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A B S T R A C T   

Use of wheeled mobile robot systems could be crucial in addressing some of the future issues facing agriculture. 
However, robot systems on wheels are currently unstable and require a control mechanism to increase stability, 
resulting in much research requirement to develop an appropriate controller algorithm for wheeled mobile robot 
systems. Proportional, integral, derivative (PID) controllers are currently widely used for this purpose, but the 
PID approach is frequently inappropriate due to disruptions or fluctuations in parameters. Other control ap-
proaches, such as linear-quadratic regulator (LQR) control, can be used to address some of the issues associated 
with PID controllers. In this study, a kinematic model of a four-wheel skid-steering mobile robot was developed 
to test the functionality of LQR control. Three scenarios (control cheap, non-zero state expensive; control 
expensive, non-zero state cheap; only non-zero state expensive) were examined using the characteristics of the 
wheeled mobile robot. Peak time, settling time, and rising time for cheap control based on these scenarios was 
found to be 0.1 s, 7.82 s, and 4.39 s, respectively.   

1. Introduction 

Research on wheeled mobile robot systems has expanded in the past 
10 years, in order to deal with the complex dynamics, uncertainties, and 
rapidly shifting disturbances that such robotic systems encounter [1]. 
There are already numerous areas of application for wheeled mobile 
robots, in e.g., wireless-powered communication networks (WPCN), 
logistics, monitoring forest fires, military and civilian surveillance, and 
data collection and acquisition [2]. The range and quantity of applica-
tions will continue to increase in future with the emergence of improved 
features such as more compact size, maneuverability in confined spaces, 
and lower hardware mechanical complexity compared with other ro-
botic systems [3]. 

However, wheeled mobile robots are more vulnerable to different 
kinds of disruptions and uncertainties when in operation, meaning that 
their control systems must be strong, reliable, and functional [4]. 
Various control systems have been suggested to regulate the dynamics of 
wheeled mobile robots. Some of these, such as linear-quadratic regulator 
(LQR), H-infinity, and proportional integral derivative (PID), are based 
on linear control theories. Other designs based on non-linear control 
theories, including model predictive control (MPC), feedback 

linearization, sliding-mode, and backstepping have also been developed 
[5–7]. Additionally, learning-based flight control theories and hybrid 
control, such fuzzy logic and neural networks, have been applied to 
regulate the dynamics of wheeled mobile robots. One of the best control 
approaches, which is predicated on minimizing a certain quadratic cost 
function, is LQR, which has been thoroughly studied for use in regu-
lating the dynamics of wheeled mobile robots. The quadratic cost 
function of the LQR controller is composed of two weighting matrices, Q 
and R, where the Q matrix is linked to deviations in the trajectories of 
state variables and the R weighting matrix is related to actuator satu-
ration and control effort [8–11]. 

The primary concern when using the LQR optimum controller for 
real-time applications is choosing appropriate values for the Q and R 
weighting matrices, which are trade-offs by nature and are typically 
changed via a trial-and-error method. For example, choosing large co-
efficient values for the R matrix penalizes the control effort more 
severely in order to optimize the cost function, resulting in an expensive 
control solution [12,13], while choosing very small values for the R 
matrix entails attempting to stabilize the system using an inexpensive 
control method. For the Q matrix, selecting large coefficient values 
means attempting to stabilize the system with the fewest feasible state 
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changes, whereas selecting smaller values indicates less concern with 
state changes [14–17]. Designer experience and trial-and-error play a 
major role in selection, but the impacts of uncertainty and disturbance 
are not taken into account when modifying the weighted performance 
matrices Q and R through trial-and-error [18,19]. 

In addressing this area of concern, the durability and excellent per-
formance of LQR controllers provide the capacity to minimize control 
effort while reducing deviations in the state trajectories of wheeled 
mobile robots [20–23]. The suitability of LQR control for a wheeled 
mobile robot for use in agriculture was analyzed in the present study. 
The remainder of this paper is arranged as follows: Section 2 describes 
the concept behind selection of the wheeled mobile robot model, Section 
3 presents the mathematical models and control theory design applied in 
developing the model, and Section 4 describes and discusses the 
modeling outcomes for three scenarios (control cheap, non-zero state 
expensive; control expensive, non-zero state cheap; only non-zero state 
expensive). Some conclusions from the work are presented in Section 5. 

2. Wheeled mobile robot model background and selection 

At present, 6.4 % of global economic productivity is derived from 
agriculture and many countries worldwide have agriculture as their 
primary economic sector. In addition to providing billions of people 
with food, agriculture creates jobs for a sizable portion of the global 
population. Concerns about food security, the rapid rise in global pop-
ulation, and unexpected climate change have prompted the agriculture 
industry to look for new and creative ways to boost crop production. As a 
result of these efforts, wheeled mobile robots are gradually becoming 
more prevalent in the sector, as part of an ongoing technological revo-
lution [24–30]. Table 1 shows the current issues and highlights recent 
progress in the field. 

Types of wheeled mobile robots and their characteristics. The mobile 
robot in the agricultural fields was depicted in Fig. 1. The mobile robot is 
continuously monitoring the health of the crops during their growth. 

Wheeled robots move over the ground by the action of motorized 

wheels. The wheel types currently available and their key characteristics 
are listed in Table 2. 

Based on its superior characteristics, a four-wheeled robot design 
was selected for use in modeling in this study. 

3. Development of a kinematic model of a four-wheeled mobile 
robot for agricultural applications 

3.1. Case study and assumptions 

Differential steering was assumed for the four-wheel undercarriage 
of the selected mobile robot, with each wheel operated separately 
through the use of a servomechanism (a recommended wheeled un-
dercarriage design). Assumptions made when creating the kinematic 
model were that:  

• Wheel deformations are small or constant  
• Wheels roll without slipping 

Table 1 
recent work in the area.  

Resources Principal Findings of the Research 

[31] The goal of this work is to use a multi generic decision-making strategy to optimize the control system’s algorithm for a collection of robotic assets. Many operator 
decision support techniques and control algorithms utilized by research teams to build heterogeneous robotic means to address agricultural monitoring tasks fall short of 
providing a complete solution. The method is based on model optimization, namely the idea of auctions inside the created system, which makes it possible to identify a 
robotic system that has the highest chance of completing the assigned task. 

[32] In this research, an adaptive control technique based on reinforcement learning is suggested to handle the input time delayed system and discrete-time (DT) nonlinear 
state tracking problem of the wheeled mobile robot (WMR). With the standard model of the WMR turned into an affine nonlinear DT system, a delay matrix function and 
appropriate Lyapunov-Krasovskii functionals are provided to overcome the issues caused by the state and input time delays, respectively. Moreover, adaptive laws are 
defined for the adaptive controller, the critic NN, and the action NN using the approximation of the radial basis function neural networks (NNs) to ensure the uniform 
ultimate boundedness of all signals in the WMR system and the tracking errors convergence to a small compact set to zero. 

[33] For such a goal, a discrete-time LQR (Linear Quadratic Regulator) predictive controller is created. The LQR predictive controller was successfully used to MIMO time- 
delay processes displaying huge, non-minimum phase modes, integrating, stable, and unstable modes in order to validate such an approach. The disturbances in the 
output were chosen at random. 

[34] Reinforcement learning is a model-free optimal control technique used in this work that interacts directly with the environment to optimize a control policy. Because of 
chattering in the goal state, common discrete-action approaches are not well suited for reaching goals that finish in regulation. Three approaches to solving this challenge 
by fusing traditional LQR control with reinforcement learning were compared by the authors. Specifically, they present an approach that incorporates LQR control into 
the action set, enabling generalization and preventing the need to fix the calculated control in the replay memory if it is derived from dynamics that have been learned. 
Moreover, incorporate LQR control into a strategy that uses continuous action. In both cases, they showed that adding LQR control can increase performance, although 
the effect is more substantial if it can be utilized to augment a discrete action set. 

[35] This study offers an application of Reinforcement Learning (RL) that makes use of a tracking controller based on the linear quadratic regulator (LQR) and enhanced by a 
tracking error component. In order to deal with the steady-state errors, Linear Quadratic Tracker with Integrator (LQTI) is constructed by adding an integration term of 
the tracking error in the state variable. For the tracking problem, an online learning approach based on Integral Reinforcement Learning (IRL) is used to identify the best 
control on the partially unknown continuous-time systems by adjusting the augmented state variable. This approach is based on the LQTI. Through numerical simulation 
on two applications, the performance of the method and the optimal control solution are confirmed. 

This paper Using wheeled mobile robot systems could prove essential to solving some of the challenges agriculture might encounter in the future. To assess how well LQR control 
worked, a kinematic model of a four-wheel skid-steering mobile robot was created.  
The features of the wheeled mobile robot were used to analyze three scenarios: only non-zero state expensive; control expensive, non-zero state cheap; and control cheap, 
non-zero state expensive.  

Fig. 1. Wheeled mobile robot in action in the field [24].  
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• Wheel roll is clean, so velocity at the middle of wheel is equal to 
peripheral speed  

• Chassis velocity is low  
• There is point contact between wheels and pad. 

Such considerations are an inherent part of almost any task involving 
vehicle motion. An efficient and all-encompassing approach to vehicle 
motion is the so-called matrix kinematics method. 

3.2. Skid-steering mobile robot (SSMR) 

In the kinematic model, a skid-steering mobile robot (SSMR) was 
tested. It was assumed that this robot operated on a plane surface with 
an inertial orthonormal basis (Xg,Yg, Zg), as shown in Fig. 2. 

A local coordinate, located by (Xl,Yl, Zl), was assigned to the robot at 
its center of mass (COM). From Fig. 2, the coordinates of COM in the 
inertial frame can be written as COM (X, Y, Z). Since only plane motion 
was considered in this study, the Z-coordinate of COM was constant (Z =
const). The robot was assumed to move on the plane surface with linear 
velocity expressed in the local frame as V = |Vx Vy Vz |

T and to rotate with 
an angular velocity vector ω = [0 0 ω]T , where q = |X Y θ |

T is the state 
vector describing generalized coordinates of the robot (i.e., the COM 
position, X and Y, and the orientation θ of the local coordinate frame 
with respect to the inertial frame). Thus q̇ = |ẊẎθ̇|T denoted the vector 
of generalized velocities. The variables Ẋ and Ẏ were related to co-
ordinates as indicated in Fig. 3. Mathematically, the free-body kine-
matics equations were: 
{

X = XICRxsinθ + XICRycosθ
Y = XICRxcosθ + XICRysinθ   

⎧
⎪⎪⎨

⎪⎪⎩

dX
dt

= Ẋ˙=
d
dθ
(
XICRxsinθ+XICRycosθ

)

dY
dt

= Ẏ˙=
d
dθ
(
XICRxcosθ+XICRysinθ

)

Using chain rules: 
⎧
⎪⎪⎨

⎪⎪⎩

dX
dt

= Ẋ˙=
(
XICRxθ̇˙cosθ − XICRyθ̇˙sinθ

)

dY
dt

= Ẏ˙=
(
XICRxθ̇˙sinθ +XICRyθ̇˙cosθ

)

With: 
{

Vx = XICRxθ̇˙
Vy = XICRyθ̇˙

Where XICRx, local coordinate along x axis, XICRy, local coordinate 
along y axis. 

Based on the [4], the system equation can then be written as: 
[

Ẋ˙ Ẏ˙

]

=

[
cosθ − sinθ
sinθ cosθ

][
Vx
Vy

]

(1) 

For planar motion, θ̇˙ = ω.

3.3. Relationship between wheel velocities and local velocities 

For simplicity, the thickness of the wheel was neglected and the 
wheel was assumed to be in contact with the plane surface at point Pi in 
Fig. 3. In contrast to most wheeled vehicles, the lateral velocity of the 
SMRR (ViY) is generally non-zero, where i = 1, 2,3, 4…. This property 
derives from the mechanical structure of the SSMR, which makes lateral 
skidding necessary if the vehicle changes its orientation. Therefore, the 
wheels are tangent to the path only if ω = 0, at which the robot moves 
along a straight line. We considered only a simplified case of SSMR 
movement for which the longitudinal slip between the wheels and the 
surface can be neglected. Linear velocity was then related to angular 
velocity as ViX = riωi, where ViX is the longitudinal component of the 
total velocity vector Vi of the ith wheel expressed in the local frame and 
ri is effective rolling radius of that wheel. To develop a kinematic model, 

Table 2 
Types of wheels currently available for wheeled robots.  

Parameter Single-wheel 
[24–30] 

Double-wheel [18–25] Three-wheel 
[9–14] 

Four-wheel 
[9–25] 

Moving over a non- 
level surface 

Extremely difficult to keep balanced due to 
single point of contact on ground 

Difficult to stabilize Stable Most stable configuration 

Center of gravity Not properly located Robot body is kept below the axle Inside the triangle formed Remains inside the 
rectangle formed 

Number of inputs Single Double Three Four or more 
Power usage Small More than with single wheels, less 

than with three wheels 
More than with double wheels, less 
than with four wheels 

High 

Control The most difficult Better than with single wheels, 
worse than with three wheels 

Better than with double wheels, 
worse than with three wheels 

Best 

Mathematical models The simplest Simple Better than with four wheels Complex 
Route performance The most difficult Difficult Better Best  

Fig. 2. Skid-steering mobile robot in the inertial frame (COM, center of 
mass) [28]. 

Fig. 3. Velocities at one wheel of the four-wheeled mobile robot (ωi, angular 
velocity vector at point Pi) [26]. 
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it was necessary to take into consideration all four wheels together. 
As shown in Fig. 4, the radius vectors then became di = [dix diy]

T, and 
dC = [dCx dCy]

T , re-defined with respect to the local frame from the 
instantaneous center of rotation (ICR). 

Based on the geometry in Fig. 5, the following expression was 
deduced: ‖ Vi

di
‖=‖ V

dC
‖= |ω|. Accordingly [8–10], it is known from 

Euclidean norm equation that: 

Vix

− diy
=

Vx

− dCy
=

Viy

− dix
=

Vy

− dCx
= ω. (2) 

From instantaneous center of rotation (ICR) in the local frame: 

ICR = (XICR, YICR) =
(
− dCx, dCy

)
(3) 

Then Eq. (2) becomes 

Vx

YICR
= −

Vy

XICR
= ω (4) 

From Fig. 5, it is clear that the coordinates of vectors di satisfy the 
following relationships: 
⎧
⎪⎪⎨

⎪⎪⎩

d1y = d2y = dCy + C
d3y = d4y = dCy − C
d1x = d4x = dCx − a
d2x = d3x = dCx + b

(5)  

where a, b, and c are positive kinematic parameters for the robot 
depicted in Fig. 4. 

On combining Eq. (2) and Eq. (5), the following relationships be-
tween wheel velocities were obtained: 

⎧
⎪⎪⎨

⎪⎪⎩

VL = V1x = V2x
VR = V3x = V4x
VF = V2y = V3y
VB = V1y = V4y

(6)  

where VL and VR denote the longitudinal coordinates of the left and right 
wheel velocities, respectively, and VF and VB are the lateral coordinates 
of the velocities of the front and rear wheels, respectively. Then from Eq. 
(2) to Eq. (6), the relationship between the wheel velocities and the 
velocity of the robot is: 
⎡

⎢
⎢
⎣

VL
VR
VF
VB

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1 − c
1 c

0 − xICR + b
0 − xICR − a

⎤

⎥
⎥
⎦

[
Vx
ω

]

(7) 

Assuming that the effective radius is ri = r for each wheel, back 
substitution into Eq. (7) gives: 
[

ωL
ωR

]

=
1
r

[
VL
VR

]

(8)  

where ωL are ωR is the angular velocity of the left and right wheels, 
respectively. 

Combining eqs. (7) and (8), the following approximate relationship 
between the angular wheel velocities and the velocities of the robot was 
developed (which was the rod profile for the robotics): 

β =

[
Vx
ω

]

= r

⎡

⎢
⎣

ωL + ωR

2
− ωL + ωR

2c

⎤

⎥
⎦ (9)  

where β is a new control input introduced at the kinematic level. 
From Eq. (9) it is clear that, theoretically, the pair of velocities ωL and 

ωR can be treated as a control kinematic input signal, as can velocities Vx 
and ω. However, longitudinal slip has a major role in the precision of the 
relationship in Eq. (9), which can only hold true if longitudinal slip is not 
prominent. To guarantee high validity in determination of the angular 
velocity of the robot with regard to the angular velocities of the wheels, 
the parameters R and C in Eq. (9) can also be determined experimen-
tally. If a velocity constraint is introduced in the system, then: 

Vy + xICRθ̇˙ = 0 (10) 

Eq. (10) is not integrable and is consequently a nonholonomic 
constraint. It can therefore be rewritten in the form [− sinθ cosθ xICR ]

[ẋẏθ̇] = A(q)q̇ = 0, where Eq. (1) is used. Since the generalized velocity q̇˙
is always in the null space of A, then: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q̇˙ = S(q)*βST(q)AT(q) = 0

S(q) =

⎡

⎢
⎢
⎣

cosθ xICRsinθ

sinθ − xICRcosθ

0 1

⎤

⎥
⎥
⎦

(11) 

It should be noted that dim (β) = 2 < dim (q) = 3. Eq. (7) describes 
the kinematics of the robot, which is underactuated. This is also a 
nonholonomic system, because of the constraint described by Eq. (10). It 
is interesting to note that the kinematic model of the SSMR analyzed was 
quite similar to the kinematics of a two-wheeled mobile robot. From Eqs. 
(4) and (7), it can be seen that control of the Vy and Vyi velocity co-
ordinates is not possible without knowledge of the xl-axis projection of 
the ICR. Therefore, considering the linear velocity Vx and the angular 
velocity ω as control signals seems to have an advantage over the pre-
vious parameters proposed. Instead of ω, velocity Vy was used in this 
study. 

Fig. 4. Free body diagram of the four-wheeled mobile robot (COM, center of 
mass) [36]. 

Fig. 5. Wheel velocities for the four-wheeled mobile robot [36].  
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3.4. Validation of control of the linear wheeled mobile robot model 

Control models must be holonomic systems with controllability or 
influence, i.e., control or influence is impossible if the model is non-
holonomic. The concept of ‘controllable’ was created here in order to 
test this. Controllability can be roughly defined as the capacity to 
manipulate a system throughout its configuration space using specific 
permitted manipulations. A deterministic system is fully described at 
any given time by its state, which is the set of values of all its state 
variables (those variables defined by dynamic equations). Specifically, if 
the current and future values of the control variables (those whose 
values may be chosen) are known, and if the states of the system are 
known, then no information about the system’s past is required to aid in 
future prediction. The system that the state space representation simu-
lates is controllable if there is an input sequence that can move the 
system state from x 0 to x f in a finite amount of time for any initial 
state, x 0, and any final state, x f :
{

ẋ˙ = Ax(t) + Bu(t)
y = Cx(t) + Du(t) (12) 

There exists a control u from state x0 at time t0 to state x1 at time t1 

> t0 if and only if x1 − ∅(t0, t1)x0. The state-transition matrix ∅ is also 
smooth. We introduced the nxm matrix-valued function M0(t) =

∅(t0, t)B(t) to give: 

Mk(t) =
dkM0

dtk (t), k ≥ 0 (13) 

We then examined the matrix of matrix-valued functions created by 
enumerating each column of the Mi, i = 0,1,…k :

M(k)(t) = [M0(t),….Mk(t)] (14) 

If there exists a t̂ =∈ [t0, t] and a non-negative integer k such that 
rank M(k)(̂t) = n, then given the state x(0) at an initial time, arbitrarily 
denoted k = 0, the state equation gives x(1) = Ax(0)+ Bu(0), and x(2)
= Ax(1)+ Bu(1) = A2x(0)+ ABu(0)+ Bu(1), and so on with repeated 
back-substitutions of the state variable, eventually yielding: 

x(n) = Bu(n − 1)ABu(n − 2) + An− 1Bu(0) + Anx(0).

Equivalently: 

x(n) − Anx(0) =
[
B AB….An− 1B

][
uT(n − 1) uT(n − 2)…..uT(0)

]T (15) 

At angle = 30o and xICR = 0.6 cm, the state matrix becomes: 

A =

⎡

⎣
0.5 0 0

0.5 − 0.3 0
0 0 1

⎤

⎦

B =

⎡

⎣
0.5
0
0

⎤

⎦

C = [1 0 0]

D = 0  

Ccontrollable =

⎡

⎣
0.5 0.25 0.125
0 0.25 0.05
0 0 0

⎤

⎦

Uncontrollable = Length(A) − Rank(controllable)

Length(A) = 3  

Rank(controllable) = 2  

Uncontrollable = 3 − 2 = 1 

The observable of a wheeled mobile robot system is a measure of how 
well the system’s internal states can be deduced from information about 
its exterior outputs. 

The observable matrix is: 

Observable =

⎡

⎣
1 0 0

0.5 0 0
0.25 0 0

⎤

⎦

Unonservable = length(A) − rank(observable)

Unonservable = 3 − 2 = 1 

As a result, mobile robots on wheels are uncontrollable and invisible. 
This indicates that the system is nonholonomic, validating the mathe-
matical models established. 

Consequently, the projected state space matrix becomes: 

S(q) =
[

cos θ xICRsinθ
sinθ − xICRcosθ

]

(16) 

And the input matrix is Eq. (9). 

3.5. Control system for the wheeled mobile robot model 

Framework for LQR gain design 
The goal of optimal control theory is to minimize costs while regu-

lating a dynamic system. The Q problem is the situation in which a 
quadratic function describes the cost and a set of linear differential 
equations describe the dynamics of the system. A mathematical tech-
nique is used to find the settings of a (regulatory) controller that governs 
wheeled mobile robots. The algorithm minimizes a cost function with 
required weighting factors. An event or the values of one or more var-
iables are mapped onto a real number that intuitively represents some 
"cost" related to the event via a cost function. A prevalent description of 
the cost function is the total of the important measurements’ deviations 
from the desired values, such as the wheeled mobile robot’s state. Thus, 
the controller settings that minimize unwanted deviations are found by 
the algorithm. The cost function may also take into account the size of 
the control action itself [31]. 

To solve for the optimal control and examine the properties of the 
closed loop system. Consider the following linear-time-invariant whee-
led mobile robot model at angle = 30o and xICR = 0.6 cm, the state 
matrix becomes: ẋ = Ax+ Bu,

A =

[
0.86 0.3
0.5 − 0.52

]

B =

[
0.5
0

]

With the performance index 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

J =

∫+∞

0

(
x2

1 + ru2)dt

Q =

[ 1 0
0 0

]

, R = r

(17) 

The eigenvalues of the open loop system are 0.5, − 0.3, and 1. In the 
performance index the state penalty matrix Q penalized the first state of 
the system. The controller penalty r left as a parameter, so it could be 
seen how small and large values of r changes the closed loop dynamics. It 
is always important to check if the design problem is well-posed. Con-
ditions on the plant and on the performance index for well-posed 
problem require to check if the unstable modes of the system are 
controllable and if the unstable modes are observable through the state 

penalty matrix. To verify if (A, B) is stabilizable and 
(

A, Q1
2

)
is 

detectable. Now computing the controllable matrix: 
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

PC = [B AB]
[

0.5 0.43

0 0.25

]

Rank = 2 

Since the matrix has full rank, the system is controllable. So, any 
unstable modes are controllable. Next, it can factor the state penalty 
matrix into square roots 

Q =
(

Q
1
2

)T
Q

1
2 =

[
1 0
0 0

]

*
[

1 0
0 0

]

=

[
1 0
0 0

]

And then check the observability using the square root of Q: 

[
Q1

2

Q1
2A

]

=

⎡

⎢
⎢
⎣

1 0
0 0

0.86 0.3
0 0

⎤

⎥
⎥
⎦, Rank = 2 

Since this matrix has full rank, all modes of the system are observable 
through the penalty matrix. Now it can solve the algebraic riccati 
equation (ARE) [31] 

PA + AT P − PBR− 1BT + Q = 0 (18) 

For P, using A,B,Q, and R = r. Let P =

[
P1 P2
P2 P3

]

. Then the ARE is 

[
P1 P2
P2 P3

][
0 1
0 − 1

]

+

[
0 0
1 − 1

][
P1 P2
P2 P3

]

−

[
P1 P2
P2 P3

][
0
1

]
1
r
[0 1]*

[
P1 P2
P2 P3

]

+

[
1 0
0 0

]

= 0 (19) 

Since the riccati matrix P must be real symmetric and positive define, 
from Eq. (19), it can derive three equations for P1, P2, and P3. These are 

−
P2

2

r
+ 1 = 0 (20)  

1 − P2 −
P2

2

r
= 0 (21)  

2(P2 − P3) −
P2

3

r
= 0 (22) 

The first equation gives P2 =
̅̅
r

√
, both positive and negative values of 

m must be checked to see which is the solutions. Using P2 =
̅̅
r

√
, P1,

and P3 are 

P3 = r

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
2
̅̅
r

√

√

− 1

)

(23)  

P1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
2
̅̅
r

√

√√
√
√
√ (24) 

The constant state feedback gain matrix is 

K = R− 1BT P =

[
2

√r

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
2

√r

√ ]

(25) 

Then the closed loop state dynamics characteristics equations 
become 

∅cl(s) = s2 + s

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
2

√r

√

+
1

√r
(26)  

the values of the optimal feedback gains are proportional to the relative 
magnitude of the Q and R. for a fixed R value, large values of Q heavily 
penalize the state relative to the control, the resulting optimal feedback 
gains grow large, and the closed-loop system response gets fast. On the 
other hand, small values of Q penalize the control more than the state, 
resulting in smaller control efforts. This keeps the gains small, producing 
a slower response. Common issues in the realm of control include how 
the output system can follow a reference in addition to the stabilization 
system. If the output is to follow reference r, then an integrator should be 
added and the error state (γ) should be defined as the integrator output, 
with γ representing the difference between the input and output of the 
wheeled mobile robot system: 
⎧
⎪⎪⎨

⎪⎪⎩

ẋ˙ = Ax + Bu
y = Cx

u = − Kx + kIγ
γ̇˙ = r − y = r − Cx

(27)  

where x is a state vector, u is control signal, y is output, r is reference 
(step function, scalar), and γ is integrator output. 

The kinematic system in Eq. (17) can be written as: 

Fig. 6. Step response of the wheeled robot without a control mechanism.  
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
ẋ

ẏ

]

=

[
A 0

− C 0

][
x

γ

]

+

[
B

0

]

u +

[
0

I

]

r

[
ẋ(∞)

ẏ(∞)

]

=

[
A 0

− C 0

][
x(∞)

γ(∞)

]

+

[
B

0

]

u(∞) +

[
0

I

]

r(∞)

(28) 

Tracking must be designed to make system stabilize. If x(∞), γ(∞)

and u(∞) approach constant values, then γ̇˙ = 0, so y(∞) = r. In steady 
state, Eq. (18), because r(t) is signal step, then r(∞) = r(t) = r is constant 
value. For t > 0 subtracting Eq. (18) gives: 
[

ẋ(t) − ẋ(∞)

ẏ(t) − ẏ(∞)

]

=

[
A 0
− C 0

][
x(t) − x(∞)

γ(t) − γ(∞)

]

+

[
B
0

]

[u(t) − u(∞)] (29) 

This implies that: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t) − x(∞) = xe(t)

γ(t) − γ(∞) = γe(t)

u(t) − u(∞) = ue(t)
[

ẋe(t)

γ̇e(t)

]

=

[
A 0

− C 0

][
xe(t)

γe(t)

]

+

[
B

0

]

[ue(t)]

ue(t) = − Kxe(t) + KIγe(t)

(30) 

Vector error size (n + 1) can be defined as: e(t) =

[
xe(t)
γe(t)

]

Then Eq. (20) becomes: ė˙ = Âe+ B̂ue, with: Â =

[
A 0
− C 0

]

, B̂ =

[
B
0

]

, into: ue = K̂e, K̂ = [K KI], into: ė˙ = (Â − B̂ *K̂)e. The value of K̂ is 

found with the LQR method and the cost function in LQR is defined by 
solving the optimization problem to (J)min: 

J =

∫+∞

0

(
xT Qx+ uT Ru

)
dt 

Subject to: 
{

x = Ax + Bu
u(t) = − Kx(t) (31)  

where K = R− 1BTS, which are full-state feedback controllers and where 
S is the solution to Riccati’s algebraic equation (nxn) and ATS + SA −

SBR− 1BTS+ Q = 0.

3.6. Linear characteristics analyzed for the different scenarios 

Settling time (TS), i.e., the time required for the output to stabilize 
within a given tolerance band, is described mathematically as: 

Ts =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

4
σωn

, 0 < σ < 1

∞ σ = 0
6

ωn
σ > 1

(32)  

where σ is damped ratio. 
Rise time (Tr) describes the time taken for the solution to increase 

from 0 % to 100 % of its ultimate value in underdamped systems, or from 
10 % to 90 % of its final value in over-damped systems. Mathematically: 

Tr =
π − θ

ωd
(33) 

Peak time (Tp) is the time required for the response to reach the peak 
value for the first time. Mathematically: 

Tp =
π

ωd
(34) 

Peak overshoot, or maximum overshoot (Mp), is defined as the de-
viation of the response at peak time from the final value of response. It is 
expressed as: 

Mp =

(

e
−

(

σπ̅̅̅̅̅̅
1− σ2

√

)
)

*100 (35) 

At steady state time (Tss), the rate of input is equal to the rate of 
elimination 

3.7. Theoretical analysis of the proposed results 

Let assumed the difference between y and steady state. If that goes to 
zero, then the state space is stable. If that blows up, if y goes further 
away from the steady state, it’s unstable. So dy

dt is f of y. the capital dY
dt 

well, that’s actually 0. Capital Y is that constant steady state, and at the 
same time, f of y is 0. So, we have just put a 0 on the left side, and 0 on 

Fig. 7. Position, velocity, and force states in cheap control of the wheeled mobile robot.  
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the right side, remembering capital Y solves the equation with no 
movement at all. 

Mathematically, 

dy
dt

(y − Y) = f (y) − f (Y) (36) 

To ensure the Eq. (36), let look at the derivative of state space from 
Eq. (16) before, and after applied the LQR algorithm. 

Before applied LQR, let assumed that, y = x, and dy
dt =

dx
dt = ẋ˙

⎧
⎪⎪⎨

⎪⎪⎩

dy
dt

= ẋ1 = x1*cosθ + x2*xICRsinθ

dy
dt

= ẋ2 = x1*sinθ − x2*cosθ
(37) 

At θ = 0, between θ = 90 
The state space is positive this clamed that the state space without 

the control is unstable. However, the state after applied the control al-
gorithms goes to 0, which implies that y = Y, if dy

dt < 0 then the state 
space is stable. 

4. Simulation results and discussion 

4.1. Results for the wheeled robot model without control 

The velocity/time plot indicated that the wheeled model without 
control was totally unstable (Fig. 6). A mathematical representation of a 
physical system consisting of a set of road profiles (input), outputs, and 
variables connected by first-order differential equations or difference 
equations without the use of second derivatives (state-space represen-
tation) was developed for the system. These variables fluctuated over 
time in a way that depended on their current value and the values of 
other externally imposed variables. For example, the values of the 
output variables were influenced by the values of the state variables. 
Over the first 20 s, the wheeled robot remained stable with no distur-
bance, but after 21 s the system started to become unstable (slow 
disturbance) (Fig. 6). For the wheeled mobile robot system, no settling 
time, rise time, peak time, or steady state time could be obtained. This 
was due to the low impact that the wheeled robot sustained and the 
irregular movement on a rough surface, which caused instability in the 
system as a whole. After the model was updated with an appropriate 
controller system, the system became stable. This model was a linear 

state space representation, because the set of first-order differential 
equations was linear in the state and road profiles (input) variables. 
Linear quadratic regulation (LQR) was the selected control type. 

A LQR controller for the wheeled mobile robot was built up mathe-
matically by minimizing the cost function with selected weighting fac-
tors. Total departure of significant measures from ideal values, such as 
height, road profiles, or ground surface, is sometimes used to charac-
terize the cost function. The LQR program then determines the 
controller settings that minimize unwanted deviations. The size of the 
control action itself may also be considered by the cost function. 

4.2. Results for the wheeled robot model with LQR controller 

Bryson’s method was used to modify the Q and R weighting matrices, 
in an effort to address the shortcomings of the trial-and-error approach. 
Q and R were computed with this method by calculating the reciprocal 
of squares of the maximum permissible values of the state and input 
control variables. As Fig. 7 shows, a non-zero state was expensive and 
control was inexpensive. Because of this, the position of the wheeled 
mobile robots dropped for 5 s, before stabilizing at a less expensive 
position (Fig. 7). Concurrently, the velocity of the wheeled mobile robot 
system increased for 10 s before stabilizing throughout, because the 
velocity’s state was far more expensive than the position of the mobile 
robot on its wheels. The force needed to stabilize the entire system was 
not very expensive for all non-zero states. This low cost and negative 
increase indicated that more control was used for controlling non-zero 
situations. By choosing modest coefficients, attempts were made to 
stabilize the system using a relatively cheap control method. 

When non-zero states were inexpensive, control was costly (Fig. 8). 
Because of this, the position of the wheeled mobile robot system drop-
ped until 8 s later, at which point it stabilized. The state of position was 
less expensive in this way. Concurrently, velocity of the wheeled mobile 
robot system velocity increased for 10 s, before stabilizing throughout, 
because the velocity’s state was far more expensive than the position of 
the mobile robot on wheels. The force needed to stabilize the entire 
system was quite costly for all non-zero states, with the negative increase 
indicating that more control was needed to manage the non-zero states 
(Fig. 8). Selection of values for the Q and R weighting matrices, which 
involves trade-offs and is typically changed by trial-and-error, is the 
primary determinant of the LQR optimum controller for wheeled mobile 
robotics systems in real-time applications. On choosing large coefficients 
for the R matrix, control is sacrificed in order to optimize the cost 

Fig. 8. Position, velocity, and force states in expensive control of the wheeled mobile robot.  
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function (expensive control). 
Selecting large coefficients for the Q matrix stabilized the system 

with the fewest feasible state changes, whereas selecting lower values 
for Q ignored state changes (Fig. 9). In both these cases, experience and 
trial-and-error play a major role and the impacts of uncertainty and 
disturbance are not taken into account. A primary weakness of Bryson’s 
rule is that it ignores disruptions and uncertainty and instead primarily 

relies on the designer’s experience. Using Bryson’s method as a starting 
point for choosing Q and R values, followed by applying the trial-and- 
error method to acquire the desired attributes of the closed-loop sys-
tem, caused the response in expensive control to become comparable to 
that of the cheap solution (Fig. 9). 

Peak time, settling time, rising time, and steady state time for the 
three different scenarios analyzed are shown in Table 3. 

Fig. 10. Positions of wheeled mobile robot with the with linear-quadratic regulator (LQR) control system.  

Table 3 
Linear characteristics of the wheeled mobile robot in the different control scenarios analyzed.  

Scenario R (input penalization 
matrix) 

Q (state penalization 
matrix) 

K (Gain 
values) 

Peak time 
(TP, s) 

Settling time 
(Ts, s) 

Rise time 
(Tr, s) 

Steady state time 
(Tss, s) 

Control cheap, non-zero state 
expensive 

[0.01]
[

1 0
0 1

]
[24.14 0] 0.0707 5.53 3.11 0.0707 

Control expensive, non-zero 
state cheap 

[1000]
[

1 0
0 1

]
[20 0] 0.1 7.82 4.39 0.1 

Only non-zero velocity 
expensive 

[1]
[

0.001 0
0 10

]
[20 0] 0.1 7.82 4.39 0.1  

Fig. 9. Position, velocity, and force states of the wheeled mobile robot when ignoring the position.  
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The vertical axis in Fig. 10 shows the position (in m) of the wheeled 
mobile robot, while the horizontal axis shows the time horizon. Three 
pumped road profiles were used as inputs after the proper feedback 
gains were optimally regulated to allow for closed-loop stable and high- 
performance system design. The system had to be stable for the robotic 
arm to stand on it when the correct control gains were applied. 

Fig. 11 shows the response speed of the wheeled mobile robot. Three 
road profiles with bumps were applied as input. The velocity response 
resembled the inputs (road profiles), indicating that the response of the 
wheeled robot can be tracked. Thus, the LQR control system tested was 
appropriate for controlling a wheeled mobile robot in the agricultural 
sector. 

5. Conclusions 

Mathematicians have designed mobile robots with four wheels, but 
unfortunately using nonholonomic mathematical models for which 
control or influence is impossible, as confirmed in this study using the 
concepts of controllable and observables. Based on the expected math-
ematical models, LQR was selected here as an appropriate control design 
for a wheeled mobile robot for agricultural use. The primary goal in 
control is to obtain the best mathematical formula for calculating the Q 
and R weighting matrices, to overcome the drawbacks of the existing 
subjective, trial-and-error approaches. Thus, the process seeks to create 
a strong control framework. The method applied in this study involved 
computing the matrix Q straight from the state matrix dynamics, here 
referred to as designer target states. In the situation considered, some 
states (e.g., altitude and yaw angle) were deemed more essential than 
the other states, and so the relevant Q values were kept as large as 
possible to penalize the other states. This Q value was then used to 
calculate the value of matrix R. The strength of the method lies is its 
ability to follow changes in the model dynamics caused by defects, un-
certainties, and parameter alterations by adjusting the values of the 
weighting matrix. To assess the performance of the LQR control system, 
three scenarios were examined (control cheap, non-zero state expensive; 
control expensive, non-zero state cheap; only non-zero state expensive), 
with the only costly option being non-zero velocity. Peak time, settling 
time, rising time, and steady state time for cheap control was determined 
to be 0.0707 s, 5.53 s, 3.11 s, and 0.0707 s, respectively, based on these 
scenarios. This indicates that the LQR control system can be appropriate 
for controlling wheeled mobile robot systems in agricultural 
applications. 
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