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A B S T R A C T   

This study focuses on utilizing image techniques for river velocity measurement, with a specific emphasis on 
natural surface floating patterns. Employing a multi-camera system, we conducted 3D measurements on river 
surfaces, including surface velocity and water surface reconstruction. A pattern-based tracking approach has 
been adopted to improve the performance of image measurements on different types of natural floating tracers. 
The study employs the following approaches: 3D Lagrangian Pattern Tracking Velocimetry (3D-LPTV), 2D 
Lagrangian Pattern Velocimetry (2D- LPTV), and Large-scale Particle Image Velocimetry (LSPIV), for surface 
velocity estimation. The outcomes revealed that all three approaches yielded consistent results in terms of 
averaged velocity. However, the LSPIV method produced about two times higher uncertainty in measured ve
locities compared to the other methods. A strategy to assess the quality of river surface patterns in velocity 
estimation is presented. Specifically, the sum of squared interrogation area intensity gradient (SSIAIG) was found 
to be strongly correlated with measurement uncertainty. Additionally, a term related to the peak sidelobe ratio 
(PSR) of the cross-correlation map was found as an effective constraint, ensuring the image-tracking process 
achieves high reliability. The precision of measurements increases corresponding to the increase of image in
tensity gradient and PSR.   

1. Introduction 

River velocimetry holds significance in various hydraulic and hy
drological applications. Understanding river flow aids environmental 
assessments including estimating flow discharge and assessing aquatic 
environments such as fish passage and habitats, pollutant and river 
erosion, and debris transport [1–4]. It also contributes to monitoring 
water quality and managing water resources [5–7]. River velocity is an 
important metric in hydraulic engineering applications for constructing 
structures such as bridges, dams, and channels to ensure their stability 
and endurance [8]. The capacity to accurately estimate the stream ve
locity is important in flood prediction and management, protecting 
communities and infrastructure [9,10]. 

Hydropower is the largest source of renewable energy production in 
Sweden, accounting for approximately 45% of Swedish electricity gen
eration [11]. Flow velocity measurements in the vicinity of hydropower 
facilities are critical in a variety of practical applications to ensure 

sustainable hydropower and develop hydropower production. 
Measuring these streams, however, imposes challenges due to their vast 
and complicated geometry. This work aims to adapt non-intrusive sur
face velocity measurements in natural streams and to increase the ability 
to use naturally occurring surface patterns in rivers as tracers. 

In most open channels, flow velocity is usually conducted directly by 
contact devices such as acoustic Doppler velocimetry (ADV), current 
meters, or velocity propellers. These methods are expensive and time- 
consuming to perform, and the measurement process requires contact 
with the water body. To limit safety hazards for operators and equip
ment, these surveys are normally performed during low or moderate 
flow conditions. A more advanced technique, the acquisition of flow 
velocity and depth can be conducted simultaneously with acoustic 
Doppler current profilers (ADCPs) [12,13]. Measurements can be 
executed along transects of wide rivers with small boats, however the 
sensor is expensive and must be in contact with the waterbody thus 
limiting its use in more intense flow conditions. 
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In contrast to contact methods, noncontact flow estimation ap
proaches such as radar [14] and thermal infrared imaging [15] show 
several advantages due to their relaxation from flow disturbance and 
damage. However these options rarely reduce the issues related to costs 
and are time-consuming. 

Traditional river velocity measurement devices, both contact and 
noncontact are typically expensive and provide limited spatial coverage. 
In laboratory hydraulic experiments, image-based velocimetry such as 
Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry 
(PTV) are widely employed and have been standard techniques over the 
last three decades [16–18]. PIV takes an Eulerian perspective by 
calculating shifts in distinctive intensity patterns of groups of tracer 
particles in small interrogation areas (IA) across at least two frames with 
a known time lag and analyzing instantaneous velocity. In contrast, PTV 
adopts a Lagrangian point of view that determines the velocity and re
constructs the path of the individual particles. Both PIV and PTV tech
niques were originally developed for laboratory experiments and 
essentially extend the basic principles to the large-scale situations 
known as Large-scale Particle Velocimetry (LSPIV) [8] and Large-scale 
Particle Tracking Velocimetry (LSPTV). Furthermore, there are other 
alternative image-based velocimetry techniques, for instance, 
Space-Time Image velocimetry (Fujita et al., 2015; [19]) and optical 
flow applications [20,21]. With affordable and flexible image systems 
available in recent years, these approaches have advanced our ability to 
perform noninvasive natural flow observations at a high temporal res
olution to help overcome the limitations of traditional measurement 
methods. 

In river surface velocity measurements, flow seeding is an unavoid
able task in some situations where the water flow is clear and there is no 
occurrence of floating materials on the surface. Surface seeding should 
involve the use of non-polluting and non-harmful materials. It is 
advisable to choose non-toxic and biodegradable seeding materials. 
Additionally, depending on the goal of the adopted methods, for 
instance, LSPIV or PTV, the surface seeding material will be chosen 
based on the shape and size as well as the ability to travel on the flow 
surface. While LSPIV requires particles to be densely and homoge
neously distributed, PTV approaches need sparse and highly defined 
shaped particles. The seeding task in actual field conditions may face 
some challenges when the measurement tends to observe a large area of 
water. Moreover, the seeding quality is not always ensured due to 
human and outdoor environments such as wind and river reach char
acteristics. Investigations on optimizing tracer seeding for image-based 
velocimetry, Dal Sasso et al. [22], Dal Sasso et al. [23], Dal Sasso 
et al. [24] and Pizarro et al. [25], Pizarro et al. [25] revealed that spatial 
distribution and seeding characteristics have a significant impact on the 
performances of surface velocity measurement in rivers. To improve 
LSPIV results in low-density seeding conditions, Strelnikova et al. [26] 
investigate ensemble correlation method in processing relatively short 
image sequences. The ensemble method involves averaging the corre
lation matrices across the entire image sequence before searching for the 
correlation peak. Their finding was that this technique yields a more 
well-defined correlation peak, particularly in low-density seeding con
ditions, resulting in improved LSPIV results. Ensemble correlation would 
most likely improve the results in stationary flow conditions; however it 
is outside the scope of this investigation and therefore left for future 
improvement. 

A measurement station setup with low-cost digital image storage was 
used to monitor the streamflow regime over long time spans [27]; the 
study demonstrates that PTV continuously can yield reliable 
surface-flow velocity estimates. For such applications, the ability to use 
the presence of natural floating patterns on the flow surface would in
crease the insight into the various flow conditions in real-time. In clear 
water flow, when floaters may individually travel through the field of 
view, the PTV approach would be appropriate to deploy. However, for 
PTV shape of the surface particle needs to be clearly defined. For 
example, Tauro et al. [28] successfully estimated the surface velocity of 

streamflow using PTV-stream with artificial seeding particles. The same 
tool was applied to measure a moderate flood at a river, the outcome of 
the study demonstrated the potential of the tool but also raised chal
lenges in using floating debris as particles for traditional PTV. In high 
turbulence flow where turbulent structures are evident on the surface, 
the water flow itself provides a continuously floating pattern in images 
which can be used as a flow pattern for velocity estimation. Hence, for 
such flow conditions the LSPIV approach is more suitable. For example, 
Dramais et al. [29] investigated a mobile LSPIV system for remote 
stream gauging, employing it to measure velocity during a flushing 
event, wherein the turbulent flow itself was utilized in LSPIV. 

In most LSPIV studies, the flow surface is assumed as an inclined or 
horizontal plane when performing surface velocity measurements in 
rivers. Cameras are required to face in nadir angle to the water surface 
[30] or image frames have to be orthorectified to counteract the 
considerable distortions caused by the camera’s viewing angle ([31]; 
Fujita et al., 2015; [32]). The assumption of a 2D plane water surface 
may be acceptable for low to moderate flow conditions with regular 
riverbeds but not for steep rivers and extreme free-surface deformation 
in high-flow situations. Thus, multiple cameras are required to avoid 
making any necessary assumptions about the surface or image orthor
ectification. This method enables the estimation of 3D water surface as 
well as water level variation. For example, Li et al. [33] utilized a 
stereo-imaging system to estimate the surface velocity field and water 
surface distribution of a mountainous stream. Therein, the influence of 
uneven surface on LSPIV measurements is demonstrated by significant 
disparities between a 3D reconstructed water surface, inclined planar 
surface, and horizontal plane assumptions. 

Given the challenges arising from non-ideal surface particles in river 
velocimetry, particularly in measuring extensive areas where seeding 
also presents an issue, we aim to optimize the ability to use natural 
floating surface patterns rather than artificial seeding particles in cir
cumstances where surface floaters exist. To estimate the 3D magnitude 
of velocity and the 3D elevation of the river surface, a three-camera 
imaging system is employed to capture natural surface patterns pass
ing through the field of view. Because the surface floating patterns are 
intermittent in the field of view, the Lagrangian Particle Tracking 
technique is used to track the floaters in image sequences. However, the 
movement of the flow surface is assessed using surface patterns repre
sented by sub-regions made up of groups of floating material rather than 
singularly specific particles. Positions of surface points are defined using 
a camera network correlation approach to preserve good regions of in
terest for tracking and discard unqualified surface regions. Similar to the 
traditional PIV interrogation method, sub-image searching is deter
mined using image cross-correlation. The instantaneous surface velocity 
field between successive frames is computed, and trajectories for the 
whole image sequence are reconstructed by the triangulation process 
from calibrated cameras. 

In this paper, the river surface velocimetry based on the Lagrangian 
approach is named Lagrangian Pattern Tracking Velocimetry (LPTV). 
We present a multiple-camera system that enables the estimation of 3D 
surface velocity magnitude and the reconstruction of 3D river surface, 
using natural floaters on the river surface that pass through the field of 
view. A series of field measurements were conducted in a river utilizing 
various natural surface floating patterns. To demonstrate the solution, a 
comparison of sub-image-based 3D-LPTV, 2D-LPTV and 2D- LSPIV is 
presented. An outlier filtering strategy based on image matching and 
post-processing is described. Given the lack of benchmark velocity in 
these measurements, the goal of this work is not to investigate the 
impact of different surface patterns on these three approaches. Instead, 
the main objective of this study is to examine the suitability of natural 
surface floaters in river velocimetry through a set of typical river surface 
patterns observed in a case study. Two parameters are employed in 
describing the characteristics of river surface patterns: these parameters 
are derived from calculations based on the image intensity gradient and 
the strength of cross-correlation maps in the pattern tracking process. 
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The paper is structured as follows: The descriptions of the mea
surement system and field measurement are introduced in Section 2; 
Section 3 describes the approaches for surface velocity observation; The 
image processing procedure is presented in Section 4; Results of velocity 
measurement, analyses on characteristics of river surface patterns and 
discussion are presented in Section 5; Section 6 discusses factors to 
consider when conducting image-based river velocimetry in natural 
streams; Concluding remarks are summarized in Section 7. 

2. Measurement setting 

This section provides comprehensive information about the mea
surement site and the imaging system employed for the measurements. 
It includes details about the field conditions and the characteristic var
iations of the river floating patterns captured in these measurements. 

2.1. Measurement site and imaging system configuration 

Experiments were carried out in Luleå river at Boden, Sweden 
(Svedjebron bridge 75◦12′45.814″ Latitude, 395◦9′22.5″ in WGS 84 co
ordinate system) on the 24th May and the June 4, 2021. The flow dis
charges during the experiments were in the range of 809–894 m3/s on 
the 24th May and 663–730 m3/s on the 4th of June, respectively, ac
cording to data collected by the Boden hydropower plant about 800 m 
upstream of the measurement position. The camera system consists of 
three cameras (Genie-Nano-5G) with a resolution of 2464 × 2056 pixels 
and are equipped with 16 mm objective lens. The images can be 
captured synchronously by the cameras mounted on the bridge at 
varying frame rates, with a maximum of 80 frames per second (fps). The 
setup had a field of view of 7 × 6 m2 on the river surface and had a 
ground sampling distance roughly of 0.23 cm/pixel. The measurements 
were carried out in the late spring when the flow through the upstream 
Boden hydroelectric facility was relatively high, and spillway was open. 
A sketch of the measurement setup is presented in Fig. 1. 

The measurements were performed in daytime sunshine conditions. 
Camera calibration to establish the interior and exterior camera pa
rameters was done at the measurement site to assure the reliability of 
camera parameters. The camera calibration technique is detailed in 
Trieu et al. [34]. 

2.2. River surface floating tracers 

In situations where natural tracer particles are not present, artificial 
seeding is required to improve the reliability of measurements [34]. 
However, providing sufficient seeding that covers a large water surface 

area can be challenging, particularly when the field of view is large, and 
the seeding position is too far from the water surface. In cases where 
natural surface floaters are present, surface velocity analysis can be 
performed without requiring artificial flow seeding. However, natural 
surface floaters are usually randomly and discontinuously distributed, 
and they come in various shapes and sizes. Both natural and artificial 
seeding usually rapidly changes from being evenly distributed to being 
clustered into meandering flow structures due to secondary currents that 
always are present in rivers. Fig. 2 shows reference examples of the 
natural surface floaters observed throughout the measurement 
campaign, offering a better understanding of their variations in distri
bution, shapes, and sizes. To evaluate the utilization of these surface 
floating patterns, it is crucial to have a thorough understanding of the 
characteristics that influence the performance of image-based velocim
etry. Pattern C presents itself as a cloudy foam layer in the river, whereas 
Pattern B is composed of smaller and more dispersed surface floaters. In 
contrast, Pattern A exhibits even smaller and more evenly distributed 
surface floaters. 

3. Image-based approaches for river surface velocimetry: LPTV 
and LSPIV 

PIV and PTV are based on Eulerian and Lagrangian frames of refer
ence (i.e., algorithms, point of view). Each algorithm has its own set of 
assumptions and constraints. For instance, for reliable results, the 
Eulerian approach requires a steady state of flow and a consistent 
quantity of tracers present throughout the processing time, conversely, 
the Lagrangian approach is less concerned with flow steadiness because 
it specifies the particle’s position at any given time but is however 
difficult to characterize when tracers are dense and regularly interact 
with one another [35]. The grayscale distribution characteristics such as 
image contrast and feature size of naturally occurring surface floaters (as 
illustrated in Fig. 2), exhibit inhomogeneity in space and discontinuity 
in time. As a result, the PIV approach may be adversely affected since it 
calculates the average velocity by analyzing velocities across fixed space 
points on the river surface throughout the entire image sequence. 
Furthermore, due to the non-uniform and ill-defined shapes of the river 
surface floaters, the conventional PTV approach is similarly unsuitable 
for this type of particle. The surface materials under consideration 
resemble patterns rather than single particles. 

The present study utilizes a pattern-based Lagrangian approach, in 
which surface patterns representing interrogation areas or sub-images 
are tracked throughout the entire sequence of images. This method 
utilizes naturally occurring surface floating patterns that are intermit
tent in the river. Consequently, LPTV is employed to reconstruct the flow 

Fig. 1. Sketch of river surface velocimetry setup.  
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paths of individual sub-images. 

4. Image processing procedure 

This section provides a detailed description of two primary tech
niques employed for image processing and analysis. Fig. 3 illustrates a 
flowchart that outlines the image processing and analysis. The first 
technique (3D-LPTV) involves the determination of surface velocity in a 
3D coordinates system utilizing all the cameras within the imaging 

setup. In this regard, the coordinates of the surface points are obtained 
through optical triangulation. The second technique (2D-LPTV, LSPIV) 
involves image-based velocimetry using a single camera. In this 
approach, the images need to be undistorted and orthorectified utilizing 
a projective transformation based on Ground Control Points (GCPs). The 
latter method manipulates the image such that all pixels have the same 
spatial length. It should be noted that no pre-processing has been applied 
to the frame in 3D-LPTV to ensure a consistent comparison of the per
formance of various river surface floaters observed in this study (see 

Fig. 2. River surface patterns in different measurements: original images.  

Fig. 3. Flow chart of image processing and analysis.  
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Section 5.3). The following subsections elaborate on the specific aspects 
of velocity estimation using a multi-camera system and a single camera, 
respectively. 

4.1. Image pre-processing 

Pre-processing is a main stage in the methodology in the image-based 
river surface velocimetry. It involves rectifying lens distortions, 
orthorectifying images, and stabilizing them if necessary. Additionally, 
various filters or adjustments may also be applied to enhance the visi
bility and clarity of seeding particles [36]. In this study, orthor
ectification was applied only to the images in 2D-LPTV and LSPIV to 
correct perspective distortion and standardize pixel dimensions. No 
pre-processing procedures were employed in 3D-LPTV. Literature often 
involves pre-processing river flow data to improve surface features [24, 
26,37]. Common techniques typically include contrast enhancement, 
noise reduction using filters, and background subtraction. This study 
focuses on examining the grayscale distribution characteristics of 
various observed river surface features. Enhancement techniques 
therefore were not utilized on images, allowing for a raw comparison of 
the different surface patterns in the velocity estimation, as they are 
beyond the scope of this study. 

In LSPIV and LSPTV, the interrogation area size should be large 
enough to encompass a sufficient particle density for cross-correlation 
but small enough to avoid ambiguous outcomes [37,38]. Recent work 
by Ref. [36] highlighted the significant impact of frame rate on image 
velocimetry results, particularly concerning the LSPIV technique. This 
study aims to analyze the influence of surface floating patterns on image 
velocimetry. The analysis focuses on assessing the sensitivity of 
measured velocities concerning the changes in image intensity gradient 
and the strength of cross-correlation maps between consecutive frames. 
To maintain consistency, all other parameters remain constant, 
including the sampling frequency of 24.3 fps, 20 frames for each dataset, 
and the utilization of the same IA across all datasets. 

4.2. Camera network correlation and definition of river surface points 

To be able to determine river surface points in a spatial coordinate 
system, the initial step involves identifying homologous points across all 
cameras. These homologous points correspond to image points repre
senting the same locations on the river surface. Camera network corre
lation aims to find the homologous points representing the spatial grid 
surface points within the measured area. Initially, these grid surface 
points are approximated under the assumption of a planar water surface. 
The camera network correlation starts with the initial approximated 
coordinate of a 3D surface point. Subsequently, adjustments are made to 
refine its coordinates, aiming to determine its optimal position. This 
adjustment facilitates achieving the best possible cross-correlation 
across all camera pairs upon reprojecting the point onto the cameras. 
The camera network correlation procedure for each grid point follows 
this sequence: 

The approximated 3D surface point is assumed to be at a distance 
d from its estimated planar position in the normal direction. The cor
relation between camera pairs is performed for each incremental or ray 
tracing step of [ − d, d], to find Δdmax, which corresponds to the 
maximum of the camera pair’s correlation coefficient. To be more spe
cific, each incremental 3D surface point is reprojected onto the images of 
each camera in the network to get corresponding image points. Sub- 
images for cross-correlation are generated from these image points. 
Cross-correlation method is used as a measure to define the similarity 
between corresponding sub-images in image pairs. In the three-camera 
system correlation is performed for all three camera pairs. The median 
position of the correlation peaks is considered as the detected surface 
point in the system. The incremental step that corresponds to the cor
relation peak is selected as the optimal point within the range of [ − d,d], 
providing the highest correlation for the camera network. This best 

incremental point is then used to recalculate the 3D coordinates of the 
surface point from its initial approximated position. Fig. 4a and b show 
examples of the correlation between the three camera pairs in the 
network for grid surface points 88 and 89, respectively. The best- 
adjusted 3D points on the water surface are reprojected onto the im
ages of each camera in the network. As a result, grid surface points on 
the image are determined (see Fig. 4c). The correlation results from the 
camera network are used as filtering criteria in the image processing 
procedure (see Section 4.4). In this case, the correlation for point 88 
yields a median value of 0.5, and for point 89, a median value of 0.99 
(see Fig. 4a and b). Consequently, grid surface point 88 is labeled as 
invalid, while point 89 is marked as a valid surface point for the mea
surement. Fig. 4c shows only valid surface points after applying filtering 
criterion in the camera network correlation stage. This filtering criterion 
serves to retain good regions for image tracking while excluding surface 
regions that do not meet the required criteria from the calculation 
(Fig. 4c). 

4.3. Calibrated image orthorectification and 2D velocity measurement 

In LSPIV application, orthorectification needs to be carried out to 
correct images from perspective distortion. To orthorectify an image, 
imaged GCPs with known real-world coordinates are established in the 
field of view and paired with their pixel locations. Using the camera 
calibration, we calculate the spatial coordinates of points on the water 
surface. A set of points on the river surface is therefore used as GCPs, 
assuming the water surface of the analyzed area of interest represents a 
plane. A 2D transformation that represents 8 parameters of perspective 
projection between the spatial coordinates and projection of these GCPs 
onto the image [32,39]. The image orthorectification was carried out 
using MATLAB 2019b to generate the orthorectified images utilized in 
this analysis. 

Fig. 5 shows an example of the original image and orthorectified 
image as well as corresponding water surface points in these two images. 
2D velocity estimations (i.e., PTV and LSPIV) are performed on rectified 
images. As a result, the 2D velocity magnitudes of the instantaneous and 
average surface velocity fields can be obtained. A comparison of velocity 
magnitude measured by the three approaches (i.e., 3D- LPTV, 2D- LPTV 
and LSPIV) is presented in Section 5.1. 

4.4. Image correlation 

The image positions of grid surface points in the first capture of the 
image sequence are used to perform the cross-correlation, which is 
employed to estimate the movement of surface patterns in the image 
sequences. In this study, zero mean normalized cross-correlation (ZNCC) 
is applied for both the multiple-camera-based approach and the single- 
camera approach. Considering two successive frames F1(ui) and F2(uj)

with approximately the same features that are recorded at two-time 
instances, the ZNCC is expressed by equation (1), 

CZNCC =

∑N

i,j=1
f1(ui + Δu) f2

(
uj
)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
f 2

1(ui + Δu)
∑N

j=1
f 2

2

(
uj
)

√ (1)  

where f = F− < F > is the zeros-mean gray value, N is number of pixels 
in the subset, ui and uj denotes the coordinates that correspond to the 
reference and search images, and Δu is the correlation variable, that 
maps the reference subset to the search subset [40]. 

It is assumed that the motions of the features between the two frames 
are small, thus, local information can be utilized to estimate local mo
tion. The procedure in image correlation is to pick out an IA from the 
reference image F1 and search in a search area in the search image F2 for 
the set Δumax of the set Δu that maximizes the correlation value CZNCC in 
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equation (1). The IA’s local displacement vector is then estimated using 
the two translation components corresponding to the peak of the cor
relation map. 

The interrogation is implemented as follows: The first pass begins by 
distributing a set number of points within the search area, which can be 
adjusted to a pixel level to reduce computation time. Its main objective is 
to roughly estimate the area within the search area where the peak is 

located (see Fig. 6b). Subsequently, in the second pass, cross-correlation 
is limited to a smaller search area surrounding the estimated peak region 
from the first pass. Operating at a sub-pixel level with an interval of 0.01 
pixel, this step correlates the original IA in the search image with the 
reference image (see Fig. 6c). Finally, to avoid issues associated with the 
peak locking, a second order polynomial is utilized to fit the peak sur
face, considering the 6 points with the highest cross-correlation values 

Fig. 4. Camera network correlation: (a) Invalid surface point; (b)Valid surface point; (c) Reprojection of valid 3D surface points onto image using camera network 
correlation. 

Fig. 5. An example of corresponding river surface points in the original image (left) and orthorectified image (right).  
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within the peak region, allowing for the estimation of the most reliable 
peak on the correlation map (see Fig. 6d). 

Image correlation is performed with orthorectified images to calcu
late 2D velocity distribution on the river surface. In 3D-LPTV, the 
defined surface points (as described in Section 4.1) are tracked in the 
image sequences of all cameras and their spatial coordinates are calcu
lated by triangulation in the geometry of the camera network. Conse
quently, the surface pattern trajectories are reconstructed in 3D-LPTV 
analyses, as illustrated in Fig. 7. In 2D-LPTV and LSPIV, the valid surface 

points in the orthorectified images are transformed from their equiva
lents in the original images. 

4.5. Outlier filtering of velocity vector 

In image-based river velocimetry, outlier filtering is critical in order 
to improve the velocity estimation accuracy. Image cross-correlation- 
based filtering [33,41] and post-processing [42] are two common 
error-filtering strategies. Based on these principles, several methods for 

Fig. 6. An example of interrogation correlation procedure: (a) Two passes of cross correlation; (b) Correlation map of the first pass; (c) Correlation map of the second 
pass; (d) Surface fitting on correlation peak region. 

Fig. 7. An example of reconstructed surface pattern trajectories.  
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eliminating potentially inaccurate velocity vectors have been published. 
Tauro et al. [28] developed trajectory-based filtering for PTV using a 
priori knowledge of the flow direction. Recently Eltner et al. [43] pro
posed a track filtering criterion that includes a minimum proportion of 
frames in which features must be traceable, minimum and maximum 
distance limits, and flow direction. For the LSPIV application by Li et al. 
[33], the filtering procedures were based on the normalized correlation 
coefficient, the discarding of spurious vectors, and the global mean and 
standard deviation at each mesh point on the flow surface. 

In this work, a filtering criterion that encompasses both strategies are 
applied in the image processing procedure as the three criteria presented 
below.  

(1) The first criterion is used in the camera network correlation step 
to define grid points on the river surface (see section 4.1). A 
surface point is considered invalid if its median correlation co
efficient is less than 0.9 or the difference in x-coordinate between 
the three correlation peaks is greater than a threshold value (see 
Fig. 4). The threshold value indicates the acceptability of the 
disparity of surface point coordinates determined by camera pairs 
in the imaging system. Here, this value is set to 1.0 cm.  

(2) The second criterion is a correlation coefficient-based filter in 
image sequences, which is deployed in the correlation-based 
tracking process. A grid point is marked as invalid if its correla
tion coefficient between captures is less than 0.90.  

(3) The third criterion detects outlier vectors in post-processing 
validation of the surface velocity field. The local mean velocity 
of each grid point is calculated from its surrounding grid points 
on a 3 × 3 mesh grid. The residual is defined as the difference 
between the measured velocity and the local median. A velocity 
vector is marked as an outlier if any of its velocity components 
have residuals that are two times greater or smaller than the 
median of its neighboring points. 

5. Results and discussion 

In Section 5.1, we present river surface velocities estimated by the 
three approaches, outlined in Fig. 3. The comparisons are conducted 
using five distinct datasets. Section 5.2 demonstrates the reconstruction 
of the river surface using 3D-LPTV. In Section 5.3, we investigate surface 
pattern characteristics such as intensity gradient and strength of cross- 
correlation peak to determine a relationship between characteristics of 
these river floating patterns and the precision of measured surface ve
locity. Discussion on these results is presented in Section 5.4. 

5.1. Image velocimetry results from different approaches 

This section assesses the performance of three different flow mea
surement techniques: 3D-LPTV, 2D-LPTV, and LSPIV. Each method is 
applied across five separate datasets, and their results are compared. The 
river surface features corresponding to the five datasets are highlighted 
in Fig. 10a. The outlier filtering criteria outlined in Section 4.4 are used 
in the image processing of all three techniques across the datasets. Ve
locity estimations for all three methods rely on matching river surface 
patterns. The comparison of the techniques is based on the average 
velocities and standard deviations (SDT) derived from the analyses. The 
3D-LPTV technique estimates surface velocity using original images 
from all cameras, while 2D-LPTV and LSPIV employ orthorectified im
ages. The results from the three approaches are summarized in Fig. 8. 

5.2. River surface reconstruction 

In the multiple-camera imaging system, when all corresponding river 
surface points are identified between image pairs, their spatial co
ordinates are determined through triangulation, following the method
ology outlined in the 3D-LPTV approach. Fig. 9a shows the 
reconstruction of 3D points on the river surface and Fig. 9b shows a 
visualization of the observed water surface area achieved through 
interpolation of the measured 3D surface points. The river surface 
structure appears to have a height of approximately 5.0 cm. The third 
component of river surface coordinates provides information regarding 
their elevation in the defined coordinate system. By maintaining the 
same reference coordinate system when observing the river surface, 
variations in water level can be detected over time. The three- 
dimensional data of the water surface also allows for the detection of 
stage variations where applicable. Such information is crucial for 
discharge estimation, periodic analysis of reservoir conditions and 
potentially for flood warnings. 

5.3. Characteristics of river surface patterns on uncertainty of measured 
velocity 

Surface floating tracers observed on river surfaces exhibit a wide 
variety of appearances. The majority of these surface patterns observed 
during this measurement campaign were attributed to upstream spill 
flow. It’s important to note that errors in river velocimetry arise from 
various factors within the procedure of the measurement from data 
acquisition (frame rate, stabilization of the camera, field conditions), 
pre-processing, main processing, and post-processing [35]. Here we 
exclusively focus on the impacts of surface flow patterns and the 

Fig. 8. Average measured velocity and standard deviation from five datasets.  
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reliability of pattern-based image tracking on the precision of measured 
velocity. The purpose of this section is to investigate the properties of 
these surface floating patterns and establish a correlation between their 
imaging characteristics and the associated uncertainty in the measured 
velocity. The river surface features highlighted in Fig. 10a show the 
behaviors of floating tracers in the five reference datasets corresponding 
to the five surface patterns that will be utilized for analysis within this 
section. 

It is well known that the size of the interrogation area in cross- 
correlation between consecutive frames influences the accuracy of the 
measured displacement. On one hand, the size of the IA should be suf
ficiently large enough to encompass a distinct intensity pattern and 
differentiate itself from other interrogation areas. On the other hand, 
employing a larger IA often results in increased errors when approxi
mating underlying deformations. 

Fig. 10b illustrates the standard deviation of the measurements from 
the five reference river surface patterns. The IA radii vary from 10 to 150 
pixels with an increment of 10 pixels. It is evident that, across all river 
surface patterns, the standard deviations decrease as the interrogation 
areas increase. To ensure consistent analysis of image pattern charac
teristics, an interrogation radius of 50 pixels is selected for all five 
datasets. Therefore, the analyses in the following subsections are based 
on results obtained using the same interrogation area radius of 50 pixels 
for the velocity estimation. 

5.3.1. Image intensity gradient and uncertainty of measured velocity 
In nature, water surface patterns often exhibit inhomogeneity and 

varying density distributions. Fig. 10a illustrates the notable distinctions 
in feature size, distributions, and image contrast among these five sur
face floating patterns. To assess the relationship between pattern quality 
and the accuracy of measured displacement in correlation-based 
tracking methods, Pan et al. [44] introduced a parameter known as 
the intensity gradient, which is associated with the error in deformation 
measurement. Although Pan et al. [44] investigated the relationship 
between intensity gradient and accuracy of displacement measurement 
using Sum of Squared Differences (SSD) correlation criterion, Tong [45], 
Pan et al. [46], and Pan [47] prove that the zero-mean normalized sum 
of squared differences (ZNSSD) coefficient is directly related to the 
ZNCC and that ZNSSD and ZNCC criteria are equivalent. Thus, the 
interrogation area intensity gradient (IAIG) has an equivalent impact on 
the accuracy of displacement measurement when ZNCC is employed. 

As shown in Figs. 2 and 10a, the natural tracers in the flow are 
distributed unevenly, leading to significant variations in the local pa
rameters computed for different interrogation areas. In this study, we 
employ a local parameter referred to as the sum of square of interro
gation area intensity gradient (SSIAIG) to assess the contrast of river 
surface pattern in each IA. The SSIAIG is computed for every valid 
surface point (see Section 4) as equation (2) 

Fig. 9. An example of (a) 3D reconstructed river surface points, (b) Interpolation of river surface.  

H. Trieu et al.                                                                                                                                                                                                                                    



Flow Measurement and Instrumentation 96 (2024) 102557

10

SSIAIG=
∑∑

|∇G(x, y)|2 (2)  

where |∇G(x, y)| =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

G2
x + G2

y

√

, with Gx and Gy are the local intensity 

gradient in interrogation area in x and y direction, respectively. 
The SSIAIG value is calculated for the five datasets corresponding to 

five river surface patterns presented in Fig. 10a, using the same IA size. 
In Fig. 11a, the coefficients of variation are calculated as the averaged 
ratios of the standard deviation to the mean velocity for each dataset. 
The SSIAIG values represent the averages of SSIAIG values calculated 
from the river surface patterns within the five datasets. Fig. 11b illus
trates the relationship between the measured velocity deviation and the 
SSIAIG for each data point. 

5.3.2. Peak to sidelobe ratio of cross-correlation map and standard 
deviation in measured velocity 

In both LSPIV and PIV techniques, the correlation coefficient ob
tained from cross-correlation is commonly employed as a criterion to 
evaluate the quality of image tracking. However, the lack of seeding 
particles or the presence of natural floating particles with poor visibility 
can significantly degrade the accuracy of the matching process. In such 
scenarios, the matching algorithm still attempts to identify the most 
similar result, which may result in an erroneous estimation of 
displacement. Notably, these inaccuracies cannot be detected by solely 
evaluating the correlation coefficient values. 

The image-matching process is carried out using ZNCC, as described 
in Section 4.3. The PSR values are estimated to assess the quality of the 
cross-correlation-based tracking method. The PSR value is widely used 
in target tracking to evaluate the quality of tracking [48]. The calcula
tion of PSR is provided by equation (3) 

PSR=
peak − mean

standard deviation
(3)  

where peak stands for the maximum value of the cross-correlation of the 
interrogation window in the reference frame and searching frame, and 
mean and standard deviation are the mean and standard deviation of the 
sidelobe (see Fig. 12). In Fig. 13, an example of cross-correlation maps 
and their corresponding PSR values for two interrogation areas of two 
surface patterns are presented. According to the general behavior of the 
correlation function, a narrower and well-defined peak would lead to a 
more precise peak position and thus improve the accuracy of the 
deformation calculation [49]. 

The PSR values were calculated for each dataset, and the average 
PSR values are represented by orange circular dots in Fig. 14a. Corre
spondingly, the coefficient variations of the averaged velocities for the 
five datasets are denoted by blue circular dots. Note that these results 
were obtained using the 3D- LPTV method. Fig. 14b shows the distri
bution of measured velocity deviation and PSR of each data point. 

5.4. Discussion 

The averaged velocities and their STD estimated from the three ap
proaches are shown in Fig. 8. The differences in results obtained by 3D- 
LPTV and LSPIV techniques range from 0.3% to 1.8% of the average 
velocity magnitude. For 3D- and 2D-LPTV methods, the standard de
viations of velocity vary from 1.3% to 2.9%. However, for LSPIV, these 
values range from 2.8% to 4.4%, as shown in Fig. 8. The results show a 
high level of agreement in terms of averaged velocity across all three 
techniques. The difference in velocity magnitudes between 3D-LPTV and 
2D-LPTV is found to be negligible, ranging from 0.01% to 0.4%. 
Therefore, the assumption of a planar river surface in this experiment is 
considered appropriate for the measurement. Notably, across all our 
datasets the uncertainties in measured velocities from the LSPIV tech
nique are about two times larger than those from the other approaches. 
The discrepancy between the performance of LPTV-based and LSPIV 

Fig. 10. (a) Cropped images from five river surface patterns; (b) Standard deviation of measured velocities for five datasets vs. the interrogation area sizes.  
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techniques may be attributed to the presence of intermittent surface 
patterns within the field of view. Specifically, the LPTV-based tracking 
method relies on the displacement of recognizable surface patterns, 
while LSPIV measures the movement of water at every grid surface point 
regardless of the presence or absence of surface floating tracers. As a 
result, surface movement tracking is more prominent in the LPTV 
approach than in the PIV approach used for natural floating tracers in 
rivers. When using the PIV-based method for particle patterns that 

intermittently appear within the field of view, the lack of surface char
acteristics leads to a high level of uncertainty in the surface velocity. In 
summary, the results of the three approaches show that all three 
methods yield similar results in terms of averaged velocity. Nonetheless, 
the LPTV-based approach is considered more reliable because it pro
duces lower standard deviation values. Datasets 4 and 5 show similar 
standard deviations in velocities across the three approaches (3D-LPTV, 
2D-LPTV, LSPIV). Generally, these two datasets yield higher uncertainty 
in the results compared to the others. Fig. 10 highlights that patterns 4 
and 5 resemble cloudy foam features, while patterns 1, 2, and 3 exhibit 
more discrete features. In the case of cloudy foam features, there is a 
higher level of measurement uncertainty across all approaches. 

The choice of method for surface velocity measurements depends on 
the required output and the level of precision and accuracy needed. In 
natural streams, pattern-based tracking methods offer several advan
tages over particle tracking methods, including the ability to use natural 
floating patterns on river surfaces, relaxation of the requirement for 
tracer particles to have a well-defined shape and size, and applicability 
on a larger scale. However, natural tracer dispersion is often inhomo
geneous, and surface patterns can vary significantly due to sunlight 
reflection, making outlier filtering critical for reliable results. In this 
paper, we use a filtering approach that incorporates both image- 

Fig. 11. (a) Coefficient variation of velocity and corresponding SSIAIG of five river surface patterns (1–5); (b) Distribution of measured velocity deviation and SSIAIG 
of each data point. 

Fig. 12. The peak, peak region, and sidelobe region of cross-correlation.  
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matching and post-processing strategies. Specifically, we utilize a 
multiple-camera system that enables the detection of good regions on 
surface patterns for image tracking through the camera network corre
lation procedure. Another advantage of the multiple-camera system is 
the ability to reconstruct the river surface, allowing assessment of water 
level variation and water stage. 

The ability to track identifiable surface particles or patterns is crucial 
for accurate image-based surface velocity measurements. While artifi
cial tracer particles are commonly employed to enhance measurement 
reliability, challenges arise in large river conditions. In this context, 
natural floating tracers on the river surface offer valuable potential for 
river velocimetry using image analysis. This study explores the influence 
of surface-floating particles or tracers on image-based river velocimetry, 
emphasizing their crucial role in enhancing measurement accuracy and 
reliability. While controlling these tracers on the river surface can be 
challenging, selecting an appropriate IA size during image processing 
emerges as a crucial factor. The IA must encompass enough identifiable 
features to enable accurate tracking. Fig. 10 illustrates that to achieve 
the same precision in the measurement, the average IA size varies for 
each of the five reference river surface patterns. Specifically, for a STD of 
0.02 m/s, the average IA size is as follows: 25 pixels for image pattern 1, 
60 pixels for image pattern 2, 100 pixels for image pattern 3, and 140 
pixels for image patterns 4 and 5. This indicates that utilizing a small 
subset can result in sufficient precision when measuring displacements 
in images with higher contrast. Therefore, the interrogation area size 
should be optimized according to the specific conditions of the surface 
floating tracer in order to improve the precision of the measurement. 

Analyses on the intensity gradient of IA from the reference river 
surface patterns show that the standard deviations of measured veloc
ities from river surface patterns 4 and 5 are larger than those obtained 
from river surface patterns 1 and 2 (see Fig. 11a). This discrepancy can 
be attributed to the progressive decrease in image contrast observed 
from pattern 1 to pattern 5. Fig. 11b shows the deviation in the 
measured velocity and SSIAIG for each point of all five river surface 
patterns. It is evident that the deviation in the measured velocity de
creases as the SSIAIG increases. In addition to image contrast, the fea
tures in pattern 1 are smaller than those in the other patterns, and their 
distribution in the image is more uniform. These factors contribute to 
the higher intensity gradient calculated from river surface pattern 1 
compared to the other patterns. 

Fig. 14a illustrates that a negative correlation exists between the PSR 
values of the cross-correlation process and the measurement uncer
tainty. River surface pattern 1, which has the highest value of PSR 
exhibited the smallest velocity variation, while dataset 5, which has the 
lowest PSR value, shows the largest coefficient of variation. This result 
highlights the inverse relationship between decreasing PSR values and 
increasing coefficient variation in measured velocity. A higher PSR 
typically indicates a stronger correlation peak relative to sidelobes, 
implying more accurate measurements. Furthermore, among the five 
patterns, patterns 4 and 5 are particularly susceptible to variations in 
brightness and contrast caused by sunlight. As these variations are un
related to flow movement, they contribute to the overall uncertainty of 
the measurement. The strength of the cross-correlation map in image 
tracking emerges as a valuable parameter for filtering, contributing to 
the overall reliability of measured velocity. This parameter holds the 
potential to improve displacement determination accuracy, thereby 
improving the quality of the measured velocity. 

Both image intensity gradient and PSR serve as indicators of the 
surface floating pattern characteristics. The analysis demonstrates the 
important role these characteristics play in improving the precision of 
the velocity measurements. The ZNCC algorithm used for cross- 
correlation between consecutive images in the same sequence (as pre
sented in Section 4.1), is also the underlying process in camera-to- 
camera correlations within the camera network, in which it measures 
the similarity between homologous sub-images in camera pairs. Surface 
patterns that are more susceptible to sunlight reflection may be imaged 
slightly differently in different cameras in the same camera network. 
This issue lowers the PSR of the cross-correlation process and conse
quently increases the uncertainty in determining homologous surface 
points, negatively impacting the measurement accuracy. Through our 
analysis, we identify that patterns 4 and 5 are particularly vulnerable to 
this phenomenon. Consequently, the uncertainties in velocity mea
surements for patterns 4 and 5 are larger than those of the other river 
surface patterns. The analysis of SSIAIG of image patterns and PSR of 
cross-correlation in image tracking demonstrates that patterns with 
small size, high contrast, evenly redistributed, and higher density of 
particles are better for measurement reliability. Both SSIAIG and PSR 
serve as metrics for assessing the suitability of natural surface floater in 
image-based river velocimetry. Optimizing IA size based on SSIAIG and 
employing PSR as a filtering criterion could significantly enhance the 

Fig. 13. Example of visualization of cross-correlation map corresponding to two interrogation areas of surface patterns and their PSR values.  
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reliability of measurements in river velocimetry. 
Accurate image-based velocity measurements depend not only on the 

choice of algorithm and its parameters but also on several other factors, 
such as the measurement setup, camera calibration, and image pro
cessing method. Camera calibration is a crucial step to minimize image 
distortion, which can lead to significant errors in velocity measure
ments. Detert [50] reported that the accuracy of image velocimetry is 
greatly improved with a careful calibration process. In the presence of 
wind, image velocimetry should not be used for low flow conditions due 
to the generation of small waves, such as capillary waves or ripples, by 
surface wind. These waves travel at their own speed and direction and 
can result in measurement errors. 

6. Conclusions 

In this study, we examine the performance of image-based velocity 
measurements in natural flow conditions using a pattern-based tracking 
technique. By utilizing a multiple-camera system, we employ a camera 
network correlation procedure that can effectively identify and track 
intermittent surface patterns, allowing for the selection of only the most 
reliable regions for tracking. 

We applied pattern-based tracking to the same datasets to validate 
the performance of the three approaches: 3D-LPTV, 2D-LPTV, and 
LSPIV. All approaches produce good agreement between the three in 
terms of averaged velocity. However, the LSPIV shows larger standard 
deviations of velocity, ranging from 2.8% to 4.4%, compared to 1.3%– 
2.9% from the 3D and 2D- LPTV methods, respectively. The differences 
in velocity magnitudes between 3D and 2D are within the range of 
0.1%–0.4%. However, one advantage of using the same reference co
ordinate system for observations is the ability to reconstruct the river 
surface and detect variations in water level over time. 

An analysis of the characteristics of river floating patterns was per
formed to understand their effects on measurement accuracy. The river 
surface patterns associated with small feature sizes and even distribution 
give higher SSIAIG values and subsequently provide higher precision of 
measured velocities. The patterns with higher PSR values correspond to 
higher precision in measured velocities indicating that the quality of 
cross-correlation, as measured by PSR, valuable parameter for filtering, 
contributing to the overall reliability of measurement results. Both 
SSIAIG and PSR could be used for evaluating the suitability of natural 
surface patterns in image-based river velocimetry. River flow measure
ments are greatly beneficial by the image-based technique. 

Fig. 14. (a) Coefficient variation of velocity and corresponding PSR of five river surface patterns (1–5); (b) Distribution of measured velocity deviation and PSR of 
each data point. 
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Understanding the primary factors that impact the reliability of the 
measurement allows individuals to make better decisions, from choosing 
an appropriate measurement approach to data acquisition and image 
analysis. 
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