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Abstract

Checking for possible inconsistency between direct and indirect evidence is an

important task in network meta-analysis. Recently, an evidence-splitting

(ES) model has been proposed, that allows separating direct and indirect evidence

in a network and hence assessing inconsistency. A salient feature of this model is

that the variance for heterogeneity appears in both the mean and the variance

structure. Thus, full maximum likelihood (ML) has been proposed for estimating

the parameters of this model. Maximum likelihood is known to yield biased vari-

ance component estimates in linear mixed models, and this problem is expected

to also affect the ES model. The purpose of the present paper, therefore, is to pro-

pose a method based on residual (or restricted) maximum likelihood (REML).

Our simulation shows that this new method is quite competitive to methods based

on full ML in terms of bias and mean squared error. In addition, some limitations

of the ES model are discussed. While this model splits direct and indirect

evidence, it is not a plausible model for the cause of inconsistency.
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1 | INTRODUCTION

A key issue in network meta-analysis (NMA) is the poten-
tial occurrence of inconsistency between direct and indirect
treatment comparisons. Several approaches have been pro-
posed for detecting such direct–indirect evidence inconsis-
tency as nicely reviewed by Shih and Tu.1 These authors
pointed out that previous proposals do not fully separate
the direct and indirect evidence on a pairwise comparison
of interest. They therefore proposed a new model, which
they called the evidence-splitting (ES) model and which is
based on the principle of independence between direct and
indirect evidence. Splitting of direct and indirect evidence

is accomplished through inclusion of a regression term that
depends on the variance for heterogeneity between trials
(studies). The consequence of the presence of this variance
parameter in both the mean and the variance structure of
the model is that standard methods of estimation based on
linear mixed models do not apply. The full maximum-
likelihood (ML) method is a natural choice for estimation
in this setting.1 This method can be implemented in differ-
ent ways, including structural equation modeling.2 A well-
known downside of ML estimation in linear mixed models
is the bias of variance component estimates,3,4 which can
be substantial especially in arm-based network meta-analy-
sis.5 Hence, residual (or restricted) maximum likelihood
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(REML) is the method of choice for such models. However,
as the variance is present in both the mean and the vari-
ance structure of the ES model, REML is not directly
applicable.

Network meta-analysis is most commonly implemen-
ted using a contrast-based approach,6 whereby in every
trial each treatment arm is compared to a baseline treat-
ment. The alternative is to use an arm-based approach.
This approach amounts to fitting a two-way analysis-
of-variance model with fixed effects for trials and treat-
ments, and a random effect for the trial-by-treatment
interaction.7 The random effect represents heterogeneity
between trials. Taking the trial main effect as fixed ensures
that the principle of concurrent control is observed, that
is, all inference on treatment effects is solely based on
within-trial information, whereas between-trial informa-
tion is not recovered.8,9 The ES model proposed by Shih
and Tu1 is based on the contrast-based approach. Splitting
the direct and indirect evidence involves linear combina-
tions among all contrasts within a trial, ensuring that
direct and indirect evidence are uncorrelated.1 However,
the authors also give an arm-based representation of the
model, which is particularly convenient for network meta-
analysis in case some trials involve a larger number of
treatments. This is because the arm-based approach
requires focusing only on the two treatment arms of inter-
est, whereas the contrast-based approach requires forming
linear combinations among all treatments per trial, for the
purpose of evidence splitting.

The present paper proposes an iterative approximate
method for estimating the ES model with both the
contrast-based and arm-based representations, which
allows REML estimation to be used. To assess the merit
of this new method, we will compare it to ML-based esti-
mation methods. The models and methods are laid down
in Section 2. Two examples are considered in Section 3.
In Section 4, we report on a small simulation study com-
paring the estimation methods. Some limitations of the
ES model are pointed out in Section 5. The paper ends
with some conclusions in Section 6.

2 | THE EVIDENCE-
SPLITTING MODEL

Without loss of generality, we here give the models for a
three-arm study involving treatments A, B, and C. This
case is the simplest and relevant to the example consid-
ered in Section 3.1. For the purpose of exposition, the
response is binomial, and empirical log-odds are analyzed
under the assumption of approximate normality.
However, the approach also applies for other response
distributions and link functions, including the normal for
continuous responses in combination with an identity

link, as considered in the example in Section 3.2. The jus-
tification we give for the ES model (in Appendices A and
B) is somewhat different from that given by Shih and Tu,1

who considered conditional distributions. We give our
own compact derivation based on expected values here
because this helps us focusing on the direct connections
between the contrast-based and the arm-based form of
the model. Furthermore, our derivation shows that the
evidence can be split without using the ES model.

2.1 | The contrast-based basic model
for NMA

Consider a network of trials with treatments A, B, and
C. In trial i, at most three log-odds ratios can be observed:
yiAB, yiAC, and yiBC for contrasts B versus A, C versus A,
and C versus B, respectively. In a three-arm trial, the
contrast-based model assumes that

yiAB
yiAC

� �
�N

dAB
dAC

� �
,

τ2þ viAþ viB τ2=2þ viA
τ2=2þ viA τ2þ viAþ viC

� �� �
:

(Model 1. Contrast-based basic model for network meta-
analysis), where dAB and dAC are the expected values of
the two contrasts yiAB and yiAC, τ2 is the heterogeneity
variance and viA, viB, viC are the outcome variances of A,
B, and C, respectively. The variance for heterogeneity, τ2,
is due to trial-by-treatment interaction. Note that the
covariance among contrasts involves half the variance for
heterogeneity, τ2=2, as well as the outcome variance that
the two contrasts share. By comparison, the variance of
each contrast involves the full variance for heterogeneity,
τ2, as well as two outcome variances, since each contrast
has contributions from two treatments. The model for
the third contrast, yiBC, can be written as yiBC �N dBC ,τ2ð
þviBþ viCÞ, where dBC= dAC – dAB is the expected value.
The outcome variances viA, viB, viC may differ between tri-
als and also between treatments in the same trial,
depending on the individual trial design and kind of sum-
mary statistic used as the response. They are known
quantities obtained from the analyses of the individual
trials. In a two-arm trial, just one of the three contrasts
yiAB, yiAC, and yiBC is observed. This contrast is still nor-
mally distributed with expected value and variance
according to Model 1.

2.2 | The contrast-based evidence-
splitting model

Following Shih and Tu,1 we consider evidence splitting
for the C versus B contrast. For this comparison, the
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contrast-based ES model for the i-th three-arm trial can
be stated as

yiAB
yiAC

� �
�N

dABþxiABw

dACþxiACw

� �
,

τ2þ viAþ viB τ2=2þ viA
τ2=2þ viA τ2þ viAþ viC

� �� �
:

(Model 2. Contrast-based ES model for network meta-
analysis), and yiBC �N dBCþw,τ2þ viBþ viCð Þ, where
dBC= dAC – dAB. In this model, w is the discrepancy
between the direct and the indirect evidence on the C
versus B contrast. The latent covariates are given by

xiAB ¼� var yiABð Þ� cov yiAB,yiACð Þ
var yiABð Þþvar yiACð Þ�2cov yiAB,yiACð Þ and

xiAC ¼ var yiACð Þ� cov yiAB,yiACð Þ
var yiABð Þþvar yiACð Þ�2cov yiAB,yiACð Þ :

The role of the latent covariates xiAB and xiAC in
Model 2 is to enable evidence splitting, that is, estimation
of the effect w. We denote these covariates as latent
because they depend on unknown variance parameters of
the model. Note that the latent covariates are only
needed for three-arm trials, but not for two-arm trials.1

The variance components are the same as in Model 1.
Specifically, the variance for heterogeneity, τ2, is
unknown and must be estimated, whereas the outcome
variances viA, viB, viC are known. Model 2 is readily
extended to multi-arm trials with more than three treat-
ments, but all treatments must be considered. For details,
see Shih and Tu.1 In Appendix A, we provide an alterna-
tive derivation of the contrast-based ES model and show
that evidence splitting does not strictly require the ES
model.

2.3 | The arm-based basic model
for NMA

If yiA, yiB, yiC denote the observed log-odds for
treatments A, B, C in a three-arm trial i, then an arm-
based model can be written as

yiA
yiB
yiC

0
B@

1
CA�N

μþβiþ γA
μþβiþ γB
μþβiþ γC

0
B@

1
CA,

τ2=2þ viA 0 0

0 τ2=2þ viB 0

0 0 τ2=2þ viC

0
B@

1
CA

2
64

3
75:

(Model 3. Arm-based basic model for network meta-anal-
ysis), where μ is an overall intercept, βi is the fixed main
effect of the i-th trial, and γA, γB, γC are the fixed main
effects for the treatments A, B, C. This representation of
the arm-based model differs slightly from that given by
Shih and Tu1 in that we use a form that does not require

specifying a baseline treatment. It is of the form of a two-
way analysis-of-variance model with factors treatment
and trial and as such in our experience is very conve-
nient for implementation in a linear mixed model
package.7 Note that even though the linear predictor is
over-parameterized, and hence restrictions on esti-
mates of the effects need to be imposed, the predictions
are unique.

2.4 | The arm-based evidence-
splitting model

We here focus on the B versus A contrast for better com-
parability with Shih and Tu.1 For the i-th three-arm trial,
the arm-based ES model can be written as1

yiA

yiB

yiC

0
BB@

1
CCA�N

μþβiþ γAþ xiAw

μþβiþ γBþ xiBw

μþβiþ γC

0
BB@

1
CCA,

2
664

τ2=2þ viA 0 0

0 τ2=2þ viB 0

0 0 τ2=2þ viC

0
BB@

1
CCA
3
775:

(Model 4. Arm-based ES model for network meta-analy-
sis), where w is the discrepancy between the direct and
indirect evidence on the B versus A contrast and the
latent covariates are defined as

xiA ¼� var yiAð Þ
var yiAð Þþvar yiBð Þ and

xiB ¼ var yiBð Þ
var yiAð Þþvar yiBð Þ :

Note that the latent covariate term is present only for
the two treatments for which the evidence is split (A and
B), but not on the third treatment (C). Also, the latent
covariate is not needed for the two-arm trials. For trials
with more than three treatments, the coding of the latent
covariates is the same as shown here, regardless of the
number of treatments in the trial.1 Thus, whenever a trial
has more than two treatments and comprises both treat-
ments A and B, the latent covariates are added in the lin-
ear predictor for A and B in the form given above,
otherwise the latent covariate is set to zero. This makes
this representation of the model particularly convenient
for meta-analyses involving trials with a larger number of
treatments, which are very common in agriculture. In
Appendix B, we provide a derivation of the arm-based ES
model.
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2.5 | Methods of estimation for the
contrast- and arm-based models

The basic contrast-based Model 1 can be estimated by full
ML and by REML. The ES model has the heterogeneity
variance parameter τ2 involved in both the latent covari-
ate x and the variance structure. Thus, the model is no
longer of the linear mixed form. As the parameter τ2 is
present both in the mean and the variance, standard
REML is not an option, but full ML is. Shih and Tu1

implemented this method using structural equation
modeling. Here, we employ the NLMIXED procedure of
SAS to implement the full ML method of Shih and Tu.1

Our approach requires specifying the contrast-based
Model 2 in the syntax of the procedure, based on which
the full likelihood is then set up and maximized itera-
tively using adaptive Gaussian quadrature.10

An alternative is to employ an approximate iterative
scheme using a linear mixed model in which the current
value of the latent covariate x is considered a known con-
stant. The latent covariate is computed for the current esti-
mate of τ2, which is updated in the next iteration. These
steps are repeated until the values of τ2 in the latent covari-
ate x and the current estimate based on the linear mixed
model fit agree. If ML is used during iterations, we obtain
an approximation of the full ML estimation. It is also possi-
ble to use REML in the iterations, and this is expected to be
preferable due to a smaller bias in the estimation of τ2.3 We
implemented these iterative methods using the GLIMMIX
procedure of SAS (see Supplemental Information). The iter-
ative scheme is summarized in Figure 1.

The description above is focused on the contrast-
based models. For the arm-based models, we have exactly

the same options as for the contrast-based models. In par-
ticular, the algorithm in Figure 1 can be applied in the
same way, replacing the contrast-based Models 1 and
2 with the arm-based Models 3 and 4.

3 | EXAMPLES

3.1 | The Sclerotherapy NMA data

We consider the Sclerotherapy NMA data,11 also used
by Shih and Tu,1 to illustrate their method. The trial
network has two three-arm trials and 24 two-arm trials.
The treatments were a control group (A), sclerotherapy
(B), and beta-blocker (C). The focus of our analysis is
on the direct-indirect evidence inconsistency for the C
versus B contrast. The binomial outcome is the number
r of participants suffering from bleeding. Trials with
zero events or zero non-events in any of the treatment
arms were handled by adding a value of 0.5 to the
counts in both categories.12 The outcome was trans-
formed to log-odds (yiA, yiB, yiC) and analyzed assuming
approximate normality. The outcome error variance for
the log-odds of a treatment in a given trial was com-
puted as v¼ 1=rþ1= n� rð Þ, where n is the binomial
sample size.

Table 1 shows the estimates based on the basic
Models 1 and 3. The REML-based analysis agrees
between both models, whereas the ML-based analyses
differ. The agreement of the REML estimates of τ2 is
expected, because the likelihood function being maxi-
mized is based on contrasts taking out all fixed effects in
both cases.7 It is noteworthy that the ML estimate of τ2 is
rather small for the arm-based model, indicating substan-
tial downward bias (also see Section 4).

Table 2 shows the results for the ES models. The
results for the contrast-based representation agree well
with those in Shih and Tu1 (see their Table 2) when full
ML is used. Iterated ML provides a very good approxima-
tion. The arm-based and contrast-based results differ
notably when full or iterated ML is used. By contrast,
results agree between arm-based and contrast-based
model when iterated REML is used. The heterogeneity
variance estimate with ML methods is considerably smal-
ler than with REML, again suggesting that ML methods
are fraught with downward bias, particularly when an
arm-based parameterization is used (see Section 4).

3.2 | A multi-environment variety trial

We here consider a series of 85 crop variety trials evaluat-
ing 13 varieties of spring wheat, conducted in Sweden

FIGURE 1 Algorithm for obtaining iterated ML or REML

estimate of the contrast-based ES Model 2 or the arm-based ES

Model 4.
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during the five-year period 2002–2006 at multiple loca-
tions.13 The purpose of these kinds of trials is to assess
the value for cultivation and use (VCU) for each variety.
The series of trials comprised one reference variety (with
ID 9601). There was particular interest in comparing all
candidate varieties to the reference variety. The dataset is
rather unbalanced, with some varieties tested only in
years 2005 and 2006. A salient feature of this dataset is
that for some of the comparisons the mean of observed
direct differences with the reference variety is quite dif-
ferent from the generalized least squares estimate of the
same difference based on a suitable linear mixed model
as will be described below. This apparent inconsistency
between direct and indirect evidence hampered the com-
munication of generalized squares estimates of variety
means to growers, which led to the proposal of a new
method to estimate the difference exclusively based on
direct comparisons.13 Here, we will investigate the mag-
nitude and significance of the inconsistency.

Value for cultivation and use trials are routinely ana-
lyzed using only data of the current year using an
unweighted two-stage approach.13,14 In addition, a joint
analysis across several years may be performed. We here
consider both models, starting with the single-year analy-
sis. We only use the arm-based approach, which is the

more convenient one due to the relatively large number
of treatments. The available data consist of variety means
per trial, each computed across four observations. In
Swedish variety testing, information on the precision of
the means is not carried forward. Thus, network meta-
analysis for a single year was based on the model

yij ¼ μþ γjþβiþ eij

(Model 5. Arm-based basic model for year-wise analysis
of series of crop variety trials), where yij is the mean of
the j-th variety in the i-th trial and eij is a random resid-
ual comprising both trial-by-variety interaction (hetero-
geneity) and residual error associated with the mean. We
assume normality for both the response and the residual.
As the outcome error variances vij were not available, the
residual was modeled as independent random normal
deviate with constant variance σ2e .

13 Note that if the error
variances vij were known, the residual would be modeled
as var eij

� �¼ τ2=2þ vij. Replacing this with var eij
� �¼ σ2e

implies the assumption that the error variances vij are
constant. Assuming that the number of replications was
the same in each trial, this assumption has some justifica-
tion. While it is often found that there is some heteroge-
neity of error variance between variety trials, the effect of

TABLE 1 Parameter estimates (standard errors) for the basic models for network meta-analysis using different methods with the

Sclerotherapy NMA data.1

Contrast-based model (Model 1) Arm-based model (Model 3)

ML REML ML REML

Contrast dBC 0.127 (0.430) 0.132 (0.451) 0.088 (0.277) 0.132 (0.451)

Heterogeneity variance τ2 0.877 (0.371) 0.999 (0.423) 0.192 (0.104) 0.999 (0.423)

TABLE 2 Parameter estimates (standard errors) for ES models for C versus B contrast using different methods with the Sclerotherapy

NMA data.1

Contrast-based ES model (Model 2) Arm-based ES model (Model 4)

Full ML
(Shih and Tu)1 Full MLa

Iterated
ML for τ2 b

Iterated
REML for τ2 b Full MLa

Iterated
ML for τ2 b

Iterated
REML for τ2 b

Direct
estimatec ddirBC

�0.708 (0.787) �0.709 (0.787) �0.709 (0.787) �0.729 (0.845) �0.543 (0.519) �0.543 (0.517) �0.729 (0.845)

Indirect
estimatec dindBC

0.116 (0.505) 0.116 (0.505) 0.116 (0.506) 0.112 (0.543) 0.0958 (0.329) 0.0961 (0.329) 0.112 (0.543)

Inconsistency
parameter w

�0.824 (0.935) �0.825 (0.935) �0.825 (0.936) �0.841 (1.005) �0.638 (0.616) �0.640 (0.613) �0.841 (1.005)

Heterogeneity
variance τ2

0.847 0.847 (0.359) 0.853 (0.359) 1.037 (0.439) 0.192 (0.102) 0.194 (0.103) 1.037 (0.439)

aUsing the NLMIXED procedure of SAS.
bUsing the GLIMMIX procedure of SAS.
cFor definitions see Appendices A and B.
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accounting for such heterogeneity in a joint analysis over
trials is often found to be relatively small.14 Also, the con-
stant variance assumption has a justification in randomi-
zation theory for multi-environment trials.15

As the residual has constant variance under the
assumed model, the covariate x takes values �0.5 and 0.5
for the two varieties to be compared when both are in the
same trial, otherwise the value is zero. This is very simple
to implement because x does not depend on the variance
for heterogeneity here (i.e., x is not latent) and analysis
by REML is therefore exact. The extended model is

yij ¼ μþ γjþβiþwxijþ eij:

(Model 6. Arm-based ES model for year-wise analysis of
series of crop variety trials), where w is the fixed effect for
inconsistency.

Next, consider analysis across years. Locations varied
between years, so we model trials as nested within years
using13

yijk ¼ μþ γjþakþ gjkþβikþ eijk

(Model 7. Arm-based basic model for analysis over years
of series of crop variety trials), where yijk is the yield of
the j-th variety in the k-th year and i-th trial, μ is an over-
all intercept, γj is the main effect of the j-th variety, ak is
the main effect of the k-th year, gjk is the variety-by-year
interaction of the j-th variety with the k-th year, βik is the
effect of the i-th trial nested within the k-th year, and ejik
is a residual comprising both trial-by-variety interaction
and error associated with yijk. The effects ak and gjk are
modeled as random for routine analysis. If, however, we
test for inconsistency within years, then all effects except
the residual are fixed. In this case, we can make the
replacement γjk ¼ γjþakþgjk and take this effect for the
j-th variety and k-th year as fixed. With this parameteri-
zation, the joint model for simultaneously assessing
inconsistency in the different years is

yijk ¼ μþ γjkþβikþwkxijkþ eijk

(Model 8: Arm-based ES model for analysis over years of
series of crop variety trials), where wk is the fixed effect
for inconsistency in the k-th year. The covariate xijk takes
values �0.5 and 0.5 for the two varieties to be compared

TABLE 3 Estimates (standard errors) of direct effects (ddir), indirect effects (dind), and inconsistency (w) in comparison of variety 20549

with reference variety 9601 and F-test for inconsistency in variety trial data.12 Residual variance estimated by REML and ML.

Model 6 Model 8

Model
2005 2006 2002–06

Year(s) REML ML REML ML REML ML

σ2e
Residual variance

90,762
(13,922)

67,673
(8964)

86,860
(12,537)

66,709
(8438)

74,472
(5475)

55,330
(3506)

2005

dind 324
(537)

324
(464)

324
(487)

324
(420)

ddir �336
(426)

�336
(368)

�336
(386)

�336
(333)

w �660
(686)

�660
(592)

�660
(621)

�660
(535)

2006

dind �1055
(332)

�1055
(291)

�1055
(308)

�1055
(265)

ddir �1044
(241)

�1044
(211)

�1044
(223)

�1044
(192)

w �10
(410)

�10
(360)

�10
(380)

�10
(328)

Test for inconsistency

F 0.93 1.24 0.00 0.00 0.56 0.76

d.f. 1 1 1 1 2 2

p-value 0.3386 0.2682 0.9801 0.9773 0.5690 0.4684

PIEPHO ET AL. 203
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when both are in the same trial, otherwise the value
is zero.

To illustrate, consider the comparison of variety
20549 with the reference variety 9601. Variety 20549 was
tested only in years 2005 and 2006, whereas the reference
variety was tested in all years. Analyses were done both
per year using Model 6 and across years using Model
8. The results are shown in Table 3. The direct difference
estimates bddir (see Appendix B) agree exactly with those
reported by Forkman13 in his Table 2. The REML-based
F-test for inconsistency is not significant, both for the individ-
ual year analyses (p=0.3386 on 1 d.f. for 2005, p=0.9801
on 1 d.f. for 2006) and the across-years analysis (p=0.5690
on 2 d.f.), giving no indication that the direct and indirect
evidence for this comparison are inconsistent. In each of the
two years, the direct and indirect difference estimates (bddir
and bdind; see Appendix B) are such that the correspond-
ing generalized least squares estimates of the difference
based on a model with fixed variety and trial effect
(bd¼�107 in 2005, bd¼�1053 in 2006) fall between them
as expected. In fact, since bddir and bdind based on the ES
model are independent under normality, this generalized
least squares estimate of the contrast, d, can be computed
as the weighted average of bddir and bdind, with weights
given by the inverses of the squared standard errors:

bd¼ s:e: bddir� 	h i�2bddir þ s:e: bdind� 	h i�2bdind
s:e: bddir� 	h i�2

þ s:e: bdind� 	h i�2 with

s:e: bd� 	
¼ s:e: bddir� 	h i�2

þ s:e: bdind� 	h i�2

 ��1=2

:

Using this method, bd¼�82 (s.e.= 334) for the year
2005 and bd¼�1048 (s.e.= 195) for 2006. These estimates
coincide exactly with the estimates using the standard
NMA model. The standard errors, however, differ slightly
between the two methods due to different residual vari-
ance estimates. Using the same residual variance esti-
mate, the standard errors coincide exactly (not shown).

For comparison, we conducted the same analyses
using full ML (Table 3). This yielded considerably
smaller residual variance estimates, reflecting the large
number of model degrees of freedom (123 in the
across-years analysis) relative to the size of the dataset
(498 observations). The bias can be calculated exactly
in this case, observing that the REML estimator of the
residual variance equals the residual mean MSresidual of
an analysis of variance for the Model 6 or Model
8, hence is unbiased, and the ML estimator equals
n�pð Þn�1MSresidual, where n is the sample size and p is

the number of fixed-effect parameters, meaning that the
bias equals �n�1p�100% of MSresidual. For the across-
years dataset we have n= 498, p= 124 such that p/n≈ 1/4

and hence a bias of approximately �25%. The ratio p/n is
substantial yet mild by comparison with the usual setting
in medical meta-analysis, where the number of treat-
ments is often two in the majority of studies. For the
Sclerotherapy NMA data in Section 3.1, we have
p/n= 28/54≈½. The REML-based estimator there is not
a residual mean square, because the outcome variances
viA, viB, viC enter the estimation procedure and the ES
model is no longer of the linear mixed form, but the high
p/n ratio still gives some rough indication of the order of
magnitude of the discrepancy to be expected between
iterated REML and ML estimates in an arm-based analy-
sis. By the same token, bias in the contrast-based analysis
is expected to be smaller, because trial effects are
removed such that p equals only the number of treatment
arms minus one and hence p/n is rather smaller for

TABLE 4 Simulated bias and mean squared error (MSE,

reported in brackets) of estimators for τ2 and dBC under consistent

model using the Sclerotherapy NMA data1 to parameterize the

models (Models 1 and 3) for simulation, assuming τ2 = 0.3, 1.0

and 3.0.

Method

Contrast-based
consistent model
(Model 1)

Arm-based
consistent model
(Model 3)

ML
for τ2 a

REML
for τ2 a

ML
for τ2 a

REML
for τ2 a

τ2 ¼ 0:3

dBC �0.0096
(0.0831)

�0.0080
(0.0831)

�0.0122
(0.0874)

�0.0088
(0.0831)

τ2 Heterogeneity
variance

�0.1928
(0.0419)

�0.1712
(0.0350)

�0.2729
(0.0750)

�0.1683
(0.0338)

Convergence % 100 100 100 100

τ2 ¼ 1:0

dBC �0.0128
(0.1791)

�0.0118
(0.1799)

�0.0195
(0.1794)

�0.0117
(0.1799)

τ2 Haterogeneity
variance

�0.6094
(0.3971)

�0.5599
(0.3440)

�0.8823
(0.7834)

�0.5598
(0.3439)

Convergence % 100 100 100 100

τ2 ¼ 3:0

dBC �0.0193
(0.4364)

�0.0187
(0.4345)

�0.0254
(0.4372)

�0.0187
(0.4345)

τ2 Heterogeneity
variance

�1.8414
(3.5444)

�1.7189
(3.1358)

�2.5749
(6.6629)

�1.7189
(3.1358)

Convergence % 100 100 100 100

Note:
aUsing the GLIMMIX procedure of SAS.
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contrast-based analyses. This will be investigated further
by simulation in the next section.

4 | SIMULATION

To investigate the bias and accuracy of alternative esti-
mation methods for the ES model, we conducted a Monte
Carlo simulation using the Sclerotherapy NMA data1 to
parameterize the arm-based model. The data were simu-
lated under the null hypothesis of no inconsistency
between direct and indirect evidence (w = 0) for the C
versus B contrast (dBC). Thus, assuming Model 3, we set

the fixed effects in the linear predictor equal to the esti-
mates obtained by iterated REML. Random effects for
heterogeneity were simulated from a normal distribution
with variance τ2=2. The value of the parameter τ2 was set
to 0.3, 1.0 (close to the iterated REML estimate) and 3.0.
The binomial response was generated using the binomial
probability obtained by applying the inverse logit link to
the linear predictor and using the sample size n as given
in the example for the respective treatment and study.
When non-convergence occurred, this was invariably
because the estimator of τ2 approached zero. In these
cases, we replaced the analysis by one that fixed τ2 at zero
from the start. This way, convergence could be achieved

TABLE 5 Simulated bias and mean squared error (MSE, reported in brackets) of estimators for τ2, ddirBC , d
ind
BC and w under the ES model

using the Sclerotherapy NMA data1 to parameterize the model for simulation, assuming τ2 = 0.3, 1.0 and 3.0.

Method

Contrast-based ES model (Model 2) Arm-based ES model (Model 4)

Full MLa
Iterated
ML for τ2 b

Iterated
REML for τ2 b Full MLa

Iterated
ML for τ2 b

Iterated
REML for τ2 b

τ2 ¼ 0:3

ddirBC

Direct estimate
0.0143
(0.1191)

�0.0025
(0.3094)

�0.0032
(0.3118)

0.0422
(0.3149)

�0.0029
(0.3041)

�0.0032
(0.3118)

dindBC

Indirect estimate
�0.0027
(0.3095)

0.0143
(0.1184)

0.0131
(0.1185)

�0.0520
(0.1237)

0.0150
(0.1259)

0.0131
(0.1180)

w
Inconsistency parameter

�0.0175
(0.4243)

�0.0168
(0.4239)

�0.0163
(0.4316)

0.0941
(0.3586)

�0.0150
(0.4275)

�0.0164
(0.4316)

τ2

Heterogeneity variance
�0.1008
(0.0276)

�0.1037
(0.0285)

�0.0406
(0.0256)

�0.2804
(0.0799)

�0.2806
(0.0801)

�0.0406
(0.0256)

Convergence % 96.40 94.61 98.70 99.87 37.85 97.77

τ2 ¼ 1:0

ddirBC

Direct estimate
0.0187
(0.2537)

�0.0007
(0.6746)

�0.0016
(0.6812)

0.0087
(0.6465)

0.0045
(0.6488)

�0.0016
(0.6812)

dindBC

Indirect estimate
�0.0005
(0.6745)

0.0189
(0.2535)

0.0173
(0.2549)

0.0225
(0.2553)

0.0255
(0.2526)

0.0173
(0.2509)

w
Inconsistency parameter

�0.0195
(0.9347)

�0.0196
(0.9343)

�0.0188
(0.9431)

�0.0139
(0.8896)

�0.0210
(0.9013)

�0.0188
(0.9431)

τ2

Heterogeneity variance
�0.2625
(0.1675)

�0.2625
(0.1678)

�0.1148
(0.1413)

�0.7928
(0.6484)

�0.7936
(0.6498)

�0.1148
(0.1413)

Convergence % 99.95 100 100 100 95.50 99.98

τ2 ¼ 3:0

ddirBC

Direct estimate
0.0022
(1.6405)

0.0022
(1.6404)

0.0015
(1.6535)

0.0077
(1.5667)

0.0075
(1.5673)

0.0015
(1.6535)

dindBC

Indirect estimate
0.0278
(0.6043)

0.0277
(0.6042)

0.0268
(0.6101)

0.0342
(0.5747)

0.0342
(0.5746)

0.0267
(0.6101)

w
Inconsistency parameter

�0.0256
(2.2596)

�0.0256
(2.2588)

�0.0253
(2.2785)

�0.0265
(2.1445)

�0.0267
(2.1444)

�0.0253
(2.2785)

τ2

Heterogeneity variance
�0.7949
(1.2206)

�0.7931
(1.2217)

�0.4263
(0.9456)

�2.2030
(4.9784)

�2.2033
(4.9798)

�0.4263
(0.9456)

Convergence % 100 100 100 100 100 100

aUsing the NLMIXED procedure of SAS. This implements the full ML method of Shih and Tu.1

bUsing the GLIMMIX procedure of SAS.
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in all cases. The percentage of cases where convergence
failed when τ2 was a parameter to be estimated was
recorded. The performance of the full ML method and
the iterated ML and REML methods for the ES model
was assessed in terms of the bias and mean squared error
(MSE) of the estimators of τ2, ddirBC, dindBC , and w (see
Appendices A and B). Each of the three scenarios for τ2

was assessed based on 10,000 simulation runs. The
methods were assessed under both the contrast-based
and the arm-based representation of the model for analy-
sis. For comparison, we also investigated the analysis
based on the consistent Models 1 and 3. Results are
shown in Tables 4 and 5. Generally, for the ES model, the
iterated REML method performs best in terms of both
MSE and bias for τ2 and effect estimates as well (Table 5).
Overall, the performance of the iterated REML method is
quite comparable to that of REML for analysis by the
consistent model (Table 4). The method produces
the same results for both contrast-based and arm-based
approach, as is expected from corresponding results for
the consistent model.5 The key reason for this agreement
between contrast-based and arm-based analysis lies in
the fact that REML makes use of the residual contrasts,
which remove any fixed effects, thus duly accounting for
the degrees of freedom lost to fixed effects.3 For the theo-
retical details we refer readers to Piepho et al.5 The result
carries over to our iterated REML method for the ES
model, because on each iteration, a linear mixed model is
fitted, conditioning on the current estimate of w. The
ML-based methods suffer from larger bias for τ2, which
also translates into larger MSE. The problem is most pro-
nounced for the arm-based approach, which is due to the
large number of fixed study effects. Generally, for both
ML and REML methods, the MSE increased with the true
value of τ2, which is expected by way of analogy with
sample variances in simple random samples.3 Interest-
ingly, the point estimates of w have comparable bias and
MSE for ML and REML methods. Note, however, that
estimates of uncertainty for w estimates (model-based
standard errors and confidence intervals) will be
adversely affected by the inferior performance in estimat-
ing τ2. In summary, the results show that the iterated
REML-approach is quite competitive. These results are
restricted to smaller networks as investigated here. Per-
formance in larger networks is certainly worth investigat-
ing in future.

5 | LIMITATIONS OF THE
EVIDENCE-SPLITTING MODEL

The arm-based ES model has a single term wxij to detect
the inconsistency between direct and indirect evidence.

The latent covariate xij takes non-zero values only in tri-
als with direct evidence, so we will focus on such trials
here. If we consider the direct evidence of the B vs. A
contrast, the relevant latent covariate values for the i-th
trial are xiA and xiB. The values of xiA and xiB depend on
the variance components. While this model does lead to
a clean separation of the direct and indirect evidence
under the consistent two-way model, and as such is very
useful, it does not represent a plausible data generating
mechanism under inconsistency. To explain in more
detail, consider the arm-based linear predictor under con-
sistency, excluding the random effect for heterogeneity
for clarity:

ηij ¼ μþ γjþβi

(Model 9. Arm-based linear predictor under consistency,
excluding random effect for heterogeneity for clarity).
This gives the expected value of the j-th treatment in the
i-th trial on the linear-predictor scale under the consis-
tent arm-based model. Adding the term for evidence
splitting, the linear predictor becomes

ηij ¼ μþ γjþβiþwxij

(Model 10. Arm-based linear predictor for ES model,
excluding random effect for heterogeneity for clarity).
What this model would imply if taken at face value, is
that in trials where both treatments A and B are present,
the mean of treatment A is shifted by the amount wxiA
compared to trials not having both treatments, whereas
simultaneously treatment B is shifted by the amount
wxiB. The parameter w itself equals the corresponding
shift in the difference between the means of A and B.
Thus, observing that xiB� xiA ¼ 1 under the ES model,
the difference in the i-th trial, assumed to have both
treatments A and B, is given by

ηBj�ηAj ¼ γB� γAþw xiB� xiAð Þ¼ γB� γAþw:

The key point here is that xiB� xiA ¼ 1 regardless of
the variance components. But under the ES model, the
variance components additionally determine the exact
values of xiA and xiB. Hence, the variance components
dictate how large the shift of each of the two treat-
ments is. Moreover, the shifts for A and B are further
restricted to be opposite in sign, and also the shifts
depend on the trial. While this is perfectly fine for the
purpose of splitting the direct and indirect evidence
under the consistent Model 9, it is too restrictive as a
model explaining how any inconsistency may have
come about in multi-arm trials, where treatments other
than A and B do not experience a shift. Hence, the ES
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model is best regarded as a convenient tool for tracing
the separate flows of direct and indirect information
for a particular contrast under the consistent Model
9, but not as a model describing a plausible data-
generating mechanism under inconsistency.

As the focus of the analysis is on just the two treatments
A and B in multi-arm trials where both are present, the
most obvious choice for a plausible model under inconsis-
tency is one that allows the direction and amounts of shift
of A and B to be independent of any variance components.
Clearly, the variance components cannot be causal agents
in the genesis of inconsistency. The causal agents must be
related to the conduct of a trial, its specific settings for the
individual treatments and how this affects the treatment
means. If there is an inconsistency regarding treatments A
and B, then at least one of their effects must be shifted
when they are in the same trial, as compared to the effect
when they are not in the same trial. If that is a reasonable
assumption, then it is also plausible to assume that both
effects are shifted, and independently so, unless one has
very specific evidence to show that only one of the two
treatment effects would sustain a shift under inconsistency.
In this scenario, one possible model under inconsistency
may be formulated using the linear predictor

ηij ¼ μþ γjþβiþδAz1ijþδBz2ij:

(Model 11. An arm-based linear predictor with two
parameters for inconsistency, excluding random effect for
heterogeneity for clarity), where z1ij = z2ij = 0 except for
z1iA = 1 for the observation on treatment A and z2iB = 1
for the observation on treatment B if the i-th trial has
both treatments A and B. The effect δA is the shift of the
effect for treatment A when in the same trial with B, and
δB is defined analogously. Apart from its realism, this
Model 11 has two important advantages over the ES
Model 10: (i) the covariates (z1ij and z2ij) no longer
depend on variance components, so the linear predictor
is truly linear in the parameters and REML is directly
available, and (ii) this model can also be fitted to
individual-person (or individual-plot) data using a gener-
alized linear mixed model (GLMM) for observed bino-
mial counts, whereas the ES model only works for a
linear mixed model (LMM) assuming approximate nor-
mality for the empirical logits. The same goes for other
distributions and links with GLMM.

The one missing degree of freedom in the fixed effects
for the ES Model 10 in comparison with Model 11 means
that under this latter realistic scenario for inconsistency, the
ES model cannot fully capture the inconsistency and hence
the variance estimate for heterogeneity (τ2) will sustain an
upward bias. This, in turn, raises the question as to the best
model to estimate τ2. The answer partly depends on the

purpose of the analysis. The models considered in this
section provide three options: (i) the consistent Model
9, (ii) the ES Model 8 with one degree of freedom for incon-
sistency, and (iii) the extended Model 11 with two degrees of
freedom for inconsistency. Using Model 9 provides a valid
estimate of τ2 under the null hypothesis of consistency. This
estimate is fine if we assume that consistency holds and we
just want a numerical check on the contributions of the
direct and indirect evidence to the overall estimate of
the B versus A contrast. This estimate is also fine for
testing the null hypothesis of consistency, but it is not
appropriate for obtaining valid standard errors of esti-
mates of w under Model 10, which is why Shih and Tu
proposed a ML estimation method based on Model 10.1

In Section 2, we have continued along the same lines
and developed alternative methods of estimation under
the same Model 10, which we then compared by simu-
lation under consistency in Section 4. The discussion
in the present section suggests, however, that Model
10 may not be the best model to obtain a realistic esti-
mate of τ2 under inconsistency, because it only has one
degree of freedom for inconsistency, whereas two
degrees of freedom are required for a realistic represen-
tation of any inconsistency in relation to the two focal
treatments. Hence, one may argue that Model 11 is
preferable for estimating τ2 if it is thought necessary to
allow for inconsistency. Moreover, Model 11 may also
be the better model for detecting inconsistency.

It should be re-iterated that the two-parameter Model
11 for inconsistency proposed here does not achieve the
separation of direct and indirect evidence arising when
the consistent Model 9 is assumed to hold, whereas this
is achieved perfectly well with the ES Model 10. For
example, if there are two three-arm trials, as in Example
1, then in addition to the direct evidence there is also
indirect evidence on the treatment effects between the
two three-arm trials due to the heterogeneity in the
response variances vij. Model 11 cannot split that evi-
dence, because the effects δA and δB simultaneously cap-
ture both sources of information, but the ES Model
10 can achieve the splitting via the single parameter w,
which by construction captures the discrepancy between
direct and indirect evidence. The ES Model 10 introduces
the single additional parameter w as a device to trace and
separate the flow of direct and indirect evidence on the B
versus A contrast in fitting the consistent Model 9, with-
out representing a plausible model for the genesis of any
inconsistency. In all fairness, this is the main stated pur-
pose of the ES model. By contrast, Model 11 introduces
two parameters δA and δB in order to represent a realistic
mechanism for inconsistency and simplify the estimation
of the variance for heterogeneity. It may have better
power for detecting inconsistency, but the model cannot
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cleanly separate the direct and indirect evidence flowing
in the consistent Model 9.

In this section, we have considered one specific model
for inconsistency. There are, of course, many other
models for inconsistency, and these are nicely reviewed
in Shih and Tu.1 Any of these models can be used as an
alternative to Model 11 in analyses aimed at modeling
inconsistency. Our purpose in introducing that model
was not to advocate one specific model for inconsistency,
but to illustrate the limitations of the ES model in repre-
senting a plausible mechanism for inconsistency.

In relation to option (i), it may be added that if consis-
tency is assumed to hold, the split of the direct and indi-
rect evidence could also be achieved as follows. First, fit
the consistent Model 9 using all the data and obtain an
estimate of the B versus A contrast and its associated var-
iance. Denote these as bdAB and var bdAB� 	

. Also, save the
estimate of τ2 from this analysis and denote this as bτ2all.
Second, only use the data on treatments A and B and
only include trials having data on both A and B. Plug in
the estimate bτ2all and obtain the estimate of the B versus
A contrast. This will be the estimate representing

the direct evidence, bddirAB, with associated variance

var bddirAB

� 	
. Third, noting that bdAB must equal the

weighted average of bddirAB and bdindAB with weights given by

wdir ¼ var bddirAB

� 	
þvar bdindAB

� 	h i
=var bddirAB

� 	
and

wind ¼ var bddirAB

� 	
þvar bdindAB

� 	h i
=var bdindAB

� 	
, respectively,

we can obtain bdindAB and var bdindAB

� 	
as follows:

var bdindAB

� 	
¼ 1

var bdAB� 	� 1

var bddirAB

� 	
0
B@

1
CA

�1

and

bdindAB ¼w�1
ind

bdAB�wdir
bddirAB

� 	
:

This reverse-engineering approach splits the evidence
in exactly the same way as the ES model does when the
same estimate of τ2 is used. This equivalence makes it
clear that the ES model is a tool for splitting the evidence
under the consistent model.

6 | CONCLUSION

The ES model is useful for detection of inconsistency
between direct and indirect evidence. As the model has

variance parameters in both the mean and the variance
structure, full ML is the most natural approach to estima-
tion. The downside of this method, as supported by our
simulation, is substantial bias of the variance parameter
estimator. Our proposed iterated REML estimator pro-
vides an efficient and less biased alternative. While the
ES model is a convenient tool for comparing direct and
indirect evidence, it does not provide a plausible model
for the genesis of inconsistency. For this purpose, other
models may be preferred.
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APPENDIX A: DERIVATION OF THE
CONTRAST-BASED ES MODEL

In this section, we show that evidence splitting does not
strictly require the ES model and also give an alternative
derivation of the contrast-based ES model. The example
that is considered in Section 3.1 uses treatment A as a base-
line. Following Shih and Tu,1 we focus on the contrast C
versus B. Before moving to three-arm trials, consider the
simpler case where all trials involve just two of three treat-
ments. If the interest is in the C versus B contrast dBC, then
two-arm trials comprising treatments B and C (in short:
BC-trials) provide direct evidence. Two-arm trials with
treatments A and B (AB-trials) provide direct evidence on
the B versus A contrast dAB, and two-arm trials with treat-
ments A and C (AC-trials) provide direct evidence on the C
versus A contrast dAC. In a consistent network, both AB-
and AC-trials together provide indirect evidence on the C
versus B contrast because dBC ¼ dAC�dAB. Hence, evi-
dence splitting amounts to comparing the direct evidence
provided by the BC-trials with the indirect evidence pro-
vided by the AB- and AC-trials.

Now assume that the network includes at least one
three-arm trial (ABC-trial). Such trials comprise both
direct and indirect evidence on the C versus B contrast.
Hence, the evidence needs to be split within such trials.
In a three-arm trial i, the direct evidence is given by

Li1 ¼ yiAB� yiAC ¼�yiBC,

where yiBC is the observed contrast (direct difference)
between C and B. Now in the same three-arm trial we
are looking for

Li2 ¼ yiABþ ciyiAC

with ci chosen so that Li1 and Li2 are uncorrelated, and
hence independent under normality, which we assume
throughout. The reasoning here is that Li1 and Li2 provide a
one-to-one transformation of yiAB and yiAC, representing the
complete evidence provided by the i-th trial, and that since
Li1 captures all direct evidence but no indirect evidence,
then the uncorrelated Li2 must capture all the indirect evi-
dence provided by the i-th trial.1 Note that indirect evidence
provided by Li2 comes from all the indirect comparisons
between C and B that are available across the network of
trials. Clearly, an indirect comparison always involves data
from more than one trial, so Li2 in isolation is not informa-
tive about the C versus B contrast. For example, if the i-th
trial provides a direct comparison of B versus A (yiAB) and
another trial k provides a direct comparison of C versus A

(ykAC), then the difference of these two direct comparisons
yiAB� ykACð Þ provides an indirect comparison of B versus
C. A large network of trials can provide a large number
of such indirect comparisons. NMA seeks to exploit all of
these indirect comparisons and combine them in an opti-
mal way with the direct evidence.

Continuing our derivation, we find

cov Li1,Li2ð Þ¼ var yiABð Þ� civar yiACð Þþ ci�1ð Þcov yiAB,yiACð Þ
¼ ci cov yiAB,yiACð Þ�var yiACð Þ½ �
þ var yiABð Þ� cov yiAB,yiACð Þ½ � ¼ 0

) ci ¼ var yiABð Þ� cov yiAB,yiACð Þ
var yiACð Þ� cov yiAB,yiACð Þ

[Note that ci is defined always because
var yiACð Þ� cov yiAB,yiACð Þ>0 always]. If there are nABC
ABC-trials and nBC BC-trials, then the direct evidence is
given by the nABC+nBC equations

Li1 ¼�dBCþ ei1 nABC equations for theABC-trialsð Þ

yiBC ¼ dBCþ eiBC nBC equations for theBC-trialsð Þ:

where, according to Model 1, ei1 and eiBC are both distrib-
uted as yiBC �N 0,τ2þ viBþ viCð Þ. From these equations,
the contrast dBC can be estimated using generalized least
squares. This provides the direct-evidence estimate bddirBC.

The indirect evidence is provided by the nABC ABC-
trials, the nAB AB-trials, and the nAC AC-trials, through
the nABC + nAB + nAC equations.

Li2 ¼ dABþ cidACþ ei2 nABC equations for theABC-trialsð Þ

yiAB ¼ dABþ eiAB nAB equations for theAB-trialsð Þ

yiAC ¼ dACþ eiAC nAC equations for theAC-trialsð Þ

where, by Model 1, ei2 �N 0,τ2þ viAþ viBþ c2i τ2ð�
þviAþ viCÞþ2ci τ2=2þ viAð Þ�, eiAB �N 0,τ2þ viAþ viBð Þ,
and eiAC �N 0,τ2þ viAþ viCð Þ. Let bdindAB and bdindAC denote the
generalized least-squares estimates of dAB and dAC,
respectively, based on these equations. The indirect-evi-

dence estimate bdindBC is computed as bdindBC ¼bdindAC �bdindAB .

Since the direct- and indirect-evidence estimates bddirBC

and bdindBC are uncorrelated, the generalized least-squares
estimate of dBC in Model 1 is the weighted average of bddirBC

and bdindBC , using their inverse variances as weights. We
have thus achieved the split of the evidence for dBC in
Model 1.
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By Model 1, the direct- and indirect estimators are
consistent, that is, E bddirBC

� 	
¼E bdindBC

� 	
. As we have seen,

the ES model by Shih and Tu is not needed for splitting
the evidence. However, their model allows for in-
consistency between the direct and indirect evidence.1

This is accomplished by the assumption that
E bddirBC

� 	
¼E bdindBC

� 	
þw, where w is the discrepancy

between the direct and indirect evidence for the C ver-
sus B contrast. Under the null hypothesis of consis-
tency between the direct and indirect evidence, we
have w= 0. We shall now provide a simple justification
for the ES model.

Consider an ABC-trial (i = 1) and an AC-trial (i = 2).

Using the ABC-trial, bddirBC ¼ y1AC� y1AB. Since bdindAC ¼ y2AC,

we have bdindAB ¼ L12� c1bdindAC and

bdindBC ¼bdindAC �bdindAB ¼ y2AC� y1AB� c1y1ACþ c1y2AC
¼ y1AC� y1ABð Þþ y2AC� y1ACþ c1y2AC� c1y1ACð Þ

¼bddirBCþ 1þ c1ð Þ y2AC� y1ACð Þ:

Now taking expectations, using w¼E bddirBC

� 	
�E bdindBC

� 	
, we find w¼� 1þ c1ð ÞE y2AC� y1ACð Þ. Thus

E yiACð Þ¼ dACþ 1
1þc1

w, where dAC ¼E y2ACð Þ. As a result,

the expected value for the contrast between C and A is

1þ c1ð Þ�1w units larger in an ABC-trial than in an AC-
trial.

Similarly, we may consider the ABC-trial (i = 1) and
an AB-trial (i = 3). Since bdindAB ¼ y3AB andbdindAC ¼ L12�bdindAB

� 	
=c1, we have

bdindBC ¼bdindAC �bdindAB ¼
1
c1

y1ABþ c1y1ACð Þ� 1
c1
þ1

� �
y3AB

¼ y1AC� y1ABð Þþ c1þ1
c1

y1AB�
c1þ1
c1

y3AB

¼bddirBC�
c1þ1
c1

y3AB� y1ABð Þ

The expected difference between the direct- and
indirect-evidence estimates is w¼ 1þc1

c1
E y3AB� y1ABð Þ,

which gives E y1ABð Þ¼ dAB� c1
1þc1

w. In conclusion, the
expected value for the contrast between B and C is
ci= 1þ cið Þ smaller in an ABC-trial than in an AB-trial.
Hence,

E
yiAB
yiAC

� �
¼ dABþxiABw

dACþxiACw

� �

with latent covariates

xiAB ¼� var yiABð Þ� cov yiAB,yiACð Þ
var yiABð Þþvar yiACð Þ�2cov yiAB,yiACð Þ and

xiAC ¼ var yiACð Þ� cov yiAB,yiACð Þ
var yiABð Þþvar yiACð Þ�2cov yiAB,yiACð Þ ,

where the variances and covariances are the same as given
in Model 1. These definitions of the latent covariates are
needed only for the three-arm trials in the example in
Section 3.1. In all other studies, involving only two treat-
ments, the covariate x equals 0, except when the two treat-
ments are B and C, in which case x equals 1. Thus, the
contrast-based ES model is different from Model 1, since a
latent covariate x is added to assess the inconsistency
between direct and indirect evidence for the C versus B con-
trast. Hence, the contrast-based ES model for the i-th three-
arm trial can be stated as in Model 2. The variance compo-
nents are the same as in Model 1. Specifically, the variance
for heterogeneity, τ2, is unknown and must be estimated,
whereas the outcome variances viA, viB, viC are known.
Model 2 is readily extended to multi-arm trials with more
than three treatments, but all treatments must be consid-
ered. For details, see Shih and Tu.1

APPENDIX B: DERIVATION OF THE ARM-
BASED ES MODEL

Here, we provide a derivation of the arm-based ES model.
Assume we want to split the evidence for the comparison of
treatments A and B. Here, we focus on this contrast, rather
than on the C versus B contrast considered in the example
in Section 3.1, for better comparability with the derivations
given by Shih and Tu.1 In a multi-arm trial comprising both
A and B, we consider two linear combinations, that is,

Mi1 ¼ yiB� yiA and

Mi2 ¼ yiBþ f iyiA

with fi chosen so that cov Mi1,Mi2ð Þ¼ 0. Mi1 contains the
direct evidence and Mi2 the indirect evidence on the B
versus A contrast. Under the assumption of indepen-
dence between yiA and yiB

cov Mi1,Mi2ð Þ¼ var yiBð Þ� f ivar yiAð Þ:

Thus, to ensure cov Mi1,Mi2ð Þ¼ 0 we require
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f i ¼
var yiBð Þ
var yiAð Þ :

With this choice of fi, Mi1 is uncorrelated with Mi2,
the observed responses of treatment C in the i-th trial,
and data from any other trials. Note that one could sepa-
rately analyze Mi1 from all three-arm trials together with
all AB-trials to extract all direct evidence on the B versus
A contrast. Likewise, Mi2 and data on C from all three-
arm trials together with the data from all AC- and BC-
trials could be analyzed separately to extract all indirect
evidence. However, a joint analysis is needed to assess
the inconsistency between both estimates. To develop a
model for this purpose, we now consider the expected
values for Mi1 and Mi2. First, we express the expectations
in terms of the contrast between A and B and, as with
the contrast-based approach, defining ddirAB to be the
expected contrast based on direct evidence and dindAB the
expected contrast based on the indirect evidence. Again,
under consistency ddirAB¼ dindAB , whereas under inconsis-
tency ddirAB ≠ dindAB . As in the contrast-based ES model (Sec-
tion 2.2), we use the parameterization ddirAB ¼ dindAB þw,
thus setting ddirAB ¼ γB� γAþw and dindAB ¼ γB� γA, where
γA and γB are the effects of treatments A and B (see
Section 2.3). Hence, the expectations for Mi1 and Mi2 are
(ignoring intercept μ and trial effects βi for simplicity)

E
Mi1

Mi2

� �
¼ �1 1

f i 1

� �
�E

yiA
yiB

� �
¼ γB� γAþw

f iγAþ γB

� �
:

Note that for the indirect evidence Mi2 we are using
the definitions E yiAð Þ¼ γA and E yiBð Þ¼ γB (again ignoring
intercept and trial effects). By comparison, we cannot use
these definitions in the model for the direct evidence Mi1,
because this also involves w. This specification is analo-
gous to that for the contrast-based ES model in
Section 2.2. From this model for the expected values of
Mi1 and Mi2, we may obtain the expected values for the
observed treatment responses as

E
yiA
yiB

� �
¼ �1 1

f i 1

� ��1 γB� γAþw

f iγAþ γB

� �
:

It can be shown that

�1 1

f i 1

� ��1

¼
� 1
f iþ1

1
f iþ1

f i
f iþ1

1
f iþ1

0
BB@

1
CCA:

Hence

E
yiA
yiB

� �
¼

� 1
f iþ1

1
f iþ1

f i
f iþ1

1
f iþ1

0
BB@

1
CCA γB� γAþw

f iγAþ γB

� �

¼
γA�

1
f iþ1

w

γBþ
f i

f iþ1
w

0
BB@

1
CCA¼ γAþ xiAw

γBþ xiBw

� �

with

xiA ¼� var yiAð Þ
var yiAð Þþvar yiBð Þ and

xiB ¼ var yiBð Þ
var yiAð Þþvar yiBð Þ ,

where the variances are given in Model 3. The latent
covariate x is set to zero in all trials comprising only one
of the two treatments A and B, and also for treatments
other than A and B in the multi-arm trials involving both
A and B, because the corresponding observations are not
involved in the evidence splitting. The treatment effects
given above for yiA and yiB, that is, γAþ xiAw and
γBþxiBw, are also given by Shih and Tu.1 These effects
differ from those in Model 3, as a latent covariate x has
been added to assess any inconsistency between direct
and indirect evidence for the B versus A contrast. The full
linear predictor for the expectation of the j-th treatment
in the i-th trial is μþ γjþβiþxijw. Hence, for the i-th
three-arm trial, the arm-based ES model can be written
as in Model 4.
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