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Spatial models enable understanding potential redistribution of marine resources

can incorporate spatial processes, but have not been widely implemented or simula-
tion tested. To address this research gap, an international simulation experiment was
organized. The study design was blinded to replicate uncertainty similar to a real-
world stock assessment process, and a data-conditioned, high-resolution operating
model (OM) was used to emulate the spatial dynamics and data for Indian Ocean
yellowfin tuna (Thunnus albacares). Six analyst groups developed both single-region
and spatial stock assessment models using an assessment platform of their choice,
and then applied each model to the simulated data. Results indicated that across all
spatial structures and platforms, assessments were able to adequately recreate the
population trends from the OM. Additionally, spatial models were able to estimate
regional population trends that generally reflected the true dynamics from the OM,
particularly for the regions with higher biomass and fishing pressure. However, a con-
sistent population biomass scaling pattern emerged, where spatial models estimated
higher population scale than single-region models within a given assessment platform.
Balancing parsimony and complexity trade-offs were difficult, but adequate complex-

ity in spatial parametrizations (e.g., allowing time- and age-variation in movement and

appropriate tag mixing periods) was critical to model performance. We recommend
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1 | INTRODUCTION

Sustainable exploitation of living marine resources requires sci-
entifically informed management frameworks (Goethel, Omori,
et al.,, 2023). In many instances, a stock assessment model is the pri-
mary tool for determining total allowable catch (TAC) quotas, and as-
sessments have been widely touted for helping to rebuild many fish
populations globally (Hilborn, 2012; Melnychuk et al., 2017). By sim-
plifying real-world dynamics, stock assessments attempt to balance
complexity and parsimony to adequately estimate temporal trends
in abundance and current population status (Methot, 2009; Quinn
& Deriso, 1999). However, determining adequate performance of
an assessment application is difficult when the underlying truth is
unknown. Thus, simulation modelling can be a useful tool for devel-
oping an understanding of assessment (i.e., estimation model, EM)
robustness, because the true operating model (OM) dynamics (e.g.,
the coupled biological, fishery, and management system) are known
(Deroba et al., 2015; ICES, 1993; Li et al., 2021).

With improved scientific understanding of the spatiotemporal
nature of ecosystem drivers and the redistribution of marine species
due to climate change, there has been an increase in the develop-
ment of spatial assessment models to better represent spatial pro-
cesses (Berger et al., 2017; Punt, 2019a, 2019b). Although spatially
explicit simulation tools have demonstrated that spatial assessments
are typically more robust than single-region or spatially implicit
(i.e., areas-as-fleets, AAF) approaches when spatial dynamics are
present, there remains ambiguity as to the conditions that neces-
sitate implementing a spatial assessment (Bosley et al., 2022; Guan
et al., 2019; McGilliard et al., 2015; Punt et al., 2017). Moreover,
operational application of spatial assessments tends to be focused
on highly mobile, wide-ranging large pelagic species (i.e., tunas;
Punt, 2019a). Knowledge and dissemination of useful approaches
for implementing spatial assessments tends to remain within asso-
ciated regional fishery management organizations (RFMOs) that as-
sess and manage these species (Goethel, Berger, et al., 2023). Thus,
the assessment discipline would benefit from communication across
RFMOs (e.g., through collaborative simulation experiments; Deroba
etal., 2015; ICES, 1993; NRC, 1998) to aid dissemination of evolving
spatial methodology.

However, designing and implementing simulation experiments
to adequately portray the potential performance of an assessment
model under real-world conditions is complicated, especially when

expanded use of high-resolution OMs and blinded studies, given their ability to por-
tray realistic performance of assessment models. Moreover, increased support for
international simulation experiments is warranted to facilitate dissemination of meth-

odology across organizations.

fisheries management, mark-recapture, simulation, spatial ecology, spatial stock assessment,
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undertaken as part of an international collaboration. For instance,
there is an array of experimental design considerations to be ad-
dressed in a simulation experiment, including (Table 1): the number
of estimation platforms to compare, the number of analysts to in-
tegrate in the experiment, the degree to which analysts should be
informed of the underlying OM truth, the spatiotemporal resolution
of the OM, how to condition the OM, the source and types of pro-
cess error to include, the number of OM scenarios to simulate, and
the extent of OM replication to undertake. Many decisions depend
on the goals of the simulation experiment because strong trade-offs
exist (see Table 1). For instance, when testing spatial assessments,
key considerations include the resolution of the OM and the sources
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of process error. The use of high resolution OMs, which maintain
an underlying structure that is independent of any given EM, can
help produce more realistic levels of process and observation error,
but deconstructing the sources of assessment misspecification
can be more difficult (Fisch et al., 2021; Marsh, 2022; McGilliard
etal., 2015; Saul et al., 2020).

Moreover, implementing blind study designs allows replication of
the entire assessment development process (e.g., from data explo-
ration to model diagnostics) with real-world uncertainty. However,
implementing a blind study design is challenging due to the need to
have multiple analyst teams (i.e., an organizing team to develop the
OM and an analyst team to implement the EM without knowledge
of the OM truth). Thus, to implement a blind simulation study, a col-
laborative approach is warranted. Unique logistical challenges then
arise given the level of organization needed, the large time commit-
ment required from each analyst group as well as the organizers, and
the necessity for buy-in from national and international agencies to
ensure support both financially and in terms of analyst time com-
mitments (Deroba et al., 2015; NRC, 1998). Despite the challenges,
integrating multiple analyst teams expands the number of platforms
tested, increases the expertise (e.g., by incorporating experts for
each platform), encourages communication and dissemination of
methodology, and allows for the implementation of blind study de-
signs (e.g., ICES, 1993; NRC, 1998).

Because the development of most spatial assessment applica-
tions remains insular within RFMOs, there is an inherent need to
disseminate and share good practices in modelling spatial dynamics.
Moreover, no study has attempted to compare how spatial dynam-
ics are treated across assessment platforms or what the implications
are for specific assumptions regarding spatial dynamics. To fill this
research gap, researchers from the United States' National Oceanic
and Atmospheric Administration (NOAA) and New Zealand's
National Institute of Water and Atmospheric Research (NIWA)

Region 1

Region 4

.| Region2

Region 3

o r—

e Emulate high
resolution YFT

¢ Develop single

dynamics *6 analyst groups region and spatial
«Integrate random recruited models
variability ¢ Truth known only

by organizers

Objective 1:
Document spatial
model decision
points

organized an international simulation experiment to compare spatial
assessment platforms. The goal of the experiment was to summarize
the state of the science on developing spatially explicit stock assess-
ment models, disseminate spatial model development methodolo-
gies and good practices across RFMOs, and to better understand the
relative performance of single-region and spatial models when con-
fronted with complex spatial structure and simulated data that re-
flected real-world applications. We summarize the primary findings
from the blinded simulation approach by comparing results from
single-region and spatial assessment models developed in an array
of assessment platforms that are used globally. The experiment elu-
cidated important differences in estimation performance between
spatial and single-region models, which may not be observed when
OM and EM structures are consistent (i.e., if a high-resolution OM
had not been utilized). This article also assimilates feedback on the
collaborative simulation process to provide recommendations for fu-

ture multi-national simulation experiments.

2 | METHODS

For this study, a blinded, spatially explicit, cross-platform simula-
tion experiment was implemented utilizing a high-resolution OM
conditioned on Indian Ocean yellowfin tuna (Thunnus albacares; see
Figure 1 and Table 1 for an outline of the experimental design and
simulation settings). An international team of analysts with exper-
tise using each of the major generalized stock assessment platforms
with spatial capabilities was assembled. The study began in 2019
and concluded in early 2023. Results from various aspects of the
study are presented across four journal articles:

e Summarizing the spatial capabilities of current generalized assess-

ment platforms, which follows recommendations by Li et al. (2021)

Objective 3:
Develop
recommendations
for future
research

*Organizers
compare results
to OM truth

* Make suggestions
to improve spatial

models and

simulation studies

¢ Apply single
region and spatial
models to 100

data sets

Objective 2:

Compare results
across spatial
structures

FIGURE 1 The simulation experimental design. The current manuscript focuses on objectives two and three.
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that cross-platform simulation evaluations should begin with a
comparison of source code and model features (Berger et al., In
press).

e Description and demonstration of the spatially explicit, high-
resolution, data-conditioned OM (Hoyle et al., 2024).

e Results from the model development process for the spatial as-
sessments produced by each analyst group (Berger et al., 2024).

e Comparison of model outputs across spatial structures and les-
sons learned from implementing the simulation experiment (this

article).

2.1 | Simulation experimental design

A centralized group organized the overall experiment, including the
data simulation and dissemination to each analyst group, addressing
any concerns or questions, hosting webinars and meetings, and col-
lating results. A multi-national mixture of participants was convened
and self-organized into six stock assessment analyst groups. The or-
ganizing group developed the OM and simulated data, which was then
provided to the analyst groups. Each group developed a single-region
and spatially explicit stock assessment in an assessment platform of
their choice, and emulated the process that would be undertakenin a
real-world assessment. They were requested to document the model
building process, including data analysis, parametrization choices,
model diagnostics, and model validation. Models were then applied
to 100 replicates of the simulated data, and results were submitted
to the organizing group for collation (see Figure 1 for a summary of
the study design; all material utilized in the experiment is available
from the experiment GitHub site: https://github.com/aaronmberger-
nwfsc/Spatial-Assessment-Modeling-Workshop).

Because analyst groups may have had varying levels of prior
knowledge regarding underlying population dynamics, cross-platform
comparisons were not an explicit goal of the experiment. Thus, the
simulation experiment was not designed to compare performance
among platforms nor to identify a ‘best’ platform. Instead, the goal of
the study was to provide insight into spatial model development with
comparisons of model outputs intended to improve understanding of
how spatial structure assumptions impacted model performance and
the potential implications of ignoring spatial dynamics.

2.2 | Operating model

The Indian Ocean yellowfin tuna case study was chosen because
it represented a high-profile species for which complex spatial dy-
namics are known to be a key source of uncertainty for assessment
and management. Additionally, yellowfin tuna is a highly migratory
species of considerable importance to numerous RFMOs, and the
population dynamics reflect those of many worldwide tuna popu-
lations making findings generalizable (to a degree). The OM was
developed to emulate the spatially explicit dynamics of yellowfin

) = 475
e wiLey-L 7

tunain the Indian Ocean by first conditioning the model on empiri-
cal data, observed biology, and expert judgment informing impor-
tant ecological processes. Initial parametrization was based on the
most recent spatial assessment model for Indian Ocean yellowfin
tuna, which utilized a four-region Stock Synthesis 3 (SS3) model
(Fu et al., 2018).

The OM used the Spatial Population Model (SPM; see Dunn,
Rasmussen, et al., 2020, for the user manual and underlying struc-
tural equations), which is a high-resolution, spatially explicit, quasi-
estimation model that can be conditioned on observed data. Initial
development of the data conditioned Indian Ocean yellowfin tuna
operating model is described in Dunn, Hoyle, et al. (2020). The first it-
eration of the model was refined to meet the objectives of this study,
optimize parametrization, and add sources of process error (i.e.,
stochasticity in cell-specific recruit apportionment and year-class
strength). A complete description of the OM and data conditioning
are provided in Appendix S1 (with further descriptions provided in
Hoyle et al., 2024). The following highlights spatial drivers and data

simulation pertinent to interpreting EM performance (Table 2).

2.21 | Spatial dynamics

The OM assumed a single population of yellowfin tuna that moved
across and interacted within 221, 5° latitude x5° longitude cells
(Figure 2). Although fish in each cell underwent unique mortal-
ity and movement processes, biological parameters (i.e., maturity,
growth, and natural mortality) were constant across all cells and
externally derived from Fu et al. (2018). The model assumed a
quarterly time step (i.e., 256 total time steps) and was both stage-
structured (i.e., with two maturity partitions: immature and mature
fish) and age-structured (ages 0-28+, in quarter ages, with the last
age being a plus group). The SPM calculated abundance-at-age by
cell and maturity stage based on forward calculations in a given
time step from initial conditions (i.e., recruitment at age-1 and initial
abundance-at-age in the first time step). Fish then moved among
cells based on habitat preference functions and were subsequently
removed due to fishing. Finally, a time step concluded with remov-
als due to natural mortality and age- and maturity-transitions.

A global Beverton-Holt stock-recruit function with steepness
of 0.8 was assumed where virgin (i.e., unfished) recruitment (R,)
was specified based on Fu et al. (2018) to preserve scaling of the
overall population. Recruitment occurred quarterly and was cal-
culated as the product of the stock-recruit relationship (i.e., based
on the total spawning stock biomass summed across all cells in
the previous quarter), a time step-specific year-class strength
multiplier, and the time step-specific apportionment layer that
assigned recruitment to cells. Maturity-stage-specific movement
rates were determined based on functions that integrated pref-
erence for sea surface temperature, chlorophyll-a concentrations,
and distance among cells. The preference functions were proba-
bility density functions defining attraction to a given cell based on
spatial attributes.
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Fishing mortality was modelled as a cell-specific exploitation rate
based on the real-world distribution and magnitude of catch from seven
fishery fleets operating at various spatiotemporal scales. All fleets were
assumed to have a double-normal selectivity function, aside from the
primary longline fleet that was assumed to have a logistic selectivity
function. Penalties on cell-specific catch levels were enabled to ensure
that catch never exceeded biomass in a given quarter or cell. Length
composition data were produced for each fishery in each cell and time
step for which that fishery operated. The SPM is an age-based model-
ling framework, so the growth curve (with uncertainty) input from Fu
et al. (2018) was internally converted to a distribution of length-at-age
to produce length compositions. A longline fishery catch-per-unit ef-
fort (CPUE) index of relative abundance was also calculated.

Mark-recapture tagging data were included in the model to
mimic the available data for yellowfin tuna (Fu et al., 2018). Tagged
fish underwent an initial tag loss or mortality rate, but were then
assumed to undergo the same dynamics as the untagged popu-
lation with the addition of a chronic tag loss term (i.e., a certain
proportion of tagged fish were removed due to tag loss). Tagged
fish were assigned to a release cohort based on age of release,
maturity stage, and release cell. The number of tag recaptures by
time step, age, cell, and fishery fleet from a given release cohort
were calculated as the product of fishery removals of tagged fish
and the probability that a recaptured tag was reported (i.e., the

fleet-specific reporting rate).

2.2.2 | Model conditioning

The OM was conditioned on empirical data using maximum likeli-
hood estimation (MLE) to estimate realistic parameter values that
were consistent with assumed parameter values. The spatially disag-
gregated data used for model conditioning were taken from the 2018

675 825 975 225 375 525 675 825 975
Longitude

stock assessment (Fu et al., 2018) and binned to a model cell (see
Appendix S1 for more details on available data and model condition-
ing). Data used for model conditioning included fleet-specific catch,
longline fishery CPUE, fleet-specific length frequencies, environmen-
tal or habitat data (i.e., temperature, chlorophyll-a concentrations,
and distance among cells), and tag releases and recaptures from the
purse seine fleet (i.e., the only fleet that consistently reports tagged
fish). The spatiotemporal coverage of tag releases was relatively lim-
ited with a total of 54,688 releases between 2005 and 2007, where
most of the releases were of immature fish into Region 1 in the sec-
ond and third quarters of 2006 (See Figure A2 in Appendix S1). The
available tag recaptures for the purse seine fleet were fit by recapture
cell and age-at-recapture assuming a reporting rate of 90%.

As noted, R, was taken from Fu et al. (2018) and used to scale the
model, while biological inputs were also taken from the recent assess-
ment to ensure consistency (see Table Al in Appendix S1). Similarly,
year class strength multipliers were derived to ensure time step-
specific recruitment generally followed the magnitude and trend from
Fu et al. (2018). For conditioning, the recruitment apportionment layer
was assumed to be time-invariant and based on the general distribu-
tion of juvenile fish observed in fishery length composition data (see
Figure Al in Appendix S1). The primary estimated parameters during
the conditioning phase were selectivity for each fishery, parameters
defining the habitat and ecosystem preference functions for each ma-
turity partition (i.e., to define movement among cells), and a spatio-
temporal invariant CPUE catchability coefficient. Parameter estimates
and model diagnostics are reported in Dunn, Hoyle, et al. (2020).

2.2.3 | Simulation

Once the SPM was conditioned on the yellowfin tuna data, it
was then run as a simulator from the MLE point estimates of the
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estimated parameters. Thus, a single OM scenario was developed to
emulate yellowfin tuna dynamics, which was designed to provide as
realistic dynamics and data availability as possible. However, to en-
sure realistic simulation of uncertainty in primary population dynam-
ics and observed data, observation and process error were included.
Finally, to ensure adequate representation of assessment model
performance, 100 simulation model replicates were produced to
encapsulate variation and provide realistic estimates of uncertainty.
Each model replicate was seeded with a different random number
to ensure a unique realized population trajectory (e.g., due to a dif-
ferent set of year class multipliers and recruit apportionment layers)
and set of data observations.

Similarly, observation error was included for each of the data
sources at the cell-level (excluding catch and tag releases) based on
the assumed error structure and associated variance as used to fit
the data in the conditioning phase. Catch was assumed to be known
without error and reflected the observed cell- and fleet-specific
catch. CPUE data were simulated assuming log-normal deviations
with a coefficient of variation of 0.2. Length composition data (i.e.,
converted from age compositions based on the input distribution of
age-at-length) from each fishery were generated assuming a multi-
nomial distribution with an effective sample size (ESS) of 5 for each
quarter, cell, and fishery. The cell-specific ESS was chosen to pro-
duce compositional data with distributions that reflected the empir-
ical data for yellowfin tuna, including patchiness in both length bins
and spatial cells. Finally, tag release events matched the real-world
tagging data described in the previous section. Simulated recaptures
were based on the number of tags available in each quarter and cell
along with the associated exploitation rate in the purse seine fish-
ery. The final number of simulated recaptures was then determined
assuming a binomial process of tag detection and a reporting rate
of 90%.

2.2.4 | Dataaggregation and inputs

Each analyst group was provided a document summarizing yellow-
fin tuna biology, population dynamics (based on observed data), and
true values of the biological inputs (i.e., maturity, growth, weight-
length relationships, and natural mortality). The document summa-
rized the type of background knowledge that an assessment analyst
would be given for the development of a real-world assessment ap-
plication. Although more information was available than in a real-
world example (e.g., the true biological parameters), the underlying
truth (e.g., population trajectories) were known only by the organ-
izing group.

The simulated data were provided to experiment participants
at three levels of aggregation: the fully disaggregated, cell-specific
data; aggregated to four regions matching the spatial resolution
of the current stock assessment utilized for management advice
(Figure 2); and a single region. Analysts were expected to explore

the disaggregated simulated data to develop hypotheses regarding

distribution, movement, and tagging dynamics, then apply assess-
ment models at the one- and four-region scale (or any other reso-
lution desired). Aside from CPUE, simulated data (i.e., catch, length
frequencies, tag releases, and tag recaptures) were simply summed
across cells within each region for the various aggregated data sets.
For the CPUE data, aggregation to four regions utilized regional
scaling following Hoyle and Langley (2020) to ensure that regional
indices were reflective of associated regional abundance. For tag-
ging data, no explicit information on tag mixing rates or movement

dynamics were provided.

2.3 | Estimation models

There were a total of six analyst groups, which applied four different
model platforms, including Stock Synthesis 3 (SS3), Multiple Length
Frequency Analysis Catch-at-Length (MULTIFAN-CL or MFCL), the
C++ Algorithmic Assessment Library--2nd Generation (CASAL2),
and the bespoke Spatial Processes and Stock Assessment Methods
(SPASAM) model. Three analyst teams utilized the SS3 platform, but
each undertook a unique approach to model development. Aside
from SPASAM, which is primarily a research tool, the other three
platforms have been widely used worldwide for applied stock as-
sessments. All groups provided a single-region and multi-region
model except the SS3_C team, which developed an AAF model but
not a spatially explicit model (see below). All models were applied
to all 100 replicates of the OM. The primary model settings are
provided in Table 2 and unique approaches or parametrizations are
summarized briefly below. However, please see Berger et al. (2024)
for complete details on each model development process and final
model settings. As a general note, all models used the true biologi-
cal inputs from the OM, so any differences in performance were
not due to spatial heterogeneity (or associated misspecification) in
growth, maturity, or natural mortality.

Generally, most of the spatial models utilized similar parametri-
zations (e.g., all but one spatial model assumed four regions) with
slight differences in terms of the regions to which recruitment was
apportioned, the regions among which movement was estimated,
and the number of tag mixing periods (i.e., the number of quarters
during which tag recaptures were ignored or removed; Table 2).
Therefore, differences in performance were likely to be more
influenced by fundamental discrepancies in modelling approach
rather than slight variability in parametrizations. For instance, the
SS3_A team implemented (and fit the resulting index from) a spa-
tiotemporal standardization model on the spatially disaggregated,
cell-specific CPUE data using the R package INLA, while the SS3_C
team used a similar approach with the Vector Autoregressive
Spatiotemporal (VAST) model. The SS3_C team also computed
the associated longline fishery length compositions in VAST with
compositional data weighted by the CPUE in each cell (i.e., before
aggregating to a region), while selectivity was separately speci-

fied for the longline index and the longline fishery. In addition, the
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length compositions for the purse-seine fisheries were weighted
by the catch in each cell, which was an important difference from
other groups' models where length compositions were weighted
by the number of samples in a given cell (i.e., before aggregat-
ing to a region). Moreover, the SS3_C team's AAF model utilized a
novel regression tree approach (Lennert-Cody et al., 2010, 2013)
to define the fleet structure of the purse-seine fisheries using the
associated length composition data. The CASAL2 team also imple-
mented an AAF model in addition to the full complement of model
spatial structures. For the spatial model, the CASAL2 team was
the only one to ignore movement and not integrate tagging data.
The SPASAM group implemented a unique spatial configuration
with a simplified structure that aggregated to two regions (i.e., re-
gions 1-2 and 3-4 were combined). Additionally, the time series in
both the single-region and spatial SPASAM model configurations
was shortened to start in time step 106 based on performance
and run times.

Following the experiment, the organizing team developed an
array of alternate EM parametrizations to explore the impact of
model assumptions on resulting performance to highlight future
research avenues. Model descriptions and results pertaining to
the exploratory runs are provided in Appendix S2 (see Table B1 in
Appendix S2 for a description of each exploratory run).

2.4 | Model evaluation

Because comparison across model platforms was not an explicit
goal of the simulation experiment, a relatively simple approach to
model evaluation was undertaken. Convergence rate was used as
an initial measure of model stability, which was defined as a model
having a positive definite Hessian matrix and a maximum objective
function gradient component less than a pre-specified cut-off value
(e.g.,0.001; each analyst group utilized slightly different thresholds,
but chosen values were unlikely to vary greatly or have a strong
impact on interpretation of model performance). Only converged
runs of each EM were included in the results. Percent relative error
(i.e., bias) in key model outputs typically used for management ad-
vice (i.e., SSB and depletion) was used to make general comparison
across spatial structures. Bias was calculated as the estimated value
from the EM minus the true value from the OM, which was then
divided by the true value and converted to a percentage. Visual
comparisons of bias were undertaken by plotting the time series
of median bias along with the 75% and 95% intervals across all the
converged simulation iterations for each quantity of interest, in-
cluding both aggregated (i.e., across all regions) and region-specific
quantities for spatial models. SSB was calculated as the weight
of mature females in metric tons (mt). Depletion represented the
ratio of SSB in a given year divided by the SSB in the first year of
the model time series (i.e., the denominator was static) for a given
model and spatial scale of interest (i.e., for the SPASAM models the
first model year was time step 106, instead of time step 1 as was the
case for all other platforms).

> = 481
e wiLEy-L

3 | RESULTS
3.1 | Operating model dynamics

The full suite of parameter estimates and model diagnostics are
reported in Dunn, Hoyle, et al. (2020) with detailed outputs pro-
vided in Appendix S1. The OM was generally able to emulate the
most plausible population scale and trends (e.g., the most recent
stock assessment; Fu et al., 2018, 2021) by region and across the
entire population (Figure A9 in Appendix S1). The distribution of
yellowfin tuna in the model was driven by the combined impacts
of the spatial processes (i.e., recruitment location, movement
based on environmental preference, and locations of high fishing
pressure), which resulted in the dynamic distribution of cells with
high population density (Figure 2). A large portion of the mature
biomass began in the northern cells (e.g., regions one and four),
but, due to moderate recruitment and the bulk of the fishing pres-
sure being centred here, the SSB declined rapidly (Figures 2 and
3). Conversely, the mature biomass in the southern cells (e.g., re-
gion two) increased across the first 50 time steps before levelling
off, likely driven by relatively higher recruitment and lower fishing
pressure. Region three demonstrated a decline in SSB followed by
a slight rebound due to low fishing pressure. In region four, the
SSB trends downward for much of the time series due to moderate
fishing and low recruitment. The biomass trend for the popula-
tion generally mimics that of region one, while recruitment fluctu-
ates with little trend across the time series (Figure 3). By the end
of the time series, density had decreased considerably with the
highest density areas located primarily in the southern parts of
the domain, particularly in region two (Figure 2). Because mature
yellowfin tuna tended to redistribute to areas with lower fishing
pressure, there was potential for ‘cryptic’ biomass (i.e., unobserv-
able by the CPUE abundance index and generally undisturbed by
harvest) in region two and, to a lesser extent, region three.

3.2 | Comparison across assessment
spatial structures

Across platforms and spatial structures, convergence rates were sat-
isfactory (i.e., greater than 80% except for two instances), indicat-
ing that models were generally stable and had likely converged to
global solutions for the associated parametrization (Table 2). A slight
pattern of lower convergence for single-region or spatially implicit
(AAF) models compared to spatial models was present, but it was
not consistent across all platforms. Analyst groups typically spent
more time developing and analysing spatial models, which may have
impacted the relative convergence rates.

The most prominent and consistent trend in results was that
single-region models always estimated a lower population scale (i.e.,
SSB) relative to spatial models within a given platform (Figure 4).
Moreover, the spatially implicit AAF models appeared to estimate
population scales that were intermediate between single-region and
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FIGURE 3 Simulated regional (column)
dynamics from the operating model,
including recruitment (top row; 1000s

of fish) and spawning stock biomass
(bottom row; metric tons). The black

line is the median, while the shaded
regions represent the 95% (light blue) and
75% (dark blue) intervals across all 100
replicates of the operating model.

FIGURE 4 Comparison of percent
relative error in total (aggregated across
regions for spatial models) spawning stock
biomass across model spatial structure
(columns; left is single-region models,
centre is spatially implicit areas-as-fleets
models, and right is spatial models) and
assessment platform (row; see Table 2 for
a description of model parametrizations).
The true value from the operating model
is represented by the dashed-line at zero.
The solid dark line is the median percent
relative error, while the shaded regions
represent the 95% (light blue) and 75%
(dark blue) intervals of percent relative
error across all 100 simulation replicates.
Only results from converged model runs
are illustrated. Note that the SPASAM
model started in time step 106.
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spatial models. However, there was only one platform (CASAL2) for
which all three model types were implemented. The SS3_C single-
region and AAF models demonstrated a similar trend in population
scaling as the corresponding CASAL2 models. All models were able
to recreate the general declining trend in SSB across the time series
(Figure C1 in Appendix S3).

Across spatial structures, there were no consistent patterns
in SSB bias, given that the initial scaling typically influenced
the magnitude and direction of bias (Figure 4). For instance, the
SS3_A, SS3_C, and SPASAM single region models tended to un-
derestimate initial population scale and maintained negative bias
for the entire time series (Figure 4). The corresponding SS3_A and
SPASAM spatial models were the least biased in regards to estima-
tion of SSB, with moderate median bias (i.e., <+30%; Figure 4). The
SS3_C group did not have a spatial model, but their AAF model had
reduced bias compared to the single region model, though, still
with a general negative bias that exceeded median bias from the
SS3_A and SPASAM models. Conversely, the CASAL2 group's AAF
approach was positively biased for the entire time series, while
the associated single-region model demonstrated moderate me-
dian bias (i.e., <+30%), and the spatial model had increased posi-
tive bias compared to the AAF model. The SS3_B and MFCL single
region models demonstrated positive bias early in the time series
with moderate median bias (i.e., <+30%) throughout the latter
half of the time series. The corresponding spatial models demon-

strated consistent positive bias throughout the time series. Aside
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from the CASAL2 model (which maintained a consistent positive
bias throughout the time series), the spatial assessments demon-
strated a positive bias in the first half of the time series, which
decreased through time (Figure 4).

As is expected given the definition of total population depletion
(i.e., current year SSB divided by SSB in the first year of the model),
it was accurately estimated early in the time series across all spatial
structures and platforms (Figure 5). Accurate estimation of initial de-
pletion is not surprising, given that it is a relative value (i.e., based
on internal scaling not absolute scaling in comparison with the OM
truth), and since all models were able to estimate the trend and scale
of population declines (Figures C1 and C2 in Appendix S3). In gen-
eral, the spatial assessments (except for the SPASAM model) pro-
vided more accurate estimates of depletion in the latter half of the
time series compared to the single region models (Figure 5). In par-
ticular, the spatial models demonstrated reduced bias in estimates
of terminal depletion, which is an important quantity for manage-
ment decisions and harvest control rules (Figure 5). Moreover, the
CASAL2 spatial model demonstrated low median bias (<+10%) for
depletion across much of the time series, while the SS3_A and SS3_B
spatial models demonstrated a negative bias with slightly larger mag-
nitude (i.e., <+20%; Figure 5). The SPASAM models demonstrated
a unique pattern among spatial structures, where the single-region
model tended to have less median depletion bias than the spatial
model (Figure 5). Depletion bias for AAF structures was less than

associated single region models.
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Relative regional scaling as well as regional population trends
were generally consistent with the truth from the OM for the spa-
tial models (Figure 6 and Figure C3 in Appendix S3). Estimates for
regions one and four were generally the least biased across plat-
forms (Figure 6). On the other hand, initial estimates from region
two were more strongly biased, while estimates for region three
demonstrated the highest bias across the time series (Figure 6).
Results from the SPASAM model are difficult to compare to the
other spatial models, given that only two regions were modelled.
Bias in SSB for each of the combined regions was relatively low
with a slight tendency to underestimate the SSB in the combined
region that included regions one and two with overestimation in
the combined region that included regions three and four (Figure 6
and Figure C3 in Appendix S3).

In terms of regional depletion, the spatial models demonstrated
slight negative bias in region one, strong negative bias in region two,
and strong positive bias for regions three and four (Figures C4 and
C5 in Appendix S3). The MFCL spatial model differed slightly with a
negative bias in depletion for region four (and an associated positive
bias in SSB). Interestingly, despite demonstrating less bias in deple-
tion estimates for most regions compared to the other spatial mod-
els, the MFCL spatial model had increased bias for total depletion
compared to most other platforms (Figure 5). Generally, the spatial
models matched the trends and depletion levels for the regions with
the greatest contrast (i.e., regions one and four), but had difficulty
estimating the dynamics for the smaller and less heavily fished re-
gions (i.e., regions two and three).

T T T T
100 150 200 250

4 | DISCUSSION

By implementing a high-resolution, spatially explicit OM in conjunc-
tion with a blinded experimental design, the current study provides
arealistic demonstration of potential stock assessment performance
and bias. Moreover, the experiment demonstrates the first use of a
blinded experimental design for spatially explicit assessment mod-
els, emulating previous studies for non-spatial models (e.g., Deroba
et al.,, 2015; ICES, 1993; NRC, 1998). Given the inherent compli-
cations and uncertainty presented by the study design, it was not
surprising that none of the platforms or spatial structures were
able to provide completely unbiased estimates of SSB or deple-
tion. However, across all platforms and spatial structures, assess-
ments were generally able to recreate the true population trends.
The most consistent finding across spatial structures was that single
region models always estimated a lower population scale compared
to spatial models (within a given platform), while spatially implicit
AAF models tended to estimate a population scale intermediate to
the two extremes. Additionally, spatial assessments (aside from the
SPASAM platform) were generally better able to estimate recent and
terminal depletion compared to single region models.

Moreover, the spatial models were able to match the general
population trends by region. Regional dynamics tended to be better
estimated for the larger and more heavily exploited (see Figures A3-
A5 in Appendix S1 for spatiotemporal trends in removals), and
therefore better sampled, regions (e.g., region one). Because the
dynamics within regions with less biomass (or smaller population
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units) are often more difficult to differentiate, independently mod-
elling and estimating associated region-specific parameters can be
extremely difficult (Goethel et al., 2019; Vincent et al., 2017). Thus,
careful delineation of regional boundaries is needed, particularly
when no strong biological population structure exists (e.g., when a
single population unit is distributed across multiple regions; Berger
et al., 2021). Similarly, aggregating across regions with similar dy-
namics should be considered where appropriate (e.g., the SPASAM
approach in this experiment), while ways to improve sampling (e.g.,
for compositional data and tag recaptures) from regions with lower
biomass or fishing intensity need to be identified (Goethel, Berger,
etal., 2023).

The general results are consistent with the conclusions of
Deroba et al. (2015) in that model structure (i.e., surplus production
compared to age-structured models in that study and single-region
compared to spatial models in our study) appears to have the most
important influence on population scaling, as opposed to different
parametrizations within a given structure. Therefore, the decision to
aggregate across important biological or fishery dynamics, whether
by age or in space, is likely to be the most influential decision during
the development of a stock assessment model. Careful delibera-
tion and exploration (e.g., through analysis of disaggregated data)
of model structure is merited to identify an adequate balance be-
tween parsimony and complexity. It is also interesting to note that,
in the Deroba et al. (2015) experiment, the highest bias in model
cross-tests often occurred in the terminal years, whereas that was
not the case in the current experiment (i.e., bias was typically higher
in initial scale rather than terminal SSB). Closed loop simulation and
management strategy evaluation (MSE) would be necessary to iden-
tify which type of bias is more detrimental to the establishment of
robust catch advice.

Two notable model parametrizations led to important improve-
ments in model performance and merit further evaluation. First,
allowing for time- and age-varying movement may improve spa-
tial model performance, an approach recommended by Goethel
et al. (2021) when limited knowledge exists as to the primary driv-
ers of movement. For example, the SPASAM model (and the Alt_
Move + App_Rave_Spat exploratory run, see Appendix S2), which
allowed time- and age-varying movement parameters, demonstrated
limited bias in total and regional SSB. Further simulation testing is
needed to determine if the added complexity outweighs the poten-
tial bias associated with simplifying movement dynamics. Second,
utilizing a spatiotemporal CPUE standardization approach may bet-
ter elucidate regional scaling (e.g., as observed with the performance
of the SS3_A and SS3_C models). Therefore, high-resolution data
analysis and preprocessing should be a first step in the development
of any spatial assessment because it can inform all structural aspects
of the assessment.

Moreover, decisions during the initial data aggregation stage of
model development (e.g., whether to weight length compositions by
samples per cell, as was the default for most modelling approaches
in the experiment, or by cell-specific catch) may have important and
unexpected influences on model results. For instance, the SS3_C
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team demonstrated that the approach used to aggregate purse-
seine length compositions (i.e., catch or sample weighted) was more
influential on the estimates of total SSB than model structure (i.e.,
single-region compared to AAF; Figure Cé in Appendix S3). An im-
portant aspect of developing future assessment good practices will
be defining a more prescriptive, instead of subjective, approach to
data processing and assessment decision-making.

For any model, there is a trade-off between the number of par-
titions that can be included and the associated complexity that can
be integrated for each process, especially given data constraints.
When spatially-explicit models are intractable, the results of the
simulation experiment suggest that AAF models are likely to out-
perform single-region models, indicating that implicitly accounting
for spatial processes may be preferred to completely ignoring them.
Again, careful data analysis and aggregation could be critical for im-
plementing adequate AAF approaches (e.g., using the SS3_C group's
novel regression tree approach, based on Lennert-Cody et al., 2010,
2013, to help identify and delineate fleet structure). For spatial mod-
els, the parsimony versus complexity balance will be unique to each
application and must weigh data availability, primary spatial drivers,
and management goals (Goethel, Berger, et al., 2023). For example,
the SPASAM model included only two regions, yet performed well
for estimating parameters in those regions. Similarly, the CASAL2
spatial model provided unbiased estimates of total depletion, de-
spite ignoring movement and not integrating tagging data. Thus, ap-
propriate delineation of regional or population boundaries may be
an adequate first step towards spatial model development (Cadrin
et al., 2019). Moreover, there is likely an interplay between spatial
parametrization (i.e., the ability to estimate time- and age-variation
in movement) with the number of regions modelled.

The treatment of tagging data is yet another aspect of spatial
models that also merits further investigation. Tagging data are likely
needed to adequately estimate movement rates, but there are im-
portant trade-offs when it is integrated into assessments. For ex-
ample, including tagging data appeared to improve overall scaling,
as indicated by the No_Tag exploratory run results (see Figure B1
in Appendix S2). However, the difficulties of dealing with tag mix-
ing predominated the model development process of many analyst
groups (i.e., the MFCL, SS3_A, and SS3_B groups explored tag mix-
ing extensively; see Berger et al., 2024). Analysing tag mixing rates
is complex because mixing depends on the movement dynamics
and dispersal potential of fish, the size of the modelled regions, and
the distribution of tag releases (particularly in relation to regional
boundaries). The simulated yellowfin tuna dynamics suggest that
tag mixing rates were probably relatively low at the ocean-basin
scale, but immature fish (i.e., most tagged fish were immature)
were likely able to mix within and across regions before reaching
maturity. Because most of the spatial assessment models assumed
four regions (Figure 2), it is likely that intermediate tag mixing pe-
riods (e.g., four to eight quarters) would be adequate to allow tags
to fully mix with the untagged population. Given the number of
processes that tagging data can inform (i.e., movement, mortality,
and distribution), further work to identify tag mixing periods (e.g.,
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Kolody & Hoyle, 2015) and integrate new tag types (e.g., Thorson
et al., 2021) should be a priority.

4.1 | Implications and potential drivers of
estimation model performance

The observed differences among spatial structures could be due
to the relative distribution of fishing effort and SSB, where lower
fishing pressure in more southern cells in the OM led to distribu-
tional hotspots and the potential for cryptic biomass (Figure 2).
However, the lack of overlap between the fishery and biomass
may be a model artefact due to the use of real-world catch lo-
cations with simulated recruitment and movement dynamics, and
may not reflect the real-world situation for yellowfin tuna in the
Indian Ocean.

Because single-region assessment models assume uniform dy-
namics and homogenous distribution, there may be a tendency to
underestimate biomass when spatial structure exists and fishing
pressure is heterogeneous (e.g., Guan et al., 2013). Conversely, spa-
tial models are able to explicitly account for varying fishing pressure
among regions, but rely on adequate and reliable data to discrimi-
nate among movement, recruitment, and mortality processes. When
only fishery-dependent data are available (i.e., as is the case in the
current study and for many tuna assessments), preferential sampling
and lack of data from areas of low fishing pressure are likely to lead
to increased bias compared to situations where more holistic sam-
pling from fishery-independent surveys is available (Marsh, 2022).

The exact mechanisms that might lead to the pattern of spatial
models estimating higher population scaling remain uncertain. One
hypothesis that was introduced during the experiment workshop
centred on the possibility that the catch and CPUE data create min-
imum biomass levels for each spatial region (i.e., ‘biomass floors’) to
support the removals, which could increase overall scale when ag-
gregated to the population level. Although untested, the hypothesis
warrants further examination, likely through development of alter-
nate OM scenarios with varying regional catch and data availability
or quality. The treatment of abundance data could also have an in-
fluence on regional estimates, given that models utilizing CPUE from
spatiotemporal standardizations performed well. Thus, there may be
some advantages to using more sophisticated spatiotemporal CPUE
standardization approaches to better account for spatial processes
and autocorrelation, which merits additional investigation.

Multiple real-world tuna assessments have demonstrated a sim-
ilar pattern of higher scaling in spatial compared to single-region
models. For instance, an assessment of bigeye tuna (Thunnus obe-
sus) in the western and central Pacific Ocean (Ducharme-Barth
et al., 2020) estimated higher population scale and more optimis-
tic levels of depletion for a nine-region spatial model compared to
a single-region AAF model. A similar pattern was observed for an
eight-region spatial assessment for skipjack tuna (Katsuwonus pela-
mis) in the western and central Pacific Ocean compared to a five-
region model (Vincent et al., 2019). Hypothesized drivers for higher

population scaling of the more complex spatial models were similar
to potential drivers in the current study. For instance, build-up of
cryptic biomass in large, lightly fished temperate regions was pro-
posed to limit information on regional scaling from CPUE indices.
Moreover, compartmentalized regions of high fishing mortality in
spatial models were hypothesized to lead to large-scale refuge from
fishing pressure (i.e., compared to lower resolution models that as-
sumed a more homogeneous distribution of fishing mortality).

Using a high-resolution, spatially explicit OM, McGilliard
et al. (2015) observed a similar pattern in SSB estimation bias be-
tween spatial and single-region models (i.e., single-region models es-
timated a lower scale compared to the spatial models), too. However,
the spatial models were generally unbiased, while the single-regions
models were negatively biased. McGilliard et al. (2015) included a
fishery-independent survey, which likely aided estimation of regional
recruitment, movement among regions, and fishing pressure. The im-
proved performance of the spatial model in the exploratory run where
a de facto fishery-independent survey was integrated (Survey_All_Yrs_
Spat) illustrates that relying solely on fishery data may be an import-
ant driver of results (see Figure B1 in Appendix S2). However, the
general performance of spatial models relative to single-region coun-
terparts is likely dependent on the spatial dynamics present (Goethel,
Berger, et al., 2023; Guan et al., 2019), and further evaluation with
high-resolution simulation frameworks is recommended.

We emphasize, though, that interpreting the experimental re-
sults must be done with care, given that it was impossible to en-
sure equality in resources and prior knowledge of system dynamics
across analyst groups. For instance, there was a wide disparity
across groups in terms of having worked on tuna assessments (or
even the emulated yellowfin tuna assessment) before. However, it
was unlikely that prior knowledge provided a large benefit in the
context of the experiment. Conversely, time and resources devoted
to model development and validation were likely unequal amongst
teams, and the amount of time that a team was able to devote to
the project probably influenced performance to an unknown extent.
The experiment was also hampered by uncertain timelines induced
by the COVID-19 pandemic. The one certainty was that no team was
able to spend as much time as they would have preferred developing

their spatial assessment.

4.2 | Recommendations and future directions for
collaborative, international simulations

Using a high-resolution OM provided a unique opportunity to bet-
ter emulate real-world data scenarios, but it proved more diffi-
cult to decipher drivers of EM performance given the potential for
more extreme misspecification. Future blinded simulation experi-
ments could be improved by implementation of a more system-
atic investigation of EM performance following the group analysis
stage of the experiment. Once the blinded experiment has been
completed by each analyst group and the code base is available
for translating OM outputs to EM inputs for each platform, then
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a single lead could begin simultaneous investigations across plat-
forms. For instance, the approach might start with implement-
ing consistent versions of each platform (e.g., as was done by Li
et al., 2021), then make systematic changes to identify how and
why platform outputs diverged. Also, development of alternate
OM s could help identify specific drivers of bias or data types that
could improve performance.

In the future, high-resolution simulations could also be com-
bined with more traditional approaches where the OM and EM
had the same resolution or utilized the same framework (e.g.,
Deroba et al.,, 2015). Thereby, aspects of observed EM perfor-
mance that were due to using the high-resolution OM could be
isolated by comparing performance due to a specific or known
misspecification from a lower resolution OM. Moreover, stepwise
addition of complexity (i.e., building from low to high-resolution
OMs) could be conducive to more thoroughly understand EM-OM
interactions and performance. Conversely, to improve OM real-
ism, we also recommend integration of high-resolution fishing ef-
fort dynamics models (e.g., Fisch et al., 2021; Saul et al., 2020).
Moreover, utilizing agent-based OMs might help to better simu-
late mark-recapture and compositional (i.e., age and length) data
that reflects real-world information content and uncertainty (e.g.,
Marsh, 2022; Scutt Phillips et al., 2018).

Implementing the blinded study design proved to be the most
difficult aspect of the study. Ensuring that all analyst teams are start-
ing with similar prior knowledge and resource allocations (i.e., time
and personnel available for model development) would greatly aid
the ability to make broader generalizations. Although the blinded
design can be challenging to organize and implement, it should be
more widely utilized, given that it enables recreating the entire as-
sessment process (i.e., including high resolution data analysis) and
helps implement more realistic uncertainty.

Our primary recommendation regarding simulation design is that
consistent and sufficient funding should be secured at the start of the
project, which covers expenses for the duration of the experiment
associated with dedicated personnel to organize and facilitate the
experiment, a primary research team devoted to OM development
and refinement, and analyst time to implement EMs. Moreover, re-
sources associated with file storage, virtual webinar hosting, and in
person workshops should also be considered. A team approach and
reproducible workflows are essential for sharing workloads across the
organizational team and to account for attrition. Similarly, sufficient
cloud storage will help with data sharing, backup, and collating results,
given the large amounts of data that will be produced. Implementing
realistic timelines may be one of the hardest aspects of a collaborative,
international simulation, but realization of milestones can be aided by
having personnel whose primary task is facilitating the study.

4.3 | Conclusions

As stock assessment methodology rapidly evolves, it is becoming
more difficult to keep pace with new approaches, which are often
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not documented in the primary literature. Thus, collaborative, in-
ternational, and cross-platform simulation studies are increasingly
important for the dissemination of stock assessment good practices
(Deroba et al., 2015). Moreover, with increasing demands on fisher-
ies managers to address climate change, ecosystem considerations,
and marine spatial planning, utilization of high-resolution OMs as
well as spatial assessment approaches will be necessary. The spatial
simulation experiment provided a useful demonstration and step-
ping stone for future iterations of complex, spatially explicit simu-
lation testing of fisheries models and management paradigms. We
expect that the existing code base and public GitHub repository will
provide a useful starting point for future simulation experiments,
and we encourage researchers to make use of the existing resources
from this experiment.

The results of the simulation experiment do not necessarily pro-
vide any generalizable answers to the question of whether single-
region or spatial models perform best. Whether more complex
spatial assessments are warranted for a particular fisheries manage-
ment application will be context dependent and influenced by the
goals of management, the data availability, biological understanding,
and fishery dynamics (Goethel, Berger, et al., 2023). When spatial
models are being pursued, it is recommended that single-region
models, including AAF models, always be developed in tandem with
the spatial model. Developing and presenting both single-region and
spatial models may lead to synergistic improvements in management
advice, instead of aiming to present a single ‘best’ model (e.g., the
spatial model might be utilized to understand regional depletion
and partition catch among regions). Moreover, it is recommended
that future work with spatial assessments incorporate feedback
control loops (i.e., utilize MSE) to explore the robustness of catch
advice as opposed to only the bias in estimated quantities (e.g., Punt
et al., 2017).

The simulation experiment provided a forum to share and dis-
seminate spatial model building approaches across many of the
world's fisheries organizations, which instigated numerous new
collaborations and research agendas. Thus, we encourage RFMOs
to pursue funding to support continuation of similar simulation ex-
periments in the future, while working across institutional boundar-
ies to improve and develop next-generation assessment platforms.
The spatial complexities that must be confronted by fisheries as-
sessment and management will increase as living marine resources
redistribute in warming oceans, thereby, crossing regional and ju-
risdictional boundaries (Liu et al., 2023). Similarly, expansion of the
blue economy will further complicate partitioning of the marine en-
vironment among competing sectors. Thus, earmarking resources to
support increased international collaborations and development of
high-resolution fishery models is imperative to ensure sustainable,
scientifically informed management advice in the coming years.
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