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1 | INTRODUCTION

Hydrology is a data-limited science. Measurements are needed at a

high spatial and temporal resolution to understand the spatial and

temporal variation in water storage and fluxes across a catchment,

but continuous measurements are generally limited to a few sites

due to the high costs of the equipment, installation and mainte-

nance. Citizen science projects have developed qualitative

methods to obtain information on hydrological variables. Although

these methods are less precise and accurate than traditional

methods, they can also be used in research or student projects. We

used the instrument-free qualitative approaches from a citizen sci-

ence project (CrowdWater, 2023) to study the spatial and temporal

variation in surface soil moisture and the flow conditions in a sub-

catchment of the Krycklan Catchment in northern Sweden during

two summer seasons (May–October of 2018 and 2019). The ani-

mations of these qualitative (visual and tactile) data highlight their

extraordinary information content and their usefulness to study

the spatial and temporal variation in moisture conditions across a

catchment.

2 | STUDY AREA

The study area is located in the Krycklan catchment, in Northern

Sweden. The soil moisture observations were made in a 20 ha area in

what is known as subcatchment C6 (64�1501600 N, 19�4505200 E). The

stream state observations were made in a 9 ha area of this subcatch-

ment. The elevation of the subcatchment ranges from 245 to 294 m

above sea level. A lake feeds the permanent main stream. Inflows and

outflows of this stream are monitored at two gauging stations (named

C5 and C6, respectively). The average annual temperature at the

study site is 1.8�C and the average annual precipitation is

�620 mm. The vegetation consists mainly of pine forests and peat-

lands. For more information on the catchment, we refer to Laudon

et al. (2021, 2013).

3 | SOIL MOISTURE

Soil moisture measurements provide information on catchment water

storage, and are valuable for understanding hydrological connectivity

or to predict the catchment's responses to precipitation (Ali &

Roy, 2010; McNamara et al., 2005; Western et al., 2005, 2004, 2001).

Soil moisture measurements, and especially information on the loca-

tion of saturated areas, can also be used for model calibration and val-

idation (Beven & Kirkby, 1979; Blazkova et al., 2002; Glaser et al.,

2016; Güntner et al., 2004). However, the spatial variation in soil

moisture is generally high and influenced by factors such as soil type

(i.e., soil hydraulic properties, e.g., Jarecke et al., 2021), vegetation

cover (due to its effect on evapotranspiration), and topography (due

to the lateral redistribution of moisture) (Grayson & Western, 1998;

Western et al., 2004).

Soil moisture is typically measured with indirect methods that

measure the dielectric or electrical resistance of the soil, or by

destructive gravimetric methods (e.g., Walker et al., 2004). Soil satura-

tion can be assessed with the ‘squishy boot’-method (e.g., Ambroise

et al., 1996; Latron & Gallart, 2007). Rinderer et al. (2012) extended

this approach to seven qualitative moisture classes, which are now

used in the CrowdWater project (Seibert et al., 2019; Table 1). We

evaluated the surface soil moisture conditions across the study area

using these seven classes.
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We established transects 40 m apart, with points marked every

10 m in the lower part of the study area. In the upper part, the dis-

tance between the transects was 80 m and the points on the tran-

sects were located 20 m apart. This spacing and number of locations

allowed one person to observe the soil moisture conditions at all

277 points within half a day. The moisture conditions were assessed

for each point 14 times during each summer season.

Even though the qualitative method relies on a subjective classifi-

cation of the moisture conditions, the agreement between people

who assess soil moisture this way is high (Rinderer et al., 2012). To

improve the consistency of the ratings further, all ‘measurements’ on
a particular survey day were taken by the same person. The four

observers that assessed the soil moisture conditions during a summer

season were instructed at the start of the season to create a shared

understanding of the classes.

The high water-holding capacity of the moss may make the

ground appear much wetter than it is, particularly after a rainfall

event, leading to an overestimation of the moisture conditions. To

minimize this influence, the soil moisture conditions were assessed

2 or more days after precipitation events. This means that all mea-

surements were taken after some drying and drainage of excess

water, and that none of the surveys cover the wettest conditions.

Similarly, early mornings were avoided to allow dew to dry off before

we assessed the moisture conditions.

The maps of the soil moisture conditions show that despite the

considerable temporal variation in soil moisture, the soil moisture pat-

terns are highly persistent (Figure 1, Video 1, 3:20–4:03 min). The

peatland area in the middle of the catchment remained wet, even dur-

ing the driest conditions in August 2019. The correlation with the

topographic wetness index (TWI; Beven & Kirkby, 1979) based on

the 5 m resolution Digital Elevation Model of Norstedt (2017), was

TABLE 1 Soil moisture classification scheme used in this study
(after Rinderer et al., 2012). Note that we did not actually sit on the
soil to determine how quickly the trousers would get wet but rather
assessed the soil moisture states visually and tactile.

Class Qualitative indicator criteria

1 The trousers of a person sitting on the ground would stay dry

2 The trousers of a person sitting on the ground would get

moist after some minutes

3 The trousers of a person sitting on the ground would wet
after some minutes

4 The trousers of a person sitting on the ground would wet
immediately

5 Squelchy noise can be heard when stepping on the ground,

but no water is visible

6 Water squeezes out of the topsoil when stepping on it

7 Water can be seen on the soil surface

F IGURE 1 Screenshot showing the soil moisture results: the left panel shows the time series of the daily precipitation (top), average air
temperature (second from top), stream flow at the outlet of the subcatchment (C6 gauge; middle), the distribution of the soil moisture classes
(second from bottom) and the Spearman rank correlation between the soil moisture classes and the topographic wetness index (TWI). The panel
on the right shows the map of the subcatchment with the classification of the soil moisture points for 29 May 2018 (indicated by the grey line on
the left-hand panel).
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higher when soil moisture conditions were overall moist and low for

most other surveys. However, the correlations were weak for all sur-

veys (Spearman rank correlation rs: 0.11–0.32, p < 0.05 except for the

lowest value, which was not significant).

4 | STREAM MAPPING

Temporary (i.e., non-perennial) streams dry periodically and include

intermittent or ephemeral streams. Although temporary headwater

streams are extensive, they are poorly monitored and often missing

from maps (Bishop et al., 2008; DeBell et al., 2015; Spence &

Hedstrom, 2021; van Meerveld et al., 2020). Stream intermittency

can be caused by both natural and human factors (Acuña

et al., 2014; Meinzer, 1923). For temporary headwater streams in

the boreal region, snowmelt in spring and intense rainfall events

during the growing season are the most critical drivers of flow

(Ågren et al., 2015; Kuglerová et al., 2014; Spence & Woo, 2003).

The flowing stream network can expand in an upstream direction,

from the stream heads downwards, or by expanding disconnected

sections or puddles (Bhamjee & Lindsay, 2011). Surface flow in a

temporary stream reach occurs when the inflows to the stream

reach (e.g., from upstream or local sources) are larger than down-

stream drainage through the streambed (Godsey & Kirchner, 2014).

We determined the full extent of the stream network at approxi-

mately the time of the snowmelt peak, which should be the time of

the most extended stream network (Ågren et al., 2015). We installed

stakes at 49 points in the streams. At 21 of these points, we marked

transects of 2 to 11 points perpendicularly across the stream, spaced

every 1 m (147 points in total) to capture the entire width of the

(often undefined) streambed.

Typically, the stream network extent is documented by walking

along the streams and classifying the stream state as either flowing or

not flowing (e.g., Bhamjee & Lindsay, 2011; Hinrich Kaplan

et al., 2019) or as dry or wet (e.g., Jensen et al., 2017; Turner &

Richter, 2011). Because there are important ecological flow states in

between these two end points (Gallart et al., 2012), we used the classi-

fication with seven states (Table 2). The classification of the stream state

VIDEO 1 Spatiotemporal dynamics of soil moisture and stream states based on qualitative methods.
Video content can be viewed at https://onlinelibrary.wiley.com/doi/10.1002/hyp.15141

TABLE 2 Stream state classification used in this study. Note that
we combined the subclasses for standing water for the visualization.
We estimated the surface velocity of the water by observing the
movement of bubbles, leaves, and so forth.

Class Description

D Dry

W Wet

S a Standing water Isolated pools

b Connected pools

1 Ponding water (<2 cm deep)

2 Standing water (>3 cm deep)

WT Weakly trickling (<1 m per minute)

T Trickling (1–2 m per minute)

WF Weakly flowing (2–5 m per minute)

F Flowing (>5 m per minute)
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with more than two categories also allows for more nuance than a two-

state classification. The classification was developed specifically for the

conditions encountered in the research catchment, based on a combina-

tion of classifications used by other researchers (CrowdWater, 2023;

Gassmann, 2018). Although temporary stream observations are fairly reli-

able (Scheller et al., 2024), the four observers that assessed the stream

states during a summer season were instructed at the start of the season

to create a shared understanding of the classes.

The animation of the temporary stream observations demon-

strates that a large portion (50%) of the network was active (classi-

fied as either standing, trickling or flowing) during the snowmelt

period in May 2019 (see Figure 2), and that for each survey there

were some sections that were not active (i.e., did not have water;

dry or wet streambed). During the drier periods in the summer of

2018 (July and the end of August) and 2019 (August), the stream

network dried out, and less than 3% of the total network was

active.

5 | CONCLUDING WORDS

The animations of the soil moisture and stream state observations

highlight the usefulness of the qualitative (visual or tactile ‘measure-

ment’) approaches that are used in citizen science projects to obtain

helpful information on catchment wetness conditions. We, therefore,

recommend these approaches for student projects or other projects

for which there is only a small budget or a lack of equipment. The data

can be used to understand the factors that affect soil moisture condi-

tions or the spatial patterns of streamflow (e.g., to test the effects of

topography or vegetation on the spatial variability in soil moisture or

flowing stream network extent). Together with meteorological data

and streamflow data, these data are also useful to test spatially

explicit hydrological models. The visualization of the data in animated

graphs is very useful to quickly see and understand the dynamic

changes between repeated measurements and to interpret the

observed patterns and dynamics.
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(bottom). The map on the right shows the classification of stream observation points for 01 May 2019 as indicated by the grey line on the left
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