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Sandy soils are characterized by low soil moisture content and nutrient retention

due to high permeability, limiting crop productivity and threatening food security

in arid and semi-arid regions worldwide. Various reclamation technologies have

been developed to address these challenges, but their effectiveness has not been

comprehensively evaluated. This systematic review evaluated the performance

of 42 sandy soil reclamation technologies reported in 144 studies from 27

countries that met specified selection criteria. Performance was evaluated

based on response ratio (RR) of aboveground biomass and grain yield, as

indicators of productivity, and soil moisture content and soil organic carbon

(SOC), as indicators of soil health. The 42 technologies employed four main soil

amendments: biochar, organic amendments, organic amendments combined

with biochar, and soft rock. Overall, all technologies increased productivity and

improved soil health. Biochar application was found to be the most effective

technology, increasing grain yield by 51.6%, aboveground biomass by 67.4%, soil

moisture content by 17.3%, and SOC by 74.2%. Soft rock application increased

grain yield by 20.3%, aboveground biomass by 27.6%, soil moisture content by

54.5%, and SOC by 12.8%. Organic amendments increased grain yield by 48.7%,

aboveground biomass by 45.6%, soil moisture content by 20.8%, and SOC by

36.7%. However, the combination of biochar and organic amendments showed

lower improvements, with increases of 25.4%, 15.6%, 1.3%, and 25.4% for grain

yield, aboveground biomass, soil moisture content, and SOC, respectively. Our

conclusion is that the findings provide strong evidence that sandy soil

reclamation technologies can significantly improve crop productivity and food

security. Considering the variability in technologies responses across continents,

there is need for further research to determine the optimal technology for

specific locations, crops, and management practices.
KEYWORDS

sandy soil reclamation, crop yield, biochar, soil health, soil organic carbon, organic
amendments, soil moisture content
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1 Introduction

The global population is predicted to grow from 7.8 billion in

2020 to 9 billion by 2050 (1), necessitating comprehensive measures

to address food security and nutrition. These measures must

encompass actions across the entire food value chain, including

production (2). Sustainable agricultural intensification at

production level, characterized by diversification, efficient

production methods, and climate change mitigation strategies,

has been suggested as a response to food insecurity (3). However,

millions of hectares of global land mass are unsuitable for

conventional agriculture due to low productivity and high water

and nutrient permeability, necessitating technological intervention.

Sandy soils, covering approximately 900 million hectares worldwide

(4), are among these unsuitable lands. The high permeability of

sandy soils to water and associated nutrients limits crop

productivity (5) and increases groundwater contamination when

fertilizers are applied (6). In arid and semi-arid regions, where

sandy soils are prevalent, the predicted climate change and

variability are expected to exacerbate food security and nutrition

challenges for farmers who rely on these lands (7). Reclaiming

sandy soils through technologies that mitigate water and nutrient

percolation is essential for enhancing crop production and ensuring

food security.

To enhance the productivity of sandy soils, various technologies

for improving soil moisture and nutrient retention have been

developed. These approaches involve using soil water retention

technologies which optimize rainwater utilization and minimize

irrigation needs around the plant roots (8, 9). For example, biochar

application is reported to influence soil hydro-physical properties

by improving the ability of sandy soil to conserve water in arid or

semi-arid conditions (10, 11), use of asphalt interrupts water

movement by forming a continuous barrier under sandy soil (12),

and soil management practices, including mulching and cover

cropping, assist in moisture retention (13, 14). Organic

amendments such as use of compost, food waste, crop residues

and application of manure have also been reported to enhance

sandy soil`s productivity by increasing soil organic matter content,

enhancing soil microbial diversity and improving soil moisture and

nutrient retention capacity (15–17). Previous studies have often

evaluated these technologies in isolation, making it difficult to

determine the most effective approach. Moreover, the results are

often context-specific and frequently influenced by the

experimental design and the conditions under which the

experiments were conducted. Studies evaluating biochar

application, such as those by (18–20), have investigated different

application rates. Similarly, studies assessing water retention

membranes, such as those by (21–23), have examined their

effectiveness under different climate conditions. However,

variations in experimental design and conditions between these

studies hinder identification of the most suitable technology for

improving sandy soil productivity in a specific region and

determination of the optimal conditions to maximize

its effectiveness.

Achieving United Nations Sustainable Development Goals

(SDG) on ending hunger and achieving food and nutrition
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security necessitates transformation of agricultural and food

systems to encompass more sustainable and climate-resilient

production methods that also preserve biodiversity (24). This can

be partly accomplished through identification, implementation, and

scaling of technologies with proven effectiveness or widespread

recognition in enhancing sandy soil productivity. However, there

remains a substantial knowledge gap regarding the overall effect of

sandy soil reclamation technologies on grain yield, aboveground

biomass, soil moisture retention, and SOC. A thorough systematic

review is needed to identify, evaluate, and synthesize the findings of

various studies on sandy soil reclamation technologies and draw

comprehensive conclusions.

The overarching objective of this study was thus to evaluate the

effectiveness of sandy soil reclamation technologies in enhancing

crop yield, aboveground biomass, soil moisture retention, and SOC

levels. We hypothesized that sandy soil reclamation technologies

would improve crop productivity by enhancing soil health through

increased soil moisture retention and improved soil organic carbon.

Therefore, systematic review was conducted, addressing the

following crucial questions: (1) Are there temporal and spatial

trends in terms of sandy soil reclamation technologies? (2) What

is the overall effect of sandy soil reclamation technologies on crop

performance? and (3) Does the effect depend on the type of crop,

climate, and farm management practices?
2 Methodology

2.1 Literature search, and selection and
screening of records

An extensive literature search was conducted using prominent

academic databases (Web of Science, SCOPUS, ProQuest) to

identify published studies providing quantitative or qualitative

data on the effectiveness of sandy soil reclamation technologies

employed globally. The review covered studies published between

1969 and December 2022. An initial scoping search was conducted

to identify sandy soil reclamation technologies that have gained

widespread recognition and promotion, and the key indicators of

impact discussed in the identified literature. Crop productivity and

soil health emerged as the two primary indicators of impact, where

soil health serves as the indicator of sustainability in the

environmental domain (25). A comprehensive search string was

developed incorporating the term ‘sandy soil’ or its synonyms,

various sandy soil reclamation technologies, the performance

metrics of the measured outcome, and the scope of the

technology application (Table 1).

Preliminary screening of potential papers was conducted based

on evaluation of their titles and abstracts. Relevant papers were then

subjected to a thorough review based on the following criteria:

(1) Publications in peer-reviewed scientific journals, (2) original

field studies conducted on farms or research stations, excluding

laboratory experiments, modeling studies, and literature reviews,

and (3) publications reporting appropriate quantitative data on

means, sample size, and measures of variance (e.g., standard

deviation, standard error of the mean) for both the intervention
frontiersin.org
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and control groups. Additional criteria were (4) publications in the

English language and (5) papers published 1969-2022 evaluating

the effectiveness of sandy soil reclamation technologies in

enhancing crop productivity and soil health. Grey literature,

including books, reports, and doctoral theses, was excluded due to

concerns about authenticity, potential publication bias, and

accessibility challenges. Studies on sandy soil reclamation for

non-agricultural purposes, such as construction, were also

excluded, to maintain a strict focus on agricultural applications.

The inclusion-exclusion criteria were mutually agreed by all co-

authors through a consensus process.

Publications screening adhered to the Preferred Reporting

Items for Systematic Reviews and Meta-Analysis (PRISMA)

statement (26). Figure 1 presents a PRISMA flow chart of the

review process and the number of publications identified, screened,

and included at each of the four phases of this study.
2.2 Data extraction and choice of
performance indicators

A comprehensive literature review was conducted. Each selected

publication was reviewed in detail to gather data on the effectiveness

of sandy soil reclamation technologies in improving crop productivity

and soil health. The data extracted were divided into the following

categories: (1) bibliographic information: author, year of publication,

title, and abstract; (2) locational information: continent, country,

experimental site/s, global positioning systems (GPS) coordinates

(both longitude and latitude) of experimental sites, and elevation;

(3) farm management practices: technology used, application rates,

fertilizer type and rates, irrigation type, and crop type; and (4)

measures of outcome for crop productivity and soil health, units of
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measurement. Quantitative information, such as mean and standard

deviation of measured parameters, was extracted when reported. For

studies without quantitative data, the overall effect (neutral, positive,

negative) or percentage change resulting from use of a given

technology was recorded. To prevent inflated sample sizes and

significance levels that could lead to type I errors, each outcome

from a single study was considered as a separate data point, in

accordance with the recommendation by (27). This approach ensured

that each outcome was treated as an independent observation,

avoiding overestimation of sample size and significance levels, as

recommended by (28). For instance, if a single study reported

outcomes for different crop species, seasons, locations, technology

levels, or fertilizer application rates, each outcome was treated as an

independent observation.

A total of 42 sandy soil reclamation technologies were identified

and evaluated from the 144 publications reviewed (Appendix A).

Technologies identified were categorized into broader classes of

sandy soil reclamation technologies (Table 2), based on similarities

or synonyms. Performance indicators were also identified and

categorized (Table 3). The diverse range of sandy soil reclamation

technologies resulted in identification of 470 metrics for assessing

crop productivity and soil health, with 73% of these reported in only

one study. To assess the effectiveness of the technologies, four key

indicators were selected: grain yield and aboveground biomass as

measures of crop productivity (38 and 18 studies, respectively), and

soil moisture content and SOC as indicators of soil health (18 and

16 studies, respectively). Enhancing crop productivity (grain yield

and aboveground biomass) while simultaneously improving soil

health (SOC and soil moisture) is recognized as a hallmark of

sustainable intensification (74). Low SOC levels, which negatively
FIGURE 1

PRISMA flow chart illustrating the systematic steps employed in
selection of relevant publications for this systematic review of sandy
soil reclamation technologies. Number (N) of publications retained is
shown in brackets.
TABLE 1 Comprehensive search terms employed to identify relevant
publications in Web of Science, SCOPUS, and ProQuest.

Category Search term

Soil (“Sandy soil” OR “arenaceous soil” OR “acervulus soil” OR
“ammophilous soil” OR “arenosols” OR “renosols” OR
“arenicolous soil” OR “granular soil” OR “gritty soil” OR
“sabulous soil” OR “coarse-textured soil”)

AND

Sandy soil
reclamation
technology

(“asphalt” OR “biochar” OR “subsurface water retention
technology” OR “SWRT” OR “clay” OR “soil conditioners” OR
“gel conditioners” OR “metal” OR “superabsorbents” OR
“feldspathic sandstone” OR “phosphorus solubilizing bacteria”
OR “humic substances” OR “Hydrogel amendments” OR “soil
water retention barriers” OR “water barriers” OR “manure” OR
“organic matter”)

AND

Outcome (“yield” OR “soil moisture” OR “biomass” OR “aboveground
biomass” OR “dry matter” OR “water use efficiency” OR
“infiltration” OR “water retention” OR “soil moisture retention”
OR “grain quality” OR “organic carbon”)

AND

Scope (“farm” OR “agriculture” OR “crop product*” OR “agricultural
product*” OR “plot” OR “garden”)
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impact soil moisture retention, impose significant constraints on

agricultural productivity worldwide. Grain yield directly represents

the quantity of edible and marketable crop products, while

aboveground biomass serves as a measure of crop growth. Grain

yield and aboveground biomass are frequently used to compare the

performance of different cropping systems, farm management

practices, and crop varieties. Therefore, they are considered

standard metrics for evaluating the effectiveness of sandy soil

reclamation technologies in enhancing crop productivity. Soil

moisture retention and SOC were analyzed as direct indicators of

the ability of sandy soil reclamation technologies to improve soil

water-holding capacity and carbon sequestration potential.
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2.3 Data analysis

The spatial distribution of the reviewed publications was

mapped in ArcGIS 10.3.1, utilizing the GPS coordinates of

experimental sites from each study. Temporal characteristics were

illustrated by charting the annual distribution of studies. For studies

lacking GPS coordinates, site locations were extracted from Google

Earth Pro (75), based on the study’s specified locations.

To enable meaningful comparisons of the effectiveness of the

technologies across different regions and crop types, response ratio

(RR) was employed as the effect size measure. It was selected

because it allows comparison of outcomes across studies that use

different measurement procedures (76) and was calculated as:

RR = ln
�xe
�xc

� �
(1)
TABLE 2 Categories of sandy soil reclamation technologies identified in
the 144 studies reviewed and respective references.

Category Description Selected
references

1. Biochar A black charcoal-like substance produced
when organic matter (such as crop residues,
leaf litter, sawdust, or dead plants) is burned
under a limited amount of oxygen, a process
called pyrolysis. Biochar increases soil
moisture and nutrient retention capacity, in
turn improving soil productivity.

(29–34)

2. Bentonite A form of clay with a notable ability to
absorb and lose water, generated from
decomposition of volcanic ash to a smectite
clay called montmorillonite. Bentonite as a
soil conditioner improves the agronomic
quality of sandy soils by increasing soil
moisture retention, cation exchange capacity
(CEC), and soil aggregate stability.

(35–38)

3. Organic
amendments
and biochar

Mixtures of biochar and organic
amendments (both defined herein).

(39–42)

4. Organic
amendments

Any carbon-containing matter formed from
any living or dead plant or animal matter at
various stages of decomposition, and
microorganisms and their excretions.
Organic amendments modify physico-
chemical and biological soil characteristics,
thus improving soil structure and increasing
moisture and nutrient retention capacity.

(43–46)

5. Soft rock Rock types with low compressive strength
(<25 MPa), including sedimentary rocks
such as siltstone, sandstone, mudstone, and
argillaceous sandstone, which are mainly
known for their swelling, slaking, softening,
and argillization properties in the presence
of moisture and hardening during dry
periods and under high pressure. Soft rock
increases organic binding in the soil by
strengthening cementation of micro-
aggregate soil particles.

(47–50)

6. Humic
substances

End-products of organic matter degradation
which are highly resistant to further
microbial decomposition and with varying
molecular combinations, including
carbohydrates, amino acids, and fatty acids.
By stabilizing soil structure and increasing
water-holding capacity, humic substances
improve soil quality.

(51–53)
TABLE 3 Classification of performance indicators and
respective references.

Category Description Selected
reference

1. Biomass Mass of living organisms (both above- and
below-ground), including plants, animals, and
microorganisms, or components of living
organisms such as proteins, lignin, sugars,
cellulose, and fats often reported as mass per
unit area.

(33, 54–56)

2. GHG
emission

The process through which greenhouse gases
(GHG) such as methane, nitrous oxide, and
carbon dioxide (that have the potential to
absorb infra-red radiation emitted from the
earth’s surface and radiate it back to the
earth’s surface) are released into
the atmosphere.

(57–60)

3. Growth Irreversible expansion of crop cells and
organs due to cell division and enlargement.
Examples of indicators in this group include
ear length, spike length, plant height, etc.

(20, 30, 52,
53, 61, 62)

4. Resource
use efficiency

An ecological concept that involves
determination of the proportion of inputs
supplied that is converted into new biomass.
In this study, it comprises indicators of water
and nutrient use efficiency.

(54, 63–65)

5. Soil health Continued ability of soil to support plants,
animals, and human beings, ecological
biodiversity, primary productivity, and
environmental quality. This group includes
indicators of both physical and chemical
properties of soil.

(36–38)

6. Crop yield Amount of food produced per unit area at a
given time. In this study, it includes
indicators such as grain yield, pod yield, seed
index, and harvest index.

(66–71)

7. Plant
health

Ability of a plant to carry out its physiological
functions to the best of its genetic potential.
This group includes pest and
disease indicators.

(72)

8. Economic
benefit

Gains that can be quantified in terms of
money generated such as profit, revenue,
income, etc.

(73)
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where ln is the natural logarithm, �xe is the mean of the

experimental group, and �xc is the mean of the control group (76).

A negative RR value signifies that the test crop exhibits better

performance without implementation of the technology. Percentage

change was calculated to quantify the magnitude of change

associated with each technology using Equation 2:

Percentage change =
�xe − �xc
�xc

� �
� 100 (2)

Owing to great heterogeneity in management practices and

socio-economic conditions across the study sites, we categorized

studies into subgroups with comparable conditions to elucidate the

influence of moderating factors (such as fertilizer use, application

rates, and continental variation) on the effectiveness of the

technologies. Biochar was selected as a representative technology

due to its prevalence across the reviewed studies and its diverse

application in various regions. Response ratio, calculated using

Equation 1, was employed to compare the impact of various

moderating factors on performance indicators such as grain yield,

aboveground biomass, soil moisture, and SOC.
3 Results

3.1 Global distribution and temporal trends
in sandy soil reclamation studies

Analysis of 144 publications spanning six continents (Africa,

Asia, Europe, Oceania, North America, and South America)

revealed that majority of studies were conducted in Africa (57),

while the fewest were conducted in South America (5) (Figure 2).

Overall, there was a consistent upward trend in the number of

publications on sandy soil reclamation throughout the study period

(Figure 3). Organic amendments were the primary technologies

investigated for their potential to enhance productivity of sandy
Frontiers in Soil Science 05
soils until 2007. Use of soft rock, biochar, and combined biochar

and organic amendments emerged from 2007 onwards, with a

gradual increase in the number of studies up to 2022.
3.2 Impact of sandy soil reclamation
technologies on crop productivity and
soil health

Biochar application was reported to give the most substantial

increase in grain yield, while soft rock application gave the least

improvement (Figure 4). The next most effective technology for

enhancing grain yield was application of organic amendments, with

mean RR of 0.30 (95% confidence interval (CI) = 0.24, 0.37).

Combining organic amendments and biochar resulted in RR of

0.22 (95% CI = 0.18, 0.26), indicating a lesser effect than when

these technologies were applied individually. All four technologies

gave an increase in aboveground biomass, but with varying effect size

(Figure 4). Biochar application gave the most significant increase in

aboveground biomass, with mean RR of 0.35 (95% CI = 0.25, 0.45),

followed by organic amendment application, with mean RR of 0.32

(95% CI = 0.21, 0.44). Combined application of organic amendments

and biochar gave the least substantial increase in aboveground

biomass, with mean RR of 0.14 (95% CI = 0.12, 0.17), indicating a

weaker effect than when these materials were applied individually.

Soft rock application resulted in a moderate increase in aboveground

biomass, with mean RR of 0.24 (95% CI = 0.13, 0.35).

Application of biochar, soft rock, organic amendments, and

combined biochar and organic amendments to sandy soils led to

increased soil moisture retention compared with the control group

(Figure 4). Soft rock application gave the most significant

enhancement in soil moisture retention, with mean RR of 0.40

(95% CI = 0.20, 0.60), followed by application of organic

amendments, with mean RR of 0.15 (95% CI = 0.05, 0.24), and

application of biochar, also with mean RR of 0.15 (95% CI = 0.13,
FIGURE 2

Geographical distribution of sandy soil reclamation studies worldwide. The number of studies conducted in each continent is indicated within the legend.
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0.16), respectively. Combined application of organic amendments

and biochar gave a non-significant increase in soil moisture content,

with mean RR of 0.01 (95% CI = -0.03, 0.04).

All four technologies contributed to an increase in SOC content

(Figure 4). However, biochar application gave the most substantial

increase in SOC, with mean RR of 0.38 (95% CI = 0.31, 0.45), while

soft rock application gave the least improvement, with mean RR of

0.10 (95% CI = -0.18, 0.38). Organic amendment application

resulted in the second-highest increase in SOC, with mean RR of

0.26 (95% CI = 0.20, 0.32). Combined application of biochar and

organic amendments also led to an increase in SOC, with mean RR

of 0.24 (95% CI = 0.19, 0.28). However, this effect was less

pronounced than when these materials were applied individually.
3.3 Factors influencing the effectiveness of
biochar application

An extensive review of the selected literature revealed various

factors that influence the effectiveness of sandy soil reclamation
Frontiers in Soil Science 06
technologies, including application rate, fertilizer application,

regional variations, application form, and biochar type, source,

and processing methods. To illustrate the impact of moderating

factors on biochar performance, we examined crop type, application

rate, and regional distribution.
3.3.1 Effect of crop type and biochar
application rate

There was a clear impact of crop type and biochar application

rate on grain yield and aboveground biomass. Biochar application

enhanced grain yield and aboveground biomass of maize (Zea

mays), millet (Pennisetum glaucum), chickpea (Cicer arietinum

L.), and faba bean (Vicia faba L.) (Figure 5). Among the studied

crops, millet exhibited the highest grain yield upon biochar

application, with mean RR of 0.37 (95% CI = 0.32, 0.42), followed

by maize, with mean RR of 0.32 (95% CI = 0.21, 0.43). Chickpeas

and faba bean grain yield also increased upon biochar application,

with mean RR of 0.20 (95% CI = -0.06, 0.47) and 0.14 (95% CI =

0.04, 0.25), respectively. The positive impact of biochar application

was also evident in aboveground biomass. Maize exhibited the

highest aboveground biomass increase, with mean RR of 0.43

(95% CI = 0.18, 0.67), followed by millet, with mean RR of 0.39

(95% CI = 0.26, 0.51). Chickpea and faba bean aboveground

biomass also showed positive responses to biochar application,

with mean RR of 0.22 (95% CI = 0.15, 0.31) and 0.19 (95% CI =

0.05, 0.32), respectively.

Biochar also increased soil moisture and SOC content, but with

effect size varying with crop type (Figure 6). Cocoyam showed the

highest increase in SOC, with mean RR of 0.89 (95% CI = 0.77,

1.00). Soil organic carbon increases were also observed for maize

and peanut, with mean RR of 0.21 (95%CI = 0.12, 0.29) and 0.10

(95% CI = -0.05, 0.25), respectively. In addition, biochar application

increased soil moisture content, with the highest effect recorded in

cocoyam (RR = 0.37; 95% CI = 0.31, 0.43). Mean RR for soil

moisture content was 0.14 (95% CI = 0.13, 0.15) and 0.004 (95% CI

= -0.04, 0.05) for peanut and maize, respectively.

The impact of biochar application rate on grain yield, soil

moisture, and SOC varied significantly (Figure 7). At application

rates below 5 tons ha-1, biochar application resulted in the greatest
FIGURE 4

Mean effect of the different sandy soil reclamation technologies on
grain yield, aboveground biomass, soil moisture retention, and soil
organic carbon. Number of publications (N) and number of
independent observations (NO) are also shown.
FIGURE 3

Temporal trends in sandy soil reclamation technologies.
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increase in grain yield, with mean RR of 0.37 (95% CI = 0.23, 0.52).

Similar increases in grain yield were observed at application rates

between 5 and 15 tons ha-1 (RR = 0.24, 95% CI = 0.16, 0.32), at 16

and 26 tons ha-1 (RR = 0.03, 95% CI = -0.05, 0.11), and above

38tons ha-1 (RR = 0.09, 95% CI = 0.07, 0.11). However, a slight

decrease in grain yield was recorded at application rates between 27

and 37 tons ha-1 (RR = -0.04, 95% CI = -0.13, 0.06). Soil moisture

content also increased with biochar application, but the magnitude

of the increase varied depending on the application rate. At

application rates<5 tons ha-1, 5-15 tons ha-1, 16-26 tons ha-1, 27-

37 tons ha-1, and above 38 tons ha-1, soil moisture retention

increased, with mean RR of 0.15 (95% CI = 0.02, 0.27), 0.11 (95%

CI = 0.08, 0.13), 0.19 (95% CI = 0.15, 0.22), 0.18 (95% CI = 0.14,

0.22), and 0.19 (95% CI = -0.12, 0.50), respectively. Soil organic

carbon also increased with biochar application, with varying effect

sizes at different application rates. At application rates<5 tons ha-1,

16-26 tons ha-1, 27-37 tons ha-1, and above 38 tons ha-1, SOC

increases were observed, with mean RR of 0.33 (95% CI = 0.17,

0.50), 0.29 (95% CI = 0.18, 0.39), 0.62 (95% CI = 0.38, 0.86), 0.62

(95% CI = 0.20, 1.04), and 0.55 (95% CI = 0.35, 0.74), respectively.

3.3.2 Regional variations in performance
of biochar

Application of biochar to sandy soil resulted in a significant

increase in crop performance, as evidenced by enhanced

aboveground biomass except in Europe (Table 4) and grain yield

(Table 5). On average, biochar improved crop aboveground

biomass with an effect size of 0.44 (95% CI = 0.13, 0.76) in Africa

and 0.23 (95% CI = 0.10, 0.35) in Asia. However, in Europe, a slight
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decrease in aboveground biomass was observed, with mean RR of

-0.01 (-0.05, 0.03). Within Africa, the most substantial increase in

aboveground biomass was seen in studies conducted in Egypt (RR

0.56, 95% CI = -0.09, 1.22), followed by Tanzania (RR 0.54, 95% CI

= 0.33, 0.75) and South Africa (RR 0.23, 95% CI = 0.15, 0.31).

Similarly, biochar had a positive impact on aboveground biomass in

all Asian countries. Among these, China exhibited the most notable

effect, with mean RR of 0.38 (95% CI = 0.26, 0.51), while, Iran,

India, and Indonesia displayed mean RR values of 0.23 (95% CI =

0.06, 0.40), 0.17 (95% CI = 0.03, 0.21), and 0.14 (95% CI = 0.03,

0.26), respectively. In Europe, a marginal decrease was observed in

Poland, with mean RR of -0.01(95% CI = -0.05, 0.03).

Application of biochar also led to a significant increase in grain

yield, with African countries demonstrating the highest gains (mean

RR 0.34, 95% CI = 0.09, 0.59), while Asian countries exhibited mean

RR of 0.28 (95% CI = 0.21, 0.35) (Table 5). European countries

again experienced a decline in grain yield following biochar

application, with mean RR of -0.02 (95% CI = -0.08, 0.05).

African countries, including Egypt, South Africa, and Zambia,

displayed enhanced grain yield, with mean RR value of 0.44 (95%

CI = 0.34, 0.55), 0.20 (95% CI = -0.06, 0.47), and 0.85 (95% CI =

0.50, 1.21), respectively, while Nigeria experienced a decline, with

mean RR of -0.13 (95% CI = -0.40, 0.15). Asian countries, such as

Indonesia, Iran, and China, reported increased grain yield following

biochar application, with mean RR values of 0.36 (95% CI = 0.31,

0.40), 0.19 (95% CI = 0.10, 0.28), and 0.29 (95% CI = 0.21, 0.38),

respectively. In Europe, Finland experienced an upward trend in

grain yield, with mean RR of 0.08 (95% CI = 0.02, 0.15) while

Germany witnessed a downward trend (RR -0.12, 95% CI =

-0.19, -0.04).

In addition to boosting crop yields, biochar application rates

influenced soil moisture retention and SOC content in sandy soils

worldwide. Soil moisture content increased, with North America

exhibiting the highest increase (mean RR 0.52, 95% CI = 0.42, 0.62),

while Africa, Asia, Oceania and Europe showed mean RR values of

0.25 (95% CI = 0.22, 0.29), 0.18 (95% CI = 0.02, 0.34), 0.15 (95% CI

= -0.05, 0.37), and 0.07 (95% CI = -0.04, 0.18), respectively

(Table 6). Egypt and Nigeria exhibited mean RR values of 0.14
FIGURE 6

Mean effect of sandy soil reclamation technologies on soil moisture
content and soil organic carbon for different crops. Number of
publications (N) and number of independent observations (NO) are
also shown.
FIGURE 5

Mean effect of sandy soil reclamation technologies on grain yield
and aboveground biomass for different crop types. Number of
publications (N) and number of independent observations (NO) are
also shown.
FIGURE 7

Mean effect of sandy soil reclamation technologies on grain yield,
soil moisture, and soil organic carbon in sandy soils across a range
of biochar application rates (t/ha). Number of publications (N) and
number of independent observations (NO) are also shown.
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(95% CI = 0.13, 0.15) and 0.37 (95% CI = 0.31, 0.43), respectively.

Bangladesh, Indonesia, and China also showed increased soil

moisture retention, with mean RR values of 0.11 (95% CI = -0.02,

0.25), 0.005 (95% CI = -0.04, 0.05), and 0.43 (95% CI = 0.13, 0.72),

respectively. Among European countries, Finland exhibited a

decrease in moisture retention, with mean RR of -0.004 (95% CI

= -0.04, 0.04), while Poland showed an increase, with mean RR of

0.15 (95% CI = -0.03, 0.32). The USA and Australia exhibited

increased soil moisture retention, with mean RR values of 0.52 (95%

CI = 0.42, 0.62) and 0.15 (95% CI = -0.05, 0.37), respectively.

Biochar application led to an increase in SOC worldwide, with

Africa exhibiting the highest increase (mean RR 1.03, 95% CI =

0.70, 1.36). Asia, Europe, and Oceania showed mean RR values of

0.27 (95% CI = 0.19, 0.32), 0.78 (95% CI = 0.62, 0.95), and 0.40 (95%

CI = 0.23, 0.57), respectively (Table 7). Zambia exhibited the highest

increase among African countries, with mean RR of 1.97 (95% CI =

1.49, 2.44), while Ghana and Nigeria showed mean RR values of

0.57 (95% CI = 0.39, 0.72) and 0.56 (95% CI = 0.21, 0.93),

respectively. Malaysia exhibited the highest increase in SOC

among Asian countries, with mean RR of 0.55 (95% CI = 0.48,

0.62). Indonesia, India, and China also showed increases, with mean

RR of 0.20 (95% CI = 0.17, 0.23), 0.21 (95% CI = 0.03, 0.25), and

0.12 (95% CI = 0.07, 0.17), respectively. In Europe, Finland
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exhibited mean RR of 2.31 (95% CI = 2.08, 2.53), while Germany,

Poland, and Slovakia showed mean RR values of 0.44 (95% CI =

0.25, 0.63), 0.10 (95% CI = -0.06, 0.27), and 0.28 (95% CI = 0.21,

0.36), respectively. Oceania (Australia), similarly to other

continents, showed increased SOC, with mean RR of 0.40 (95%

CI = 0.23, 0.57).
4 Discussion

The higher number of publications on sandy soil reclamation in

Asia and Africa compared with Europe, North America, Oceania,

and South America can be attributed to the high population in Asia

and Africa, which host 60% and 17% of the world`s population,

respectively (98). This, coupled with rapid population growth rates

in both continents, has put pressure on fertile land resources,

leading to the expansion of agriculture into drylands dominated

by sandy soils resulting in more efforts to reclaim sandy soils as

evident by the high number of publications in the two continents.

Furthermore, Africa and Asia have the most extensive sandy soil

coverage globally, with 51% of Africa’s total land mass being sandy

soils (99). The observed upward trend in publications on sandy soil

reclamation technologies during the study period can be attributed
TABLE 4 Estimated effect of biochar on crop aboveground biomass across regions and countries.

Continent Country Mean RR 95% CI [U, L] [N, NO] Reference

Africa Egypt 0.56 [-0.10, 1.22] [2, 8] (33, 61, 63, 66)

South Africa 0.23 [0.15, 0.31] [1, 4]

Tanzania 0.54 [0.33, 0.75] [1, 8]

Asia Indonesia 0.14 [0.03, 0.26] [1, 6] (77–80)

Iran 0.23 [0.06, 0.40] [1, 2]

India 0.17 [0.03, 021] [1, 11]

China 0.39 [0.26, 0.51] [1, 4]

Europe Poland -0.01 [-0.05, 0.03] [1, 3] (81)
RR, response ratio; CI, confidence interval; N, number of publications; NO, number of independent observations.
TABLE 5 Estimated impact of biochar, quantified by mean response ratio (RR) and corresponding 95% confidence interval (CI), on crop grain yield on
sandy soils in different continents and countries.

Continent Country Mean RR 95% CI [U, L] [N, NO] Reference

Africa Egypt 0.44 [0.34, 0.55] [2, 8] (20, 32, 33, 61, 63,
82, 83)

Nigeria -0.12 [-0.40, 0.15] [2, 7]

South Africa 0.20 [-0.06, 0.47] [1, 3]

Zambia 0.85 [0.50, 1.21/] [2, 11]

Asia Indonesia 0.36 [0.31, 0.41] [2, 10] (67, 68, 77, 78, 80,
84, 85)

Iran 0.19 [0.10, 0.28] [1, 2]

China 0.29 [0.21, 0.38] [6, 59]

Europe Finland 0.08 [0.02, 0.15] [2, 52] (62, 86, 87)

Germany -0.12 [-0.19, -0.04] [1, 15]
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to the global population increase and to decreasing availability of

fertile land due to urbanization and settlement, necessitating

expansion of crop production into sandy soils to meet the food

and nutritional demands of the growing population. Prior to

technological advances, organic amendments were among the

earliest and most widely used methods for reclaiming sandy soils

(100). This can be attributed to the abundance of readily available

organic materials, such as crop residues and mulching organic

materials, and the relatively low cost associated with their use

compared with more expensive and time-consuming advanced

technologies. Lack of organic residues due to low productivity or

priority being given to the use of crop residues as livestock feed or

fuel limit the application of organic amendments to soil.

All four sandy soil reclamation technologies included in this

systematic review were found to increase crop productivity and

improve soil health. The magnitude of these improvements was

shown to vary depending on several factors, including application

rate, type of amendment used, crop type, fertilizer application,
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irrigation practices, host continent, irrigation type, and cropping

system. Biochar application had a more significant positive impact

on grain yield and aboveground biomass compared with application

of soft rock, organic amendments, or a combination of organic

amendments and biochar (101, 102). The observed yield and

biomass improvements associated with biochar application in the

selected dataset are consistent with previous findings (103). Four

key mechanisms contribute to the positive effect of biochar on soil

and plant productivity (104). First, the porous structure of biochar

enhances nutrient retention capacity, ensuring a steady supply of

nutrients to plants (105). The spongy structure of biochar also

increases water retention capacity of sandy soils ensuring a

continuous supply for plant use (106). Second, biochar enhances

CEC, enabling sandy soil to retain more positively charged ions,

including essential nutrients. It also buffers soil pH, promoting

nutrient availability (107). Third, biochar provides a habitat and

carbon source for beneficial microbes involved in nutrient cycling,

leading to enhanced microbial activity (108). Fourth, biochar can
TABLE 6 Estimated effect, based on mean response ratio (RR) and corresponding 95% confidence interval (CI), of biochar application on soil moisture
content in sandy soils in different continents and countries.

Continent Country Mean RR 95% CI [U, L] [N, NO] Reference

Africa Egypt 0.14 [0.13, 0.15] [1, 120] (29, 30, 88)

Nigeria 0.37 [0.31, 0.43] [2, 18]

Asia Bangladesh 0.11 [-0.02, 0.25] [1, 8] (67, 89, 90)

Indonesia 0.005 [-0.04, 0.05] [1, 16]

China 0.43 [0.13, 0.72] [1, 8]

Europe Finland -0.004 [-0.04, 0.04] [2, 18] (5, 62, 86)

Poland 0.15 [-0.03, 0.32] [1, 10]

North America USA 0.52 [0.42, 0.62] [1, 3] (56)

Oceania Australia 0.15 [-0.05, 0.37] [1, 2] (39)
TABLE 7 Estimated effect, based on response ratio (RR) and corresponding 95% confidence interval (CI), of biochar application on soil organic carbon
content in sandy soils in different continents and countries.

Continent Country Mean RR 95% CI [U, L] [N, NO] Reference

Africa Ghana 0.57 [0.21, 0.93] [3, 7] (20, 30–32, 62, 68, 83)

Nigeria 0.57 [0.39, 0.72] [3, 25]

Zambia 1.97 [1.49, 2.44] [1, 4]

Asia Indonesia 0.20 [0.10, 0.30] [4, 14] (47, 67, 68, 77, 79, 80,
85, 91–93)

Malaysia 0.55 [0.48, 0.63] [1, 4]

India 0.21 [0.03, 0.25] [1, 11]

China 0.12 [0.07, 0.17] [4, 43]

Europe Finland 2.30 [2.08, 2.53] [1, 3] (57, 86, 94–96)

Germany 0.44 [0.25, 0.63] [2, 24]

Poland 0.10 [-0.06, 0.27] [1, 2]

Slovakia 0.28 [0.21, 0.36] [1, 8]

Oceania Australia 0.40 [0.23, 0.57] [2, 8] (39, 97)
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immobilize toxic substances such as heavy metals, reducing their

uptake by crops and minimizing potential environmental harm

(109). Additionally, our comprehensive analysis revealed that

biochar application effectively enhances soil moisture retention.

This can be attributed to its porous structure acting as sponge,

absorbing water during rainfall or irrigation and gradually releasing

it to plants during dry periods (110). Biochar also promotes SOC

accumulation, directly by adding over 65% of the carbon in biomass

to the soil (111) and indirectly by stimulating root exudation and

increasing microbial activity (112). Biochar enhances soil

aggregation, which protects organic matter from decomposition

and promotes SOC accumulation over time (113).

Application of organic amendments, such as compost and other

organic materials, has been shown to have positive effects on soil

properties and crop productivity. These beneficial effects can be

attributed to the porous structure of the organic matter added to the

soil, which enhances water retention and nutrient availability.

Formation of micro-aggregates, i.e., small clumps of soil particles

that create pore spaces, further contributes to water retention.

Improved soil structure, reduced soil compaction, and increased

pore spaces, promoted by organic amendments, facilitates root

penetration and moisture storage. Furthermore, organic

amendments provide labile carbon sources that stimulate

microbial growth and activity, leading to enhanced nutrient

cycling and plant growth. Organic amendments have been

demonstrated to have positive effects on maize grain yield when

applied independently (114) or in combination with biochar (115).

Application of soft rock to sandy soil can increase soil moisture

retention and SOC through various mechanisms, including

buffering of soil pH. For instance, soft rock types such as gypsum

can raise soil pH, thereby increasing the availability of essential

nutrients for plant uptake, enhancing soil CEC, which promotes

nutrient retention and availability to plants by increasing the soil’s

ability to hold positively charged ions like potassium and calcium;

enhancing soil moisture retention by improving soil structure,

particularly by increasing water-holding capacity and reducing

water loss through evaporation; and reducing the availability of

toxic elements like aluminum by binding them to its mineral

components, thereby making them less harmful to plants and

promoting increased biomass and crop health. For instance,

application of soft rock has been shown to increase millet grain

yield by approximately 20%, millet aboveground biomass by over

25%, and soil moisture content by 2%, as demonstrated by (80).

The reported effect of sandy soil reclamation technologies on

crop productivity and soil health varied depending on the type of

the technology, crop type, management practices, and factors in the

region where the technology was applied. Similar conclusions have

been reached in meta-analyses evaluating the effects of other

innovative technologies on crop productivity and soil health (116,

117). In the studies in our review, biochar demonstrated superior

performance for cereals like millet and maize compared with

legumes (e.g., chickpea and faba bean), as concluded previously

by (105). These differences can be explained by variations in crop
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root systems and differences in nutrient uptake capabilities, and by

differences in nutrient requirements between cereals and legumes

(55). Additionally, reported crop performance exhibited a declining

trend as biochar application increased, as found in previous studies

(55, 105, 118). Our dataset indicated that at low to moderate

application rates, biochar improves soil structure and enhances

nutrient and moisture retention, thus increasing nutrient

availability to plants. However higher or excess application of

biochar may affect soil structure, impairing water drainage and

potentially leading to waterlogging. Higher biochar application

rates can also result in immobilization of nutrients reducing

availability to plants. Furthermore, the effectiveness of biochar as

a soil improver varies across different socio-economic contexts.

Comparison of biochar application across continents revealed that

biochar use resulted in the greatest increase in grain yield,

aboveground biomass, soil moisture content, and SOC in Africa,

supporting the conclusion by (119) that biochar boosts tropical, but

not temperate, crop yields.

A few limitations in the data analysis process may have affected

the study findings. First, there was great heterogeneity in the studies

reviewed in terms of study design, conditions under which the

studies were conducted (including variations in climate conditions

and planting seasons), farm management practices (such as

fertilizer application and irrigation), and reported statistical

information (such as means and standard deviations). To

overcome this challenge, we used RR to compare the effects of the

technologies. Second, we limited the review to articles in the English

language and excluded grey literature because of lack of

authenticity. Finally, for comparative synthesis, use of two

indicators of crop performance and two soil health characteristics

might have potentially locked out other indicators that could be

more sensitive to the use of a particular technology.
5 Conclusions

There is growing interest worldwide in sandy soil reclamation to

improve crop productivity and soil health. Sandy soil reclamation

technologies such as addition of biochar, organic amendments, soft

rock, and combined organic amendments and biochar have good

potential to enhance SOC content, soil moisture, and productivity

of various crops. Among them, application of biochar showed the

greatest potential for improving soil health and increasing crop

productivity. High aboveground biomass is critical, since when

returned to the soil it enhances SOC, which is commonly low in

sandy soils. However, large geographical differences in terms of

technology performance can arise, indicating that management

practices need to be in line with local and regional specifics.

Additionally, technology performance varies with application

rates, field management practices and crop type. Therefore, future

studies could review the effect specific sandy soil reclamation

technologies on particular indicators in regions with similar

ecological conditions for better generalization of the findings.
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