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Email: i.h.smit@uu.nl complex. We aimed to describe their kinematic and temporal adaptation strategies in

Background and objective: Lameness assessment in the gaited Icelandic horse is

o . response to forelimb lameness at walk, trot and tolt.
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Palmi Jénsson's Nature Conservation Fund reversible forelimb lameness induction. Upper body and limb kinematics were mea-

Methods: Ten clinically non-lame Icelandic horses were measured before and after

sured using 11 inertial measurement units mounted on the poll, withers, pelvis
(tubera sacrale) and all four limbs and hoofs (Equimoves®, 500 Hz). Horses were mea-
sured on a straight line at walk and trot in-hand and at walk, trot and tolt while rid-
den. Linear mixed models were used to compare baseline and lame conditions
(random factor = ‘horse’), and results are presented as the difference in estimated
marginal means or percentage of change.

Results: Lameness induction significantly (p < 0.05) increased head vertical move-
ment asymmetry at walk (HDmin/HDmaxyanp: 18.8/5.7 mm, HDmin/HDmaxgppen:
9.8/0.3 mm) and trot (HDmin/HDmaxyanp: 18.1/7.8 mm, HDmin/HDmaxgppen:
24.0/9.3 mm). At the t6lt, however, HDmin did not change significantly (1.1 mm), but
HDmax increased by 11.2 mm (p < 0.05). Furthermore, pelvis vertical movement
asymmetry (PDmax) increased by 4.9 mm, sound side dissociation decreased (—8.3%),
and sound diagonal dissociation increased (6.5%). Other temporal stride variables
were also affected, such as increased stance duration of both forelimbs at walk, tolt
and in-hand trot.

Main limitations: Only one degree of lameness (mild) was induced with an acute

lameness model.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2023 The Authors. Equine Veterinary Journal published by John Wiley & Sons Ltd on behalf of EVJ Ltd.

Equine Vet J. 2024;56:617-630. wileyonlinelibrary.com/journal/evj 617


https://orcid.org/0000-0002-9269-9634
https://orcid.org/0000-0002-5769-3958
https://orcid.org/0000-0002-0331-6970
https://orcid.org/0000-0001-5521-475X
https://orcid.org/0000-0003-0575-2765
https://orcid.org/0000-0001-8514-7949
mailto:i.h.smit@uu.nl
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/evj
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fevj.13998&domain=pdf&date_stamp=2023-09-07

618

SMIT ET AL

KEYWORDS

1 | INTRODUCTION

With its ability to tolt, the Icelandic horse has been rising in popularity
among recreational and competitive riders. Due to their growing pres-
ence, there is also an increased need for knowledge regarding lame-
ness adaptations in this breed. Clinicians often testify that assessing
lameness in Icelandic horses is particularly challenging. This may be
related to their high stride frequencies,®™® lower vertical range of
motion of head, withers and pelvis compared to warmbloods at trot®
and/or the diversity of footfall patterns the Icelandic horse can show?!
as a consequence of the high prevalence of the known mutation of
the DMRT3 gene.* Especially during télt, a four-beat running gait
either shown as a pure (while ridden) or as a mixed gait (sometimes
encountered during lameness exams), our understanding of how
Icelandic horses adapt to lameness is minimal.

Upper body vertical movement asymmetry parameters at the trot
are currently the primary resource for quantitative lameness assessment
in clinical practice.® The most commonly used asymmetry parameters to
quantify lameness are the differences between the two local vertical dis-
placement minima/maxima within each stride for the head (HD./
HD max), Withers (WD in/WDnayx) and pelvis (PDypin/PDmax)- These move-
ment asymmetries in lame horses are related to weight redistribution

between limbs,>~?

where the peak vertical ground reaction force
(i.e., limb loading; GRFz) of the lame limb is reduced. Head and withers
asymmetry parameters have also been shown to be reliable indicators of

k.1° Therefore, these asymmetry parameters

forelimb lameness at wal
seem logical candidates for lameness evaluation at tolt. However, at the
tolt, the footfall pattern, and thereby weight distribution between limbs,
differs from walk and trot.>*%'2 While trot is a symmetrical two-beat
diagonal gait,*® walk and télt are symmetrical four-beat gaits with lateral
sequences of footfalls."*3 In contrast, télt mechanics are closer to those
of running gaits such as trot,2>'* whereas the walk is a clear example of
a walking gait.14 Furthermore, true tolt (TT) has no suspension phase,
and uni- and bipedal support phases should alternate with a limb phase
of approximately 25%.%*2 Therefore, lameness metrics studied for walk
and trot might not directly apply to tolt.

Controversy exists among studies regarding the gait dynamics of
Icelandic horses at tolt. The sequential placement of the limbs at tolt
reduces the peak vertical accelerations of the body centre of

1516 such that the transition from two-beat trot to four-beat télt

mass,
may be a possible lameness adaptation strategy without a speed
reduction. Conversely, it has been suggested that to decrease the

loading of the lame limb at tolt may be less effective compared to the

Conclusions: Classical forelimb lameness metrics, such as vertical head and withers
movement asymmetry, were less valuable at t6lt compared to walk and trot, except
for HDmax. Therefore, it is advised to primarily use the walk and trot to detect and

quantify forelimb lameness in the Icelandic horse.

asymmetry, equine biomechanics, gaited horse, inertial measurement units, kinematics

walk and trot as there are periods of unipedal support for each limb.*?
When peak GRFz are compared between trot and tolt, one study
reports lower forelimb peak GRFz at tolt compared to overground

trot,12

while another study reported higher peak GRFz for the fore-
limbs at tolt compared to trot on a treadmill.t”

This study aimed to describe the movement pattern changes in
response to induced forelimb lameness at walk, trot and tolt during
both in-hand and ridden conditions. We hypothesised that Icelandic
horses would show vertical movement asymmetry of the head and
withers in response to induced forelimb lameness at all gaits. How-
ever, these changes were expected to be larger at the faster gaits and

smaller with the presence of a rider compared to in-hand conditions.

2 | MATERIALS AND METHODS

21 | Horses

A convenience sample of 10 clinically sound Icelandic horses (3 mares
and 7 geldings; age: 7.5 [5-25] years; weight: 384 [370-405] kg;
median [range]) in full training were included in this study. The horses
were selected from a group of 30 horses, the majority University-
owned and two of which were privately owned. Horses were included
when judged as non-lame based on pre-trial visual and objective lame-
ness measurements (Equinosis) at trot in-hand, as well as clinical
examinations of the locomotor apparatus by three experienced ortho-
paedic veterinarians (E.H., M.R. and F.S.B.). All horses could t6lt while
ridden (eight were homozygous for the AA genotype of the DMRT3

gene, and two were heterozygote AC).

2.2 | Kinematic data collection

The horses were equipped with 13 inertial measurement unit (IMU)
nodes (of which 11 nodes were used for this study; Promove Mini,
EquiMoves®)8 set to a sampling frequency of 500 Hz, with the low-g
accelerometer set at 16 g and the high-g accelerometer set at
+200 g (Figure 1). In addition, the sacrum node was enabled with a
global positioning system to measure the overground speed at 5 Hz.
Data were stored using the internal memory of each node to ensure
no data loss, and synchronisation between nodes was guaranteed
with an error of less than 100 ns. All trials were video-recorded using

standard equipment for retrospective analysis of the collected data.
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FIGURE 1 IMU node placement.
Sensors attached at the following
locations: in the median plane at the poll,
wither and tubera sacrale; over each tuber
coxae, on the lateral aspect of each mid
cannon bone (in a protection pad) and on
the lateral wall of each hoof. This image is
from another study with a similar set
up.? In the current study, riders were
instructed to ride with loose rein contact,
while this was not the case in the study
depicted.

A baseline measurement was performed on each horse before
lameness induction. The baseline and induced lameness measure-
ments included the following trials: walk and trot in-hand followed by
walk, trot and t6lt while ridden. Each horse's gaits were performed at
a self-selected speed based on the rider's experience. For the ridden
trials, the rider was instructed to keep light rein contact and perform
sitting walk, trot and tolt not to affect the movement asymmetry by
posting.2° All trials for each horse were conducted on the same day
and on the same hard surface (compacted lava gravel).

2.3 | Lameness induction

A well-established and fully reversible sole-pressure model was used
to induce lameness.?! Each horse was shod with a custom-made shoe
with a mediolateral bar designed for applying pressure on the tip of
the frog. A flat-edged bolt was inserted into the hole of the bar and
tightened to apply the pressure. The lameness was randomly induced
on the left or right forelimb by lottery. Once a mild lameness was
deemed visible at the in-hand trot by the experienced veterinarians in
the research team (E.H., M.R. and F.S.B.), the pressure was considered
sufficient, and the measurement protocol was continued. Mild lame-
ness was defined as a score of 1 to 2 out of five on an ordinal 0-5
degree lameness scale, where the two degrees of lameness were
defined as follows: 1 subtle lameness: intermittently visible at the trot;
2 mild lameness: visible in every stride at the trot.??

2.4 | Data analysis

Data analyses were performed in Matlab (version 2022b, Math-

Works). All data (both baseline and induction) from horses with

induced right forelimb lameness were mirrored by multiplying accel-

erometer data (both high and low; around the y-axis) and gyroscope
(around the x- and z-axis) of all IMUs by —1. This way, all horses
were analysed as being lame on the left forelimb to allow explora-
tion of group-level lameness adaptation strategies. The trials were
split into gait segments (walk, trot and tolt) based on a gait classifica-
tion algorithm?® and cut into strides based on the left hind
(LH) impact. Hoof-on and hoof-off events for each limb were calcu-
lated based on manually labelled events from hoof-mounted IMU
acceleration and gyroscope data. In short, a semi-supervised
approach was used to detect stance and swing from each limb, using
a time-series machine learning approach similar to a previously
described algorithm.?® A sequence-to-sequence regression approach
using a long-term short-memory neural network was used, using the
limb and hoof sensor data as input and the swing/stance phase of
each limb as output. The moments of change between the swing
and the stance phase were detected and classified as hoof-on and
hoof-off moments.

Furthermore, for all tolt segments, individual strides were labelled
as TT, tolt with lateral couplets (TLC) or mixed tolt (TMix; tolt with tri-
pedal support), based on the side dissociation, ipsi- and diagonal sup-
port phases of the limbs.!

2.5 | Primary outcome measures

Upper body asymmetry metrics and temporal stride parameters were
extracted from each stride-segmented signal (Table 1). For the upper
body asymmetry parameters, the stride split vertical displacement tra-
jectories of the head (H), withers (W) and pelvis (P) were used. For all
three locations, the difference between the vertical displacement min-

ima (HDmin, WDmin and PD,in) and vertical displacement maxima

85UB017 SUOLULLOD AII8.1D) 3[cfedt [dde U Aq peuenob 8e 91l VO ‘SN J0 S9|NI 0} AIq 1T 8UIUO /8|1 U (SUONIPUOD-PUE-SWSIALIY A8 | 1M Akeiq Ul |uo//:Sdny) SUORIPUOD pue swie | 8y} 89S *[7202/70/0T] Uo Akeiqi8uliuo A8|iM 'seousios ImNOLBY JO AISBAIUN USIPEMS Aq 866ET 1A8/TTTT 0T/I0p/W00 Ao |1 AseIq1puljuoeAsd//Sdiy Woly pepeojumoqd '€ %20z '90EEZr0e



620 SMIT ET AL
TABLE 1 Definitions of parameters and the units they are measured in.

Variable Units Description

Kinematic

HD1in/WDmin/PDmin mm The difference between the minimum vertical positions reached by
the head/withers/pelvis during the left vs. right stride half-cycle.

HD nax/ WD max/ PDmax mm The difference between the maximal vertical positions reached by
the head/withers/pelvis during the left vs. right stride half-cycle.

Head/withers/pelvis vertical range of motion (ROMz) mm The vertical range of motion of the head/withers/pelvis during a
complete stride.

Temporal

Stance duration (LF/RF/RH/LH) s Time between hoof-on and hoof-off.

Diagonal dissociation (DD) %StrD Time dissociation between diagonal limb pairs at hoof impact;
positive if hindlimb precedes contralateral forelimb. Sound DD
includes the left hind- and right forelimb, lame DD includes the
right hind- and left forelimb.

Side dissociation (SD) %StrD Time dissociation between ipsilateral limb pairs at hoof impact;
positive if hindlimb precedes ipsilateral forelimb. Sound SD
includes the right hind- and right forelimb, lame SD includes the
left hind- and left forelimb.

LF/RF/RH on %StrD The average moment of hoof-on as a percentage of the stride
duration (LH not included, as this is always at 0%StrD).

Transition time between contralateral limb pairs %StrD Time dissociation between contralateral limb between hoof-off and
hoof-on; positive if there is no overlap between contralateral
limb pairs.

Stride duration (StrD) S Time between two consecutive LH impacts.

Stride speed m/s Average speed of a complete stride.

Abbreviations: LF, left forelimb; LH, left hindlimb; RF, right forelimb; RH, right hindlimb; %StrD, percentage of the stride duration (calculated from LH-on to

LH-on moments).

(HDmax, WDmax and PD,,) were calculated (Figure 2 for the walk and
tolt examples).

Except for stride speed and stride duration and stance durations
of all four limbs, temporal stride parameters were calculated
from the time-normalised stride data (LH impact to next LH
impact = 0%-100% of stride duration [%StrD]). Footfalls of the
individual limbs (left front [LF], right front [RF], LH and right hind
[RH]) are displayed as %StrD, where LH impact is always at 0%StrD.
Time differences between the footfalls within different limb pairs
(diagonal and side dissociation) and transitions between contralateral

limb pairs were also calculated from the time-normalised strides.

2.6 | Statistical analysis

Linear mixed models were created for the two conditions (in-hand
and ridden) separately, containing all gaits performed during that con-
dition, to test the effect of lameness induction on both the kinematic
and temporal stride parameters. In addition, linear mixed models were
created for the ridden condition where the t6lt strides were split into
TT, TLC and TMix. Stride-level data for all variables were entered
into the model from the baseline and induced lameness measure-
ments. The models were built in R-studio (version 1.1.414, RStudio

Inc.) using package nlme (version 3.1-152). In each model, the factor

‘lameness’ (baseline or induction) was entered as a fixed effect in
interaction with ‘gait’ (walk, trot or télt). Furthermore, ‘horse’ was
entered as a random intercept. To correct for speed differences within
horses between baseline and induction and to improve model fit,
‘stride speed’ was used as a random slope. Correlations between dif-
ferent gaits (due to the non-random order of gaits within the horse)
were estimated using an autocorrelation component in each model.
To test for speed differences between baseline and induction trials
within gait, a model was created where ‘stride speed’ was not
included as a random slope. Model fit was evaluated using AIC values,
g-q plots and residual plotting. Model estimates were represented as
estimated marginal means, statistical significance was set at a = 0.05,
and p values were adjusted for multiple comparisons using the false
discovery rate procedure.?*

To identify kinematic and temporal parameters that, on a group
level, would be likely associated with lameness at the télt, the sensi-
tivity and specificity of the variables listed in Table 1 were calcu-
lated using package pROC (version 1.18). For each horse, the
15 strides closest to the median stride were selected for both the
baseline and induced conditions. Then, the sensitivity and specificity
were calculated for each variable based on the difference between
baseline and induction conditions. Finally, the optimal sensitivity,
specificity, and corresponding threshold were calculated using You-

den's index.
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FIGURE 2 Explanations for upper body asymmetry value calculations. Upper body asymmetry values are calculated by subtracting left

(L) step values from right (R) step values. This is done for the head (HD,in/HDmay), Withers and pelvis (PDnin/PDmax) separately. For the head and
withers, this means that the second peak or trough is subtracted from the first. This is reversed for the PD,;, and PD,,.x calculations (second
peak/trough minus the first peak/trough). Panels A-C show the example of a walk, whereas in Panels D-F, the tolt example is shown. Panels A
and D show the upper body vertical movement of the head (blue), withers (green) and pelvis (orange). Panels B-F show a footfall pattern of the
Icelandic horse at walk (B, C) tolt (E, F). In Panels B and E, the coloured circles indicate foot contact with the ground. In Panels C and F, the
footfalls of the left front (LF; green), right front (RF; purple), left hind (LH; pink) and right hind (RH; orange) are shown over the mean stride
(0%-100%). At the walk, negative values meant that a lower minimal and maximal position of the head and pelvis were reached during the right
fore- and hindlimb stance phase, respectively. At the t6lt, negative values meant that the head and withers reached a lower minimal position and
the pelvis reached a lower maximal position during the stance phase of the left forelimb and that the head and withers reached a lower maximal

position and the pelvis reached a lower minimal position during the stance phase of the left hindlimb.

3 | RESULTS

A total of 10 horses were used for the analyses of the effects of lame-
ness on temporal and kinematic gait parameters. For both in-hand and
ridden conditions, speed did not differ between baseline and induc-
tion for any gait (p > 0.05;
1.7/1.7 m/s and trotgaseline/ trotinduction 3-5/3.5 m/s; ridden: walkgaseiine/
1.5/1.5 m/s, 3.8/39 m/s and

t0ltgaseline/ tOltinduction 3-3/3.4 m/s). The ridden induction trial was lost

in  hand: WaIkBaseIine/WaIklnduction

Walklnduction trOtBaseIine/trOtlnduction
for one horse due to missing data from one limb sensor. Therefore, the
ridden data of this horse were excluded from further analyses.

3.1 | Kinematic parameters
Estimated marginal means for the kinematic parameters and their
respective confidence intervals for each gait and condition can be
found in Table 2 (in-hand trials) and Table 3 (ridden trials). The results
for upper body vertical asymmetry parameters below are given in
absolute difference between baseline and induction.

Upper body vertical asymmetry results of the ridden trials are
shown in Figure 3. The HD,;;, increased significantly (p < 0.05), both

in-hand (18.8 and 18.1 mm) and ridden (9.7 and 23.9 mm; Figure 4A)
for walk and trot, respectively, though remained unchanged during
tolt. At the tolt, however, increases in HD .y (11.2 mm; p < 0.05) and
PD,ax (4.8 mm; p < 0.05) were found. Changes in HD,,.x were found
for both in-hand (7.8 mm; p < 0.05) and ridden (9.3 mm; p < 0.05) trot,
where there was only a small change in PD,,x while ridden (2.6 mm;
p <0.05). At the walk, HDy.x only changed in-hand (5.8 mm;
p < 0.05), and there was no change in PD,,,,. Furthermore, after lame-
ness induction WD, increased for in-hand (5.5 mm) and ridden
(4.4 mm; p < 0.05) trot and ridden walk (3.8 mm; p < 0.05). WD yax
changed with similar magnitude for both in-hand (4.4 mm; p < 0.05)
and ridden (4.7 mm; p < 0.05) trot, though in-hand, the horses became
more asymmetrical towards the lame limb, whereas while ridden, the
asymmetry remained small but changed to the other side. At tolt,
WD ax increased (3.4 mm; p < 0.05). During walk and trot, both in
hand and ridden, the head's vertical range of motion (ROMz) increased
after lameness induction, though more in-hand than ridden conditions.
Withers ROMz increased in ridden walk (2.6 mm; p < 0.05) but
decreased at ridden trot (4.4 mm; p < 0.05), and pelvis ROMz
increased at ridden trot (2.9 mm; p < 0.05). At tolt, there were no
changes before and after lameness induction in the head, withers and
pelvis ROMz.
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624 SMIT ET AL.
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FIGURE 3 Graphical representation of linear mixed model results for upper body asymmetry during ridden trials. Linear mixed model results
(estimated marginal means and confidence intervals) of the upper body symmetry values at the ridden walk, trot and tolt, before (green triangle)
and after (red circle) lameness induction. Upper body asymmetry values of the head (H), withers (W) and pelvis (P) are given in mm. Both the
difference between the two vertical displacement minima (HD i, WDmin and PD,,in) and between the vertical displacement maxima (HD,pay,
WD.x and PD,,,,) are shown. The data represent a group (n = 9) estimated marginal means (EMmeans) with the 95% confidence interval as

crosshairs.

3.2 | Temporal parameters

The effects of induced lameness on temporal stride parameters for
each gait are summarised in Figure 4, and statistical results can be
found in Table 2 for in-hand conditions and Table 3 for ridden condi-
tions. At tolt, significant changes (p < 0.05) in temporal stride parame-
ters include an increase in sound diagonal dissociation (2.2%StrD) and
a decrease in sound side dissociation (—1.4%5trD), resulting in a lower
percentage of TT strides after lameness induction (30.7% at baseline,
20.1% after induction). This is a result of an earlier landing of the
sound forelimb (Figure 4) (—2.6%StrD; p < 0.05), with no relevant
changes in the footfall timings of the other limbs. Also, at the ridden
walk (=1.7%StrD; p < 0.05) and at in-hand trot (—2.0%StrD; p < 0.05),
the sound forelimb lands earlier relative to the stride cycle. This
results in significant changes (p < 0.05) in sound diagonal dissociation
(1.8%StrD and 1.5%StrD) and sound side dissociation (—1.6%StrD
and —1.5%StrD) at in-hand and ridden trot, respectively, but not at
walk. This earlier landing of the sound forelimb is also represented in
the significant (p < 0.05) differences in the transition times from lame
forelimb to sound forelimb, which decreases with —2.2%StrD, —1.9%
StrD and —3.4%StrD for ridden walk, trot and tolt, respectively, and
with —0.6%StrD and —2.4%StrD for in-hand walk and trot.

3.3 | Results of splitting the tolt
When comparing the effects of lameness between the different types
of tolt, upper body vertical asymmetry for head, withers and pelvis

changed the least for strides labelled as TT, except for HD i, (6.8 mm

[p < 0.05], 0.5 mm and 0.2 mm [n.s.] for TT, TLC and TMix, respec-
tively) and WD, (4.3, 2.1 [p < 0.05] and 3.1 mm [n.s.] for TT, TLC
and TMix, respectively). Changes were larger for TLC and TMix strides
in HDay (14.1 mm for TLC and 16.3 mm TMix; p < 0.05) and PD, .y
(8.1 mm for TLC and 8.6 mm for TMix; p < 0.05) compared to TT
strides (7.3 mm for HDnax and 6.3 mm for PD,.y; p < 0.05). The other
effects of induced forelimb lameness during the different types of tolt
(TT, TLC and TMix) are summarised in Table S1 and Figure S1.

3.4 | Sensitivity and specificity

The sensitivity and specificity results can be found in Table 4 and
were also plotted in ROC curves (Figures S2-S4). For walk and trot,
both in-hand and ridden, HD i, is the most sensitive and specific vari-
able to discriminate between baseline and induction. WD,,;, seems to
be a relevant variable only in in-hand (not ridden) trot
(specificity = 0.77, sensitivity = 0.66). For tolt, kinematic variables
have either low specificity, low sensitivity or both. For temporal vari-
ables, the transition time from LF to RF seems to be most sensitive
for tolt and in-hand walk, whereas right-side dissociation seems to be

most sensitive and specific for in-hand trot.

4 | DISCUSSION

This is the first study that describes the effect of induced forelimb
lameness on the gait kinematics of Icelandic horses, presenting both

upper body asymmetry and stride temporal parameters. Our results
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FIGURE 4 Graphical representation of the temporal changes. Footfall patterns during (A) walk in-hand, (B) trot in-hand, (C) ridden walk,

(D) ridden trot and (E) ridden tolt, before (filled) and after (shaded) lameness induction of the left front (LF) limb. Significant changes in the footfall
of the right front (RF) limb are displayed with the grey hatched area, which relates to the significant changes in diagonal dissociation (DD) (solid

lines) and side dissociation (SD) (dashed lines). Black lines represent the baseline DD and SD, whereas grey lines represent DD and SD after

induction. The data represents the group (n = 10 for in-hand trials and n = 9 for ridden trials) mean footfall patterns.
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forelimb, whereas the transition time from the sound to the lame fore-
limb remains unaffected. This might be caused by lower peak vertical
forces and impulses produced by the lame forelimb.471%2! Similar
adaptations have been found in warmblood horses with forelimb
lameness at trot, where the suspension from the lame to the sound
diagonal was 61% shorter compared to baseline and not even half as

.27 Due to

long as the suspension from the sound to the lame diagona
the earlier landing of the sound forelimb, the same asymmetry trans-
lates into the differences in diagonal dissociation and side dissociation
between the sound and the lame side. At trot and tolt, right diagonal
dissociation and right-side dissociation, which include the non-lame
forelimb, change, while left diagonal dissociation and left side dissoci-
ation, which include the lame forelimb, remain unaffected.

The stance duration of both forelimbs increased during all gaits and
conditions except for the ridden trot. The increase in stance duration has
been described in trot as one of the primary mechanisms horses use to
reduce peak GRFz of the lame limb.2! As télt is also considered a running
gait, it was not surprising to find increases in stance duration of the lame
forelimb after lameness induction in this gait. However, a recent study
showed a reduction in stance duration of the lame limb at walk,'® which
contrasts with our results. Differences between treadmill and overground
locomotion may cause this discrepancy, as it is known that in trot, the
stance duration of the forelimbs is higher on the treadmill compared to
overground conditions.?2 However, whether this holds true for walk is
unknown. Another cause may be that speed could not be perfectly
matched between baseline and induction trials in our study. Even though
on average speed did not change after lameness induction and stride
speed was corrected for in the statistical models, the horses could have
compensated by slightly changing the speed between trials. Finally, the
increase in stance duration at the walk is likely not a rider effect since
stance duration at the walk after lameness induction increased with simi-
lar magnitude during both in-hand and ridden conditions.

The increase in upper body vertical movement asymmetry was
more considerable during the in-hand conditions compared to ridden
conditions, even though the rider was asked to perform a sitting trot
and only have light rein contact to reduce the rider's influence in the
head movement. It is known that, by posting, riders can increase or
decrease vertical movement asymmetry.22? However, the rider was
not expected to affect the movement asymmetry in our study, as the
rider stayed seated during all gaits to avoid asymmetrical loading.3%3!

The horses used for this study were judged as non-lame before
inclusion. This soundness was further confirmed by the absence of
significant asymmetries at both in-hand and ridden walk and trot dur-
ing the baseline measurements. Interestingly, substantial upper body
vertical movement asymmetries were found in the baseline tolt trials.
A possible explanation is that the t6lt might be a more complex task
for the horse than to walk or to trot. It can be found in the literature
that elite dressage horses are more symmetrical at trot compared to
passage or piaffe in terms of the vertical centre of mass movement.>2
Furthermore, it has been shown from human studies that healthy
young adults move more asymmetrically in terms of limb kinematics
and vertical centre of mass movement when dual tasks need to be
performed, thus when a task has increased complexity.>® The

increased complexity theory is supported by the notice that Icelandic
horses, unless extremely good tolters, do not perform a pure tolt
unless ridden, for instance, when they are out in the field or run in-
hand. These baseline asymmetries at tolt in sound Icelandic horses
possibly make it more challenging to examine a horse for lameness
and to distinguish between physiological and pain-related movement
asymmetries.

Studies have shown that lameness is easier to quantify at a trot
compared to walk in warmblood horses.?%3 [t is suggested that this
can be attributed to higher speed and the two-beat nature of the trot,
which ultimately increases peak GRFz, resulting in higher levels of dis-
comfort when the lame limb is on the ground. Also, the centre of mass
moves more vertically in trot when compared to walk, and this higher
vertical centre of mass movement contributes to the higher peak ver-
tical forces on the limbs.1° However, with increasing speed, stride fre-
quency increases, resulting in lower visibility of the asymmetries that
might be present.? Like trot, télt also has higher stride speed and fre-
quency compared to walk3111217; therefore, higher peak GRFz can
be expected. Following this reasoning, we expected to find increased
upper body movement asymmetries after lameness induction at tolt.
However, this was not found in the same manner as at the walk and
trot. In contrast, similar to walk, the tolt has no suspension phase,
and for the largest part of the stride cycle, at least two limbs are in
contact with the ground. This might make it easier to redistribute
weight away from the lame limb. Moreover, Polet showed that the
vertical centre of mass motion should decrease with more distributed
footfalls during the gait cycle.'® This might explain why differences in
HDpmin and WD, were not expressed at tolt compared to trot.
Although it is still counterintuitive that substantial changes in these
parameters are found at walk, but not at tolt after induction.

Since the horses in this study were only measured at tolt while
being ridden, we could not discriminate between the effects of lame-
ness and the possible confounding effects between the rider and
lameness on the measured parameters at tolt. Substantial differences
were observed between in-hand and ridden walk and trot, where
movement asymmetries after lameness induction were smaller in rid-
den conditions. Some orthopaedic veterinarians mention that when
Icelandic horses are presented for lameness exams, it is difficult to get
them to or keep them in, trot. As a result, they may often show a tolt
mixture or a pacy trot. We found that adaptations to lameness may
differ between different ‘types’ of tolt, where the asymmetries were
most prominent in this so-called TMix. Movement asymmetries could
have been more pronounced if the horses had been télted in hand,
even though the quality of this télt may have been low. Further
research needs to be done with clinical cases to confirm this.

There were some limitations to this study. The first limitation is
that we used an acute but reversible sole-pressure lameness induction
model, which differs from many pathologies in lame horses. However,
when the same lameness induction method on warmbloods was
used,?? lameness patterns were similar to those seen later in clinical
cases with different kinds of pathologies.®> Second, only one surface
type was investigated, which is known to affect kinematics and stride

temporal parameters.3¢ Finally, only subtle/mild lameness was
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induced to minimise the discomfort experienced by the horses during
this study. Therefore, we could not investigate if different degrees of
lameness result in different adaptation strategies.

Understanding the compensation mechanisms for lameness
across gaits in the Icelandic horse is essential for a proper
lameness diagnosis. Compensatory mechanisms are complex and
demonstrate that, in general, kinematic adaptations at tolt are differ-
ent from those at walk and trot. Furthermore, adaptations seem larger
in in-hand compared to ridden conditions. At tolt, as opposed to walk
and trot, asymmetry in the vertical movement minima of the head
appears less indicative of forelimb lameness, making visual assessment
more challenging. Based on the results of this study, it is advised to
primarily use the walk and trot for lameness assessments in the
Icelandic horse. If a horse is unable to perform trot in-hand, we advise
performing the lameness examination while ridden at trot, with the

rider performing sitting trot or standing in the stirrups.
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