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Abstract
Emerging	evidence	points	out	that	the	responses	of	soil	organic	carbon	(SOC)	to	nitro-
gen	(N)	addition	differ	along	the	soil	profile,	highlighting	the	importance	of	synthesiz-
ing	results	from	different	soil	layers.	Here,	using	a	global	meta-	analysis,	we	found	that	
N	addition	significantly	enhanced	topsoil	 (0–30 cm)	SOC	by	3.7%	(±1.4%)	in	forests	
and	grasslands.	 In	 contrast,	 SOC	 in	 the	 subsoil	 (30–100 cm)	 initially	 increased	with	
N	addition	but	decreased	over	time.	The	model	selection	analysis	revealed	that	ex-
perimental duration and vegetation type are among the most important predictors 
across	a	wide	range	of	climatic,	environmental,	and	edaphic	variables.	The	contrast-
ing	responses	of	SOC	to	N	addition	indicate	the	importance	of	considering	deep	soil	
layers,	particularly	for	long-	term	continuous	N	deposition.	Finally,	the	lack	of	depth-	
dependent	SOC	responses	to	N	addition	in	experimental	and	modeling	frameworks	
has	likely	resulted	in	the	overestimation	of	changes	in	SOC	storage	under	enhanced	
N	deposition.
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1  |  INTRODUC TION

Excessive	nitrogen	(N)	deposition	from	human	activities	has	con-
tinuously	 increased	 over	 the	 past	 decades	 (Fowler	 et	 al.,	 2013; 
Gruber	 &	 Galloway,	 2008;	 IPCC,	 2021),	 with	 substantial	 con-
sequences	 on	 soil	 organic	 carbon	 (SOC)	 dynamics	 (Liu	 &	
Greaver,	2010;	Pregitzer	et	al.,	2008;	Xu	et	al.,	2021).	Despite	the	
rapid	increase	in	the	number	of	studies	reporting	the	effects	of	N	
addition	on	SOC,	no	consensus	has	been	reached	on	the	response	
along	the	soil	profile.	For	example,	Bowden	et	al.	(2019)	found	that	
N	addition	significantly	increased	SOC	in	the	topsoil	in	boreal	for-
ests	(0–30 cm),	whereas	N	addition	significantly	decreased	SOC	in	
temperate	grasslands	when	the	whole	soil	profile	(0–100 cm)	was	
considered	 (Li	 et	 al.,	2014;	 Poeplau	 et	 al.,	2018).	 Thus,	 a	 better	
understanding	of	N	deposition	impacts	on	SOC	at	different	depths	
is	urgently	needed	to	accurately	predict	carbon	(C)	cycle–climate	
feedbacks.

The	 topsoil	 typically	 receives	 the	 majority	 of	 plant-	derived	
C	 inputs,	and	 it	 thus	has	the	highest	SOC	and	microbial	biomass	
content	(Cochran	et	al.,	1989).	It	is	proposed	that	topsoil	SOC	dis-
plays	a	relatively	high	decomposition	rate	and	a	rapid	exchange	of	
C	with	the	atmosphere	(Hartemink	et	al.,	2020;	Rumpel	&	Kögel-	
Knabner,	2011).	In	contrast,	SOC	buried	in	the	subsoil	is	generally	
assumed	to	be	more	persistent,	with	a	longer	turnover	time	(Hicks	
Pries	et	al.,	2017).	Based	on	this	assumption,	the	Intergovernmental	
Panel	 on	Climate	Change	has	primarily	 emphasized	 the	0–30 cm	
soil	 layer	 in	 the	 greenhouse	 gas	 inventory	 (IPCC,	 2006,	 2021).	
Indeed,	 this	 sampling	 depth	 has	 been	 adopted	 by	many	 experi-
ments	 and	models	when	 investigating	SOC	dynamics	under	 var-
ious	 conditions.	 However,	 the	 assumption	 of	 the	 persistence	 of	
SOC	in	the	subsoil	has	recently	been	challenged	(Chen	et	al.,	2023; 
Li	et	al.,	2022;	Luo	et	al.,	2019).	Several	studies	have	demonstrated	
the	 depth-	dependent	 responses	 of	 SOC	 to	 nutrient	 addition	
(Fierer	et	al.,	2003),	climate	warming	(Wang	et	al.,	2022),	and	land	
use	change	(Chen	et	al.,	2022;	Mobley	et	al.,	2015).	Furthermore,	
long-	term	regional	and	global	studies	have	revealed	different	SOC	
accumulation rates and driving forces when comparing topsoil to 
subsoil	(Balesdent	et	al.,	2018;	He	et	al.,	2022;	Li	et	al.,	2022;	Sun	
et	al.,	2023).	These	results	imply	that	a	lack	of	exploration	for	sub-
soil	SOC	may	hamper	our	ability	to	assess	the	potential	of	soil	C	
sequestration under future climate change scenarios.

Despite the growing recognition of the importance in sub-
soil	SOC,	only	a	 limited	number	of	studies	have	 investigated	the	

effects	of	N	addition	on	SOC	in	subsoil	across	the	globe.	Several	
recent	meta-	analyses	 indicated	that	the	effects	of	N	addition	on	
SOC	were	highly	dependent	on	soil	 and	microbial	properties	 (Ni	
et	al.,	2022;	Niu	et	al.,	2021),	with	both	types	of	variables	show-
ing	 substantial	 variations	 along	 soil	 profiles	 (Eilers	 et	 al.,	 2012; 
Federle	et	al.,	1986;	Mathieu	et	al.,	2015).	Other	studies	further	
suggested	that	the	response	of	SOC	to	N	addition	may	not	always	
be	aligned	in	the	topsoil	and	subsoil,	and	in	some	cases,	responses	
may	even	be	contradictory.	For	example,	Canary	et	al.	(2000)	and	
Li	et	al.	 (2014)	found	that	N	addition	significantly	increased	SOC	
in	 the	 topsoil,	whereas	SOC	decreased	 in	 the	 subsoil,	 leading	 to	
neutral	 or	 even	 negative	 responses	 of	 SOC	 to	N	 addition	when	
the	whole	soil	profile	was	considered.	These	results	demonstrate	
that	neglecting	the	effects	of	N	addition	on	subsoil	SOC	may	lead	
to	 biased	 interpretations,	 or	 even	 misleading	 conclusions	 about	
the	 potential	 consequences	 of	 increased	 N	 deposition	 on	 SOC	
sequestration.

In	 this	 study,	 we	 conducted	 a	 comprehensive	 meta-	analysis	
to	examine	the	effects	of	N	addition	on	SOC	in	both	topsoil	and	
subsoil.	We	compiled	data	from	177 N	addition	experiments	con-
ducted	worldwide,	regarding	0–30 cm	as	topsoil	and	30–100 cm	as	
subsoil	according	to	the	recommendations	from	IPCC	(IPCC,	2021; 
Minasny	et	al.,	2017).	We	also	recorded	 information	on	environ-
mental	 factors	 (mean	annual	 temperature	 and	precipitation)	 and	
experimental	protocols	(N	addition	form,	rate,	frequency,	and	du-
ration)	that	may	be	relevant	in	determining	the	responses	of	SOC	
to	N	 addition	 in	 both	 topsoil	 and	 subsoil.	Given	 that	N	 addition	
effects	on	SOC	may	be	cumulative,	we	also	distinguished	the	re-
sponses	of	SOC	to	N	addition	between	short-	term	(<5 years)	and	
long-	term	 (≥5 years)	 studies.	Overall,	 we	 addressed	 two	 specific	
questions	in	this	study:	(1)	How	did	SOC	in	topsoil	and	subsoil	re-
spond	to	N	addition	at	the	global	scale?	(2)	What	were	the	import-
ant	modulators	of	 the	responses	of	SOC	to	N	addition	 in	topsoil	
and	subsoil?

2  |  MATERIAL S AND METHODS

2.1  |  Data collection

We	searched	for	peer-	reviewed	articles	published	before	December	
2023	 from	 Web	 of	 Science	 (http://	apps.	webof	knowl	edge.	com/	 ),	
Google	 Scholar	 (http:// schol ar. google. com/ ),	 and	 China	 National	
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Knowledge	 Infrastructure	 (http://	www.	cnki.	net/	).	 In	 order	 to	 find	
articles	reporting	the	effects	of	N	addition	on	SOC	from	different	
soil	depths,	the	used	keywords	or	combinations	of	keywords	were:	
(a)	 “nitrogen	 addition”	 or	 “nitrogen	 enrichment”	 or	 “nitrogen	 ferti-
lizer”	 or	 “nitrogen	 elevated”	 or	 “nitrogen	 deposition”	 and	 (b)	 “soil	
organic	carbon”	or	“soil	organic	matter”	and	(c)	“soil	depth”	or	“soil	
layer”	and	(d)	“terrestrial”	or	“soil”	or	“land.”

To	explore	the	N-	induced	changes	in	SOC	across	different	soil	
layers,	 observations	 were	 removed	 according	 to	 the	 following	
criteria	 (Figure S1):	 (1)	Measurements	 from	 croplands	 and	 other	
managed	 ecosystems,	 because	 disturbance	 through	 agricultural	
practices	may	alter	the	response	of	SOC	to	N	addition	along	soil	
depth;	 (2)	 studies	did	not	clearly	 specify	 soil	 sampling	depth;	 (3)	
studies	 where	 other	 nutrients	 were	 added	 (e.g.,	 P,	 K,	 Ca,	 com-
post,	or	slurry	additions)	or	other	treatments	were	imposed	(e.g.,	
CO2,	warming,	 or	 precipitation	 change);	 (4)	missing	 details	 on	N	
addition	 methods	 (fertilization	 rate,	 frequency,	 form,	 and	 dura-
tion);	(5)	N	addition	studies	without	directly	applying	N	to	the	soil.	
Following	the	common	soil	sampling	method,	we	did	not	consider	
the	response	of	SOC	to	N	addition	in	the	litter	layer	in	this	study.	
Finally,	we	synthesized	data	(overview	is	provided	in	Data	S1)	on	
the	 responses	of	SOC	to	N	addition	 from	177	published	articles	
(Figure S2).

We	recorded	SOC	concentration	 (percentage	of	SOC	per	soil	
mass)	 in	the	corresponding	treatments	with	and	without	N	addi-
tion	of	each	study	 involved	 in	this	dataset,	 respectively.	Overall,	
8.5%	 of	 the	 observations	 in	 this	 dataset	 reported	 SOC	 storage	
representing	mass	 C	 per	 volume,	which	 could	 not	 be	 converted	
to	 SOC	 concentration	 on	 a	 mass	 basis	 because	 of	 unreported	
soil	bulk	density.	To	identify	the	influence	of	changes	in	soil	bulk	
density	on	 the	 responses	of	SOC	 to	 long-	term	N	addition	 (Chen	
et	al.,	2019),	we	also	recorded	soil	bulk	density	with	and	without	
N	addition.	The	soil	sampling	depth	in	this	dataset	ranged	from	5	
to	100 cm,	with	an	average	depth	of	25 cm.	To	be	consistent	with	
the	 IPCC's	 soil	 layer	 classification	 method,	 data	 from	 different	
soil	layers	were	categorized	into	0–30 cm	(topsoil)	and	30–100 cm	
(subsoil).

Furthermore,	 to	explore	 the	underlying	mechanisms	 related	 to	
the	 responses	of	SOC	 to	N	addition,	we	also	 recorded	vegetation	
type	(grassland	and	forest),	mean	annual	temperature	(MAT),	mean	
annual	precipitation	(MAP),	longitude,	latitude,	background	N	depo-
sition	 rate	 (BND),	 and	N	 addition	method	 (experimental	 duration,	
added	N	rate,	 the	ratio	of	BND	to	added	N	rate	and	added	N	fre-
quency)	for	each	experimental	site.	The	experimental	duration	of	N	
addition	studies	included	in	our	analysis	ranged	from	1	to	58 years.	
The	cutoff	of	5 years	for	short-	term	versus	Longer	term	studies	was	
chosen	based	on	a	large	survey	of	long-	term	research	in	ecology	and	
evolution,	indicating	that	experiments	lasting	less	than	5 years	often	
quantified only the immediate and transient effects of perturbation 
(Kuebbing	et	al.,	2018).	Most	studies	added	N	in	each	year	along	the	
experimental	duration,	 except	 for	 the	 study	conducted	by	Canary	
et	al.	(2000),	in	which	N	was	added	intermittently	every	few	years.	
In	this	dataset,	the	N	addition	rate	ranged	from	0.5	to	64 g m−2 year−1. 

As	N	application	 forms,	we	considered	 inorganic	N	 (NH4,	NO3,	 or	
NH4NO3),	organic	N	(urea),	and	the	mixture	of	inorganic	and	organic	
N	(NH4,	NO3,	and	urea).	Besides,	we	obtained	unreported	MAT	and	
MAP	 from	 the	WorldClim	database	 (Fick	&	Hijmans,	2017),	which	
resulted	in	the	inclusion	of	a	broad	range	of	MAT	(−4.6	to	26°C)	and	
MAP	(69–4300 mm year−1)	in	our	dataset.	Unreported	background	N	
deposition	rate	was	collected	from	the	Global	N	deposition	database	
(ORNL	DAAC,	2017).	The	missing	standard	deviation	was	 imputed	
using	Rubin	and	Schenker's	resampling	approach	from	studies	with	
similar	 means	 (Rubin	 &	 Schenker,	 1991).	When	 results	 were	 pre-
sented	graphically,	we	used	GetData	Graph	Digitizer	v.2.24	(http:// 
getda	ta-		graph	-		digit	izer.	com/	)	to	digitize	the	data.

2.2  |  Data analysis

We	used	the	natural	log	response	ratio	to	assess	the	effect	of	N	ad-
dition	on	each	variable.	Each	individual	observation	was	weighted	by	
the	inverse	of	the	mixed	model	variance,	ensuring	that	meta-	analysis	
data statistics have simpler standard sampling distributions while 
avoiding the possibility of unequal variance effects on statistical re-
sults	(Hedges	et	al.,	1999).

The	natural	log	response	ratio	(ln	R)	was	calculated	as:

where XC and XN are the mean values of the studied variables in the 
control	and	N	addition	treatments,	respectively.

The	variance	(V)	of	the	logarithmic	effect	size	was	calculated	as:

where SC and SN	are	the	standard	deviation	in	the	control	and	N	addi-
tion	treatments,	respectively,	and	nC and nN are the number of repli-
cates	in	the	control	and	N	addition	treatments,	respectively.

A	 mixed-	effects	 model	 was	 used	 to	 determine	 the	 effect	 of	
N	 addition	 on	 the	 selected	 variables	 through	 “rma.mv”	 function	
from	the	R	package	“metafor”	 (Viechtbauer,	2010).	We	considered	
the	 “Publication”	 as	 random	 effect	 in	 the	 mixed-	effects	 model,	
which	would	ensure	 the	 independence	of	each	observation	 (Chen	
et	al.,	2018).	The	effects	of	N	addition	were	considered	significant	if	
the	95%	confidence	intervals	did	not	overlap	with	zero.	The	results	
were	reported	as	mass	percentage	change	with	N	addition	to	ease	
interpretation.

We	carried	out	 a	model	 selection	analysis	 to	determine	which	
were the main environmental and procedural variables driving the 
response	of	SOC	to	N	across	depths.	Model	selection	was	based	on	
the	corrected	Akaike	information	criterion	(AIC	corrected	for	small	
samples).	 A	 predictor	 including	models	 with	 large	 Akaike	 weights	
was	 assigned	with	 a	 high	 importance	 value.	 Thus,	 the	 cumulative	
Akaike	weight	of	the	models	containing	the	specific	predictor	was	
used	to	indicate	the	relative	importance	value	for	this	predictor.	A	
cutoff	value	of	0.8	was	 set	 to	 identify	 the	critical	 and	non-	critical	
predictors	 (Terrer	 et	 al.,	 2016;	 van	 Groenigen	 et	 al.,	 2011).	 This	
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analysis	was	conducted	through	the	“glmulti”	package	in	R	(Calcagno	
&	De	Mazancourt,	2010).

3  |  RESULTS

Averaged	across	all	studies,	N	addition	significantly	increased	SOC	
in	the	topsoil	by	3.7%	(95%	CIs,	2.2–5.1%,	p < .001).	However,	N	ad-
dition	did	not	affect	subsoil	SOC	(Figure 1a).	The	depth-	dependent	
responses	of	SOC	to	N	addition	were	consistent	regardless	of	veg-
etation	 type	 (forest	 and	 grassland;	 Figure 1b).	 Based	 on	 the	 cor-
rected	 Akaike	 information	 criterion,	 the	 responses	 of	 SOC	 to	 N	
addition	were	best	predicted	by	soil	layer	and	experimental	duration	
(Figure S3).	The	results	from	mixed	linear	regression	model	showed	a	
significant	interactive	effect	of	soil	layer	and	experimental	duration	
on	the	responses	of	SOC	to	N	addition	(Table S1).

In	the	topsoil,	experimental	duration	and	vegetation	type	were	
the	 important	 predictors	 of	 the	 response	 of	 SOC	 to	N	 addition	
(Figure 2a).	Short-	term	(<5 years)	N	addition	did	not	change	top-
soil	 SOC	 (−0.6%	 to	 3.3%,	 p = .18;	 Figure 3a),	 whereas	 long-	term	
(≥5 years)	N	addition	significantly	 increased	topsoil	SOC	by	5.6%	
(3.7%–7.5%,	 p < .001).	 The	 time-	dependent	 responses	 of	 topsoil	
SOC	to	N	addition	were	consistent	regardless	of	vegetation	type	
(Figure S4).

Regarding	 the	 subsoil,	 the	 responses	 of	 SOC	 to	 N	 addition	
were	 best	 predicted	 by	 experimental	 duration	 (Figure 2b).	 Short-	
term	 (<5 years)	 N	 addition	 significantly	 increased	 SOC	 by	 4.3%	
(1.1%–7.6%,	p < .05;	Figure 3b),	whereas	 long-	term	 (≥5 years)	N	ad-
dition	decreased	SOC	by	−3.9%	 (−1.4%	to	−6.3%,	p < .01).	The	sig-
nificant	decreases	in	subsoil	SOC	under	long-	term	N	addition	were	
only	 observed	 in	 forests;	 however,	 there	was	 a	 lack	 of	 significant	
interactive	 effects	 of	 vegetation	 type	 and	 experimental	 duration	
on	the	responses	of	subsoil	SOC	to	N	addition	(Table S1; Figure S4).	
Additionally,	 there	 was	 a	 positive	 relationship	 between	 the	 re-
sponses	of	topsoil	and	subsoil	SOC	to	N	addition	in	the	short-	term	

N	 addition	 studies,	whereas	 no	 significant	 relationship	was	 found	
between	the	responses	of	topsoil	and	subsoil	SOC	to	N	addition	in	
the	long-	term	studies	(Figure 3c).

4  |  DISCUSSION

4.1  |  Nitrogen addition increased topsoil organic 
carbon over time

We	found	an	increase	in	topsoil	SOC	under	N	addition	(Figure 1a).	
Increased	 N	 availability	 under	 N	 addition	 likely	 stimulates	 plant	
growth	 and	 litter	 inputs	 (Greaver	 et	 al.,	 2016;	 Reay	 et	 al.,	2008).	
The	 additional	 litter	 inputs	 can	 be	 partly	 incorporated	 into	 soils,	
contributing	 to	enhanced	 topsoil	SOC,	as	demonstrated	 in	several	
N	addition	studies	(Canary	et	al.,	2000;	Hyvönen	et	al.,	2008; Liao 
et	 al.,	2023).	 Nitrogen	 addition	may	 also	 enhance	 topsoil	 SOC	 by	
repressing	soil	C	 losses	 (Janssens	et	al.,	2010;	Lu	et	al.,	2021).	For	
example,	N	addition	often	causes	soil	acidification	or	an	increase	in	
osmotic	stress,	potentially	suppressing	microbial	growth	and	activ-
ity,	and	consequently	 reducing	C	 losses	 from	microbial	 respiration	
(Treseder,	2008;	Zhou	et	al.,	2014).	The	N-	induced	plant	growth	may	
also	lead	to	increased	uptake	of	base	cations,	thereby	accelerating	
soil	acidification	and	inhibiting	microbial	activity	(Duan	et	al.,	2004).	
Similarly,	N	addition	may	inhibit	the	phenol	oxidase	activity	of	white-	
rod	basidiomycetous	 fungi	 in	 the	 floor	of	 hardwood	 forests,	 lead-
ing	 to	 a	 greater	 accumulation	 of	 under-	decomposed	 litter	 (Chen	
et	al.,	2018;	Waldrop	et	al.,	2004).	In	addition,	the	potential	reduc-
tion	in	soil	C	losses	under	N	addition	may	also	be	related	to	the	en-
hanced	 stabilization	 of	 SOC	 compounds	 that	 are	 typically	 subject	
to	 physical	 and	 chemical	 shielding	 (Figure S5;	 Jilling	 et	 al.,	 2021; 
Treseder,	2004).

Our	study	indicated	that	the	increased	topsoil	SOC	only	mani-
fested	with	long-	term	N	addition	(Figure 3a),	which	was	supported	
by	recent	meta-	analyses	(Lu	et	al.,	2023;	Xu	et	al.,	2021).	First,	this	

F I G U R E  1 Nitrogen	(N)	addition	only	increased	soil	organic	carbon	(SOC)	in	the	topsoil	but	not	in	the	subsoil.	(a)	Meta-	analysis	of	the	
effects	of	N	addition	on	SOC	when	grouped	by	soil	layers.	(b)	Meta-	analysis	of	the	effects	of	N	addition	on	SOC	when	grouped	by	soil	layers	
and	vegetation	types.	Error	bars	represented	bootstrap	95%	confidence	intervals	(CIs).	The	effects	of	N	addition	were	considered	significant	
if	the	95%	CIs	did	not	overlap	with	zero;	the	numbers	above	or	below	the	error	bars	indicated	sample	sizes.
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result	may	suggest	that	it	takes	time	for	SOC	accumulation	to	be	
observable.	 For	 example,	 Xu	 et	 al.	 (2021)	 suggested	 that	 signif-
icant	 increases	 in	plant	C	 inputs	 and	 topsoil	 SOC	were	 typically	
observed	 in	N	 addition	 studies	 lasting	more	 than	 3 years.	 Some	
studies	also	 indicated	 that	 the	plant	C	 inputs	at	 the	 initial	 stage	
of	N	addition	may	not	cause	as	 rapid	SOC	storage	as	previously	
assumed	(Lu	et	al.,	2023;	Vourlitis	&	Hentz,	2016).	However,	a	re-
cent	study	based	on	global	grasslands	showed	that	SOC	increased	
significantly	under	short-	term	N	addition	(<5 years),	probably	due	
to	 the	 inclusion	of	both	 topsoil	and	subsoil	SOC	 in	 the	database	

(Liu	 et	 al.,	2023).	 Alternatively,	 the	 time-	dependent	 response	 of	
topsoil	SOC	to	N	addition	may	be	linked	to	the	balance	between	
plant	C	 inputs	 and	 soil	C	 losses	 (Janssens	et	 al.,	2010;	 Pregitzer	
et	 al.,	2008;	 Zhou	 et	 al.,	2014).	 For	 example,	 in	 the	 initial	 stage	
of	N	 addition,	 alleviation	 of	microbial	N	 limitation	may	 be	 asso-
ciated	with	 stimulated	microbial	 respiration	 and	C	 losses,	which	
may	offset	the	positive	effects	of	plant	C	inputs	on	topsoil	SOC,	
especially	 in	 N-	poor	 ecosystems	 (Figure S6;	 Ågren	 et	 al.,	2001; 
Lu	et	al.,	2011).	 In	the	 later	stage	of	N	addition,	microbial	activi-
ties	may	be	repressed	by	N-	induced	soil	acidification	or	increased	

F I G U R E  2 Experimental	duration	was	the	most	important	predictor	in	the	responses	of	soil	organic	carbon	(SOC)	to	nitrogen	(N)	addition	
in	both	topsoil	and	subsoil.	(a)	Model	selection	analysis	identified	that	experimental	duration	and	vegetation	type	were	the	important	
predictors	of	the	response	of	SOC	to	N	addition	in	the	topsoil;	the	dashed	line	indicated	the	cutoff	to	distinguish	important	predictors	that	
exceeded	the	0.8	sum-	of-	Akaike-	weights	threshold.	(b)	Model	selection	analysis	identified	that	experimental	duration	was	the	important	
predictor	of	the	response	of	SOC	to	N	addition	in	the	subsoil.	BND,	background	N	deposition	rates;	duration,	experimental	duration;	
frequency,	N	addition	frequency;	MAP,	mean	annual	precipitation;	MAT,	mean	annual	temperature;	rate,	N	addition	rate.

F I G U R E  3 The	effects	of	nitrogen	(N)	addition	on	soil	organic	carbon	(SOC)	depend	on	experimental	duration.	(a)	In	the	topsoil,	short-	
term	N	addition	(<5 years)	had	nonsignificant	effect	on	SOC,	whereas	long-	term	N	addition	(≥5 years)	significantly	increased	SOC.	In	the	
subsoil,	short-	term	N	addition	significantly	increased	SOC,	whereas	long-	term	N	addition	decreased	SOC;	error	bars	represented	bootstrap	
95%	confidence	intervals	(CIs);	the	effects	of	N	addition	were	considered	significant	if	the	95%	CIs	did	not	overlap	with	zero;	the	numbers	
above	or	below	the	error	bars	indicated	sample	sizes.	(b)	In	the	short-	term	N	addition	studies,	there	was	a	significant	positive	relationship	
between	the	responses	of	SOC	(lnR-	SOC)	in	the	topsoil	and	in	the	subsoil	[coefficient	of	determination	(r2) = .23,	p < .001];	the	light	gray	area	
indicated	the	confidence	interval	around	the	regression	line.	(c)	In	the	long-	term	studies,	the	relationship	between	the	responses	of	SOC	in	
the	topsoil	and	the	subsoil	was	not	significant	(r2 = .01,	p = .88).
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osmotic	stress	(Zhou	et	al.,	2014).	Suppressed	microbial	activities	
and	associated	C	losses	have	indeed	been	found	to	be	significant	
under	long-	term	N	addition	(Ning	et	al.,	2021;	Treseder,	2008).

4.2  |  Long- term N addition decreased 
subsoil organic carbon

In	contrast	to	the	N-	induced	increases	in	topsoil	SOC,	we	found	that	
subsoil	SOC	significantly	 increased	 in	short-	term	N	addition	studies	
(<5 years)	but	decreased	in	the	long-	term	studies	(≥5 years;	Figure 3a).	
One	possible	reason	for	the	increased	subsoil	SOC	under	short-	term	
N	addition	may	be	attributed	to	the	increased	C	leaching	from	above-
ground	litter	decomposition	(Li	et	al.,	2021;	Sinsabaugh	et	al.,	2004).	
For	example,	the	increased	C	leaching	was	likely	associated	with	ac-
celerated	decomposition	of	N-	induced	additional	 litter	 inputs	 in	 the	
topsoil	under	short-	term	N	addition	(Wang	et	al.,	2019).	 In	the	early	
stages	of	N	addition,	aboveground	C	input	is	typically	associated	with	
less	 efficient	 decomposition	 and	 lower	 C	 stabilization,	 which	 may	
stimulate	the	leaching	of	dissolved	C	downward	to	the	subsoil,	result-
ing	in	increased	subsoil	SOC	(Pregitzer	et	al.,	2004).	In	contrast	to	the	
topsoil,	increased	N	availability	within	short-	term	N	addition	may	not	
stimulate	subsoil	SOC	mineralization	and	associated	C	losses	due	to	
the	lack	of	fresh	C	and	energy	supply	in	this	soil	layer	(Figure S6;	Wang	
et	al.,	2014).	Additionally,	the	positive	effects	of	increased	plant	C	in-
puts	on	subsoil	SOC	in	the	short	term	may	also	be	related	to	the	inher-
ently	lower	SOC	in	this	layer	(Balesdent	et	al.,	2018).

Why	 did	 long-	term	 N	 addition	 significantly	 decrease	 subsoil	
SOC?	This	unexpected	result	can	be	partly	attributed	to	the	potential	
reduction	in	the	downward	movement	of	C	along	the	soil	profile	in	
the	later	stage	of	N	addition.	For	example,	long-	term	N	addition	may	
repress	litter	decomposition,	which	likely	results	in	accumulation	of	
fresh aboveground litter in the humus layer instead of being trans-
ported	into	deeper	soil	layers	(Franklin	et	al.,	2003;	Treseder,	2004).	
A	10-	year	N	addition	study	conducted	in	northern	American	broad-	
leaved	forests	revealed	that	the	accumulation	of	SOC	derived	from	
leaf	 litter	was	observed	only	 in	 the	topsoil	 (Pregitzer	et	al.,	2008).	
Besides,	in	the	long	term,	the	alleviated	microbial	N	limitation	with	N	
addition	is	generally	associated	with	decreased	oxidase	activities	and	
increased	formation	of	stable	SOC	in	the	topsoil	(Chen	et	al.,	2018; 
Lu	et	al.,	2021),	thereby	reducing	the	C	leaching	along	the	soil	pro-
file	(Kaiser	&	Kalbitz,	2012).	This	explanation	is	supported	by	both	
increased	particulate	and	mineral-	associated	organic	carbon	in	the	
topsoil	only	observed	in	long-	term	N	addition	studies	(Figure S5;	Qi	
et	al.,	2023).	Similarly,	bioturbation	contributes	to	mixing	SOC	from	
the	topsoil	to	the	subsoil	(Wilkinson	et	al.,	2009),	whereas	this	pro-
cess	may	be	repressed	in	the	later	stage	of	N	addition	due	to	pos-
sible	soil	acidification	or	toxicity	effects	on	soil	organisms	(Jansone	
et	al.,	2020).

There	was	 a	 lack	 of	 a	 significant	 positive	 correlation	 between	
the	 responses	 of	 SOC	 in	 the	 topsoil	 and	 the	 subsoil	 to	 long-	term	
(as	 opposed	 to	 short-	term)	 N	 addition	 (Figure 3c).	 This	 is	 likely	
attributed to contrasting mechanisms driving the responses of 

SOC	 to	N	addition	 in	 shallow	versus	deeper	 layers.	 In	 contrast	 to	
the	 topsoil,	 the	 subsoil	may	 become	more	 susceptible	 to	 losing	C	
through	microbial-	mediated	SOC	decomposition	 in	 the	 later	 stage	
of	N	addition	(Fontaine	et	al.,	2007;	Karhu	et	al.,	2016).	For	example,	
long-	term	N	addition	may	stimulate	the	decomposition	of	mineral-	
associated	SOC	in	the	subsoil	as	indicated	by	increases	in	microbial	
biomass	 (Figure S6),	while	 this	 process	 is	 generally	 suppressed	by	
insufficient energy supply within this soil layer compared to the 
topsoil	(Henneron	et	al.,	2022;	Jilling	et	al.,	2021).	This	explanation	
could be attributed to more energy investment from plants in the 
form	of	root	exudates	for	resource	acquisition,	such	as	phosphorus	
and	water,	 as	 the	 demand	of	 plants	 for	 these	 resources	 gradually	
increases	with	the	continuous	N	addition	(Li	et	al.,	2016;	Peñuelas	
et	 al.,	 2013).	 For	 example,	 N	 addition	 significantly	 increased	 fine	
root	biomass	 in	the	subsoil	after	5 years	 (Yan	et	al.,	2017),	but	de-
creased	it	in	the	first	year	of	N	addition	(Zhu	et	al.,	2021).	Similarly,	
more	C	investment	from	plants	in	root	growth	for	resource	uptake	
in	the	later	stage	of	N	addition	may	induce	priming	effects	of	SOC	
decomposition.	This	N-	induced	root	exploration	for	resource	acqui-
sition	may	also	increase	the	accessibility	of	subsoil	SOC	that	is	often	
persistent	due	to	physical	separation	from	decomposers	(Henneron	
et	al.,	2022;	Salomé	et	al.,	2010).	The	C	losses	from	the	decomposi-
tion	of	recalcitrant	SOC	may	outweigh	the	potential	increases	in	root	
C	inputs	(Mobley	et	al.,	2015;	Shahzad	et	al.,	2019).	Additionally,	a	
recent	20-	year	 study	even	 found	 that	N	addition	could	accelerate	
the	decomposition	of	ancient	SOC	in	the	subsoil	by	mitigating	the	
oxygen	 limitation	of	SOC	mineralization	through	the	accumulation	
of	nitrate	(Qin	et	al.,	2023),	as	nitrate	is	an	alternative	electron	ac-
cepter	for	microbial	respiration	(Sierra	&	Renault,	1998).

4.3  |  Implications

Understanding	the	depth-	dependent	responses	of	SOC	to	N	addi-
tion can help us reconcile the apparently conflicting results often 
reported	from	individual	studies	(Deng	et	al.,	2020;	Xu	et	al.,	2021; 
Zheng	et	al.,	2022).	It	is	widely	recognized	that	responses	of	SOC	to	
N	addition	are	often	cumulative,	which	takes	time	to	be	statistically	
significant.	 This	meta-analysis	 study	underlines	 the	 importance	of	
considering	soil	depth	together	with	time,	as	we	found	the	contrast-
ing	responses	of	topsoil	and	subsoil	SOC	to	short-	and	long-term	N	
additions. Our finds thus imply that both topsoil and subsoil layers 
need to be evaluated for a more realistic understanding of the re-
sponses	of	SOC	to	N	addition,	especially	in	the	context	of	long-	term	
field	experiments.	 Importantly,	the	sharp	decline	in	subsoil	SOC	in	
response	to	long-	term	N	addition	presented	here	may	challenge	the	
previously	assumed	role	of	soils	as	a	global	SOC	sink	under	increased	
N	deposition	(Janssens	et	al.,	2010;	Lu	et	al.,	2011;	Nave	et	al.,	2009; 
Xu	 et	 al.,	 2021).	 However,	 most	 current	 N	 addition	 studies	 have	
primarily	focused	on	the	responses	of	SOC	in	the	topsoil	(typically	
in	0–20 cm	or	0–30 cm),	which	may	 lead	 to	biased	 conclusions	 re-
garding	 SOC	 sequestration.	 In	 addition,	 to	 be	 consistent	with	 the	
IPCC's	soil	layer	classification	method,	some	observations	of	SOC	in	
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the	soil	layers	of	20–40 cm	or	20–60 cm	were	considered	as	subsoil	
SOC	in	this	study	(Figure S7).	Considering	the	crucial	role	of	subsoils	
for	SOC	sequestration	(Jobbágy	&	Jackson,	2000;	Rumpel	&	Kögel-	
Knabner,	2011;	Shi	et	al.,	2020),	our	study	highlights	the	necessity	to	
distinguish	the	responses	of	SOC	to	increased	N	deposition	across	
different	soil	layers,	rather	than	typically	extrapolating	the	responses	
of	SOC	to	subsoil	based	on	its	responses	in	the	topsoil.	Overall,	our	
findings	 suggest	 the	 overestimation	 of	 soil	 C	 sequestration	 under	
N	addition	if	without	considering	the	subsoil	C	dynamics,	highlight-
ing	the	necessity	for	explicit	incorporation	of	depth-	dependent	re-
sponses	of	SOC	into	current	global	C	cycle	models.
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