

where ∗ is a placeholder for the sampling method. The variables of interest, marked by italics in Table 1, were the sales
price for the Baltimore data set, the cadmium concentration for the Meuse data set, and the wheat yield for the wheat data
set. The results show that LCPS produces the most spatially balanced samples for all populations. The spatial balance of
the sample is also shown to have an effect on the MSE’s, as more spatial balance produces lower MSE’s.
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10 of 11 PRENTIUS

5 FINAL COMMENTS

Even though LPM generally performs better than SCPS, there are specific settings where SCPS is the better choice. How-
ever, as the results show, for every population, LCPS is better than any of the competing methods in creating well-spread
samples.

The derived properties of SCPS and LCPS shows that it is possible to select fixed sized samples for single or multiple
strata, if these have integer probability mass and are separated in the auxiliary variables. If the strata does not have integer
probability mass, the sample size will at least have some known upper and lower bound.

As with other methods that produces second-order inclusion probabilities that are zero for some pairs of units, LCPS
does not have an unbiased variance estimator. In order to get a rough estimate, a conservative variance estimator such as
assuming an SRS sample, or a local variance estimator can be used (Grafström & Schelin, 2014).

One advantage of SCPS is the possibility to perform sample coordination, that is, to select two samples with some over-
lap, through the use of permanent random numbers (Zhao & Grafström, 2020). While it is possible to employ permanent
random numbers for LCPS, it remains unclear how dependent this technique is on a fixed order.

Compared to SCPS and LPM, the LCPS algorithm is computationally more expensive to execute. Even though both
LCPS and LPM 1 need to find sets of nearest neighbors, LPM 1 does not need the set with the smallest distance, only
any such set. The time complexity of SCPS and LCPS would be (N2 log N) and (N3 log N) respectively. For the largest
population and n = 40, the Wheat data set, the average running time on a modest laptop were 0.1 s for LCPS, and 0.5 ms
for SCPS. However, this extra computational effort on the part of LCPS should not be of concern when drawing a single
sample.
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