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Who interacts with whom is a key question in community and network ecology. The 
concept that these interactions may be driven by a match between the traits of consumer 
and resource species is known as trait-matching. If trait-matching would allow for gen-
eral predictions of interaction structure based on sufficiently few and easily-measurable 
traits, then this approach could replace the laborious description of each individual 
pairwise interaction. To resolve imprints of trait-matching in a species-rich tri-trophic 
Salix–galler–parasitoid network, and to identify the most relevant traits, we applied five 
different methods, each approaching the same phenomenon from a different perspective. 
As traits, we used, body sizes, gall type (position on plant, structure of gall) and phenol-
ogy, among others, as well as phylogenetic proxies. When jointly applied, the methods 
demonstrate distinctly different imprints of traits within the two bipartite network ele-
ments (Salix–galler versus galler–parasitoid interactions). Of the galler–parasitoid sub-
network’s interactions, approximately half were explainable by the species traits used; 
of the Salix–galler sub-network’s interactions, traits explained at most two-fifths. Gall 
type appeared to be the most important structuring trait in both networks. Phylogeny 
explained as much, or more than did our tested traits, suggesting that traits may be con-
served and phylogeny therefore an effective proxy. Overall, the more specialized struc-
ture of the Salix–galler network versus the more nested structure of the galler–parasitoid 
network meant that different methods were more effective at capturing interactions and 
interaction structure in the different sub-networks. Thus, our analysis reveals how struc-
turing impacts may vary even between levels within the same multitrophic network, and 
calls for comparative analyses of trait matching across a wide set of systems and methods.

Keywords: fourth-corner, K-nearest neighbour, matching-centrality, parasitoid, 
Random forest, Salix, willow-galling sawflies
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Introduction

Traits are morphological, behavioural, or chemical charac-
teristics of organisms that differ among individuals and/or 
groups (Violle et al. 2007) and that restrict whom individuals 
can effectively interact with – such as whom they can eat or 
be eaten by in a feeding interaction. There is accumulating 
evidence that traits play a structuring role in ecological net-
works such as food webs, and increasing interest in the use of 
traits to predict interactions and network structure (Morales-
Castilla et al. 2015, Bartomeus et al. 2016, Laigle et al. 2018, 
Pichler et al. 2020). Traits may provide the key to move from 
idiosyncratic observations of pairwise interactions, to infer 
general mechanisms underlying interactions and dynamics 
(Bartomeus et al. 2016).

Encouragingly, the evidence now suggests that relatively 
few traits may be needed to explain interactions among large 
sets of species (Eklöf et al. 2013, Brousseau et al. 2018). A 
number of methods using species’ traits such as body size 
have been able to replicate both food-web structures and 
dynamics (Williams and Martinez 2000, Schneider  et  al. 
2012, Gravel et al. 2016, Rohr et al. 2016). Yet, despite these 
theoretical and methodological developments, we still know 
relatively little both about which traits structure interaction 
networks and how they do so.

One of the most topical concepts of how traits struc-
ture networks is that of trait matching (Rossberg 2008, 
Dehling  et  al. 2014, Gravel  et  al. 2016, Brousseau  et  al. 
2018). Trait matching holds that the set of possible inter-
actions is constrained by a match between consumers’ for-
aging traits and resources’ vulnerability traits. Based on this 
concept, similar species should share similar interactions 
(Bartomeus  et  al. 2016, Desjardins-Proulx  et  al. 2017). 
Models using trait matching have developed, with progres-
sively better results, from the cascade model (Cohen and 
Newman 1985), where species along a trait continuum feed 
on those below them, to the niche model, which uses the same 
continuum but yields a narrower match between consumer 
and resource traits by restricting each species to a foraging 
range (Williams and Martinez 2000). Further developments 
include the probabilistic niche model (Williams et al. 2010), 
which replaced the feeding range with a probability distribu-
tion where interaction probabilities decrease away from an 
optimal point (Williams and Purves 2011), and the group 
model (Allesina and Pascual 2009), which finds groups of 
species that share the same interactions. Body size is used 
most commonly for the trait continuum in the hierarchi-
cal models (cascade and niche models) and phylogeny for 
the group model (Staniczenko  et  al. 2014), although any 
trait could potentially be used. Our understanding of trait-
based interactions is continuously being expanded by new 
ideas and models (Gravel et al. 2013, Bartomeus et al. 2016, 
Laigle et al. 2018).

In addition to trait matching between predator and 
prey, trait distribution within a community also structures 
networks (Bartomeus  et  al. 2016, Laigle  et  al. 2018). For 
example, generalist consumers – those that target many prey 

species – tend to display wider intraspecific phenotypic varia-
tion than specialists which allows them, as a species, to target 
a wider range of prey types (Gibert and DeLong 2017). This 
can give rise to a nested structure, particularly in bipartite 
networks. In nested networks, specialists interact with sub-
sets of the species generalists interact with (Bascompte et al. 
2003). However, this pattern primarily emerges at a binary 
level and, when interaction strengths are taken into account, 
binary nested networks often turn out to be quantitatively 
unnested, meaning that species’ preferences weaken com-
petition (Staniczenko et  al. 2013). The matching-centrality 
framework (Rohr  et  al. 2010, 2016), which we explore in 
greater detail in the methods, aims to capture the importance 
of both of these aspects. In summary, the match between a 
predator’s foraging traits and prey’s vulnerability traits con-
strains the likelihood of an interaction between two given 
species (Boukal 2014), whereas overall network structure 
also depends on the distribution of all traits within the spe-
cies community (Bartomeus et al. 2016, Gravel et al. 2016, 
Laigle et al. 2018).

Different models of how networks are organised by traits 
will call for different methods for extracting the correspond-
ing signal from empirical data. To date, trait-based analyses 
of network structure have generally been approached using 
regression-based methods (Gravel  et  al. 2013, Pearse and 
Altermatt 2013, Pomeranz et al. 2019). However, the consid-
erations above suggest that relationships between traits and 
interactions may be more complex and require more flexible 
models. Methods such as Random forest (Breiman 2001) may 
then be more appropriate for capturing relationships between 
traits and network structure (Desjardins-Proulx et al. 2017, 
Laigle et al. 2018, Pichler et al. 2020).

Finally, there is the challenge of what traits to measure. 
While the likely mechanics of the interaction may guide us 
in selecting what traits to measure (Wootton  et  al. 2023), 
there is always the risk that a key trait may remain unmea-
sured. Since related species tend to share similar traits, phy-
logenetic distance may serve as a proxy of morphological, 
chemical and behavioural similarity, and has often been 
found effective at explaining network structure either instead 
of or in complement to traits measured, such as body size 
(Naisbit et al. 2012, Eklöf et al. 2013, Rohr and Bascompte 
2014, Gray et al. 2015).

In this study, we use a uniquely extensive data set consisting 
of Salix species, Salix–galling sawflies, and their parasitoids 
(Kopelke et al. 2017), to explore the role of trait-matching 
in an unusually well-characterized network. By applying 
five different methods to the same quest, we dissect the rela-
tionship between species’ traits and network structure from 
multiple dimensions – adding phylogeny to approximate 
unmeasured traits. The methods we selected are K-nearest 
neighbour (KNN) (Desjardins-Proulx et al. 2017); indirect 
matching-centrality (IMC) (Rohr et al. 2016); Random for-
est; generalized linear models (GLM), and the Fourth corner 
approach. By combining insights from these methods, we can 
ask questions about how much traits or phylogeny can actu-
ally tell us (by comparing methods using traits or phylogeny 
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to equivalent methods that do not), how the network is 
structured, and overall get a deeper understanding about the 
ecology of the network. In particular, we used KNN to ask 
whether similar species are more likely to share interactions, 
and if this is due to their traits and/or phylogeny. We ask 
whether parametric approaches (IMC, GLM, Fourth corner) 
– where the functional response between traits and interac-
tions is predefined (Lucas 2020) – adequately represent the 
relationship between traits and network structure. As an 
alternative, we address whether more flexible non-parametric 
methods (KNN and Random forest) – where the relationship 
is learned algorithmically – are more appropriate. Finally, we 
ask which trait(s) are most important in structuring net-
works, across all methods, and delve into the ecology of the 
focal species to explore why.

Material and methods

Empirical network data

We focus on the data set presented by Kopelke et al. (2017). 
After pruning of rare species (Supporting information), 
it contains 115 unique Salix–galler interactions (out of a 
possible 3080) between 35 willow species (Salix) and their 
hybrids and 88 willow-galling sawfly species (Hymenoptera: 
Tenthredinidae: Nematinae: Euurina), and 812 interactions 
(out of a possible 4488) between the 88 gallers and 51 of 
their natural enemies. While these natural enemies span from 
hymenopteran true parasitoids to coleopteran, lepidopteran, 
dipteran, and hymenopteran inquilines, for simplicity we 
will henceforth refer to the third trophic layer as ‘parasit-
oids’. The original data were collected during 641 visits at 
374 sites across Europe over 29 years and included a total of 
165,424 individual galls sampled. Interactions were identi-
fied by collecting galls from individual willows (identifying a 
Salix–galler interaction) and then rearing galls in the lab until 
either the adult galler or a parasitoid emerged (identifying a 
galler–parasitoid interaction) (Kopelke 1999, Kopelke et al. 
2003). The data from each site and visit were combined into 
one aggregated interaction matrix, where we classified spe-
cies pairs into three categories: those that interacted (1), those 
that did not (0), and those which were never seen to co-occur 
at the same site.

Trait data

Species-level data
For a subset of Salix and galler species, we measured traits in 
the field at sites ranging from Greece to northern Norway 
(Supporting information). Other traits were obtained by 
consulting the literature and experts in the field. For exact 
details on trait measurements and collection, we refer the 
reader to the Supporting information.

Salix traits included characteristics of the leaves (specific 
leaf area (SLA), toughness, size, hairiness and thickness) and 
trees (height). For those species not found in the field, we 

consulted experts and the literature (Jonsell and Karlsson 
2000). Salix phenology were obtained through expert con-
sultation. The level of glucoside defense we ascertained from 
the literature (Julkunen-Tiitto 1989, Meier et al. 1992). For 
the latter, we used a coarse measure of total glucoside con-
centration, as data on specific glucoside compounds proved 
insufficient (Supporting information).

Galler traits included characteristics of the gall itself 
(type, volume, wall thickness, position on the plant), and 
physical and behavioural characteristics of the galler species 
(body length of the adult, development time, overwintering 
site, oviposition location (i.e. oviposition in the leaf blade, 
through the leaf midrib, or elsewhere), and phenology). Gall 
type was obtained from the literature (Kopelke et al. 2017), 
whereas other gall characteristics were measured in the field. 
Adult body lengths were measured on collected specimens 
by author AL, and remaining traits were obtained through 
expert consultation.

Parasitoid traits included physical traits (ovipositor length 
and body length), and behavioural traits (whether it was an 
endoparasitoid or ectoparasitoid, the stage at which it attacked 
the galler, reproduction (sexual or asexual), and phenology). 
Most traits were obtained from the literature (Kopelke et al. 
2017), whereas physical traits were measured on collected 
specimens, and remaining traits were again obtained through 
expert consultation.

Some traits were highly correlated, so we removed them 
from our analysis. Specifically, we removed tree height, gall 
toughness, overwintering site, reproduction strategy of the 
galler, parasitoid/inquiline, koinobiont/idiobiont, and para-
sitoid attack strategy. For further details, see the Supporting 
information. After removal of correlated traits, we had eight 
Salix traits, eight galler traits, and five parasitoid traits.

For species and traits for which we were unable to obtain 
specific values, we imputed the trait value using available 
information on related species. For species where we had 
other species from the same genus (or family), we imputed 
the trait value as the mean of that trait across other species in 
the genus (or family). To taxa for which we had no references 
from the same family or genus, we conservatively assigned 
the mean value of that trait across all species. Salix hybrids 
were given the mean value of their parent species. Such an 
approach means that trait values for imputed species will 
have little impact on the model fit (providing no information 
beyond the mean), and may therefore mask the importance 
of such traits. Additionally, it is likely to create a tighter rela-
tionship between phylogeny and trait values than may other-
wise exist. For details on which traits were imputed, and for 
how many species, as well as for methods used in reconstruct-
ing the phylogenies of each trophic level, see the Supporting 
information.

Statistical approaches
To dissect the relationship between species traits and network 
structure, we used a range of mutually complementary sta-
tistical approaches, each proposed by recent work on trait 
matching. Below, we provide an overview of the models 
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used, and of their rationale, whereas for full details on how 
the models were fitted to empirical data, we refer the reader 
to the Supporting information. For all analysis we used R 
(www.r-project.org) and, unless explicitly specified, the 
methods used in the study and the data on which they have 
been applied have been implemented and included in the R 
package ‘alien’ ver. 1.0 (Blanchet et al. 2020, see the 
Supporting information for more details).

To compare the different models we relied on Tjur’s D 
(Tjur 2009), a coefficient of discrimination specifically 
designed for presence-absence data. Tjur’s D is calculated by 
independently averaging the estimated probability for pres-
ences and absences of interaction and subtracting the aver-
ages for the presences with that of the absences. Tjur’s D is 
asymptotically equivalent to the classic coefficient of deter-
mination (R2) as demonstrated by Tjur (2009), making it 
an interesting statistic because it can be interpreted as a pro-
portion of variance explained. However, Tjur’s D is typically 
much more sensitive to divergences from the data resulting 
in values that are much smaller than the classic R2. A Tjur’s 
D value of 1 represents a perfectly predicted network, while 
a Tjur’s D value of 0 is the null expectation where there is 
no relationship between traits and network structure. For 
parametric models (GLM, Fourth corner and IMC), we also 
calculate AIC. This allows us to ascertain whether additional 
parameters in the model actually improve the model or not. 
Unfortunately we cannot calculate AIC for the remaining 
models, as they do not have a fixed number of parameters.

K-nearest neighbour
The K-nearest neighbour (KNN) algorithm answers the ques-
tion of whether consumer species with similar characteristics 
(e.g. similar observed interactions, similar traits, or phyloge-
netically related species) interact with similar resource spe-
cies. It works by selecting a species’ K closest ‘neighbours’, 
i.e. those with the most similar characteristics, and predict-
ing that interaction partners shared by those neighbours are 
most likely shared also by the focal species. As such, it is a 
non-parametric method (i.e. the relationship between traits 
and interactions highlighted in Fig. 1i is determined based 
on neighbours and not assigned a priori), which allows for a 
more flexible fit.

We calculated neighbours in three ways: 1) shared interac-
tions, 2) shared traits and 3) shared phylogeny. For shared 
interactions, we select the K species that share the most 
observed interactions with the focal species, and use their 
interactions to predict the interaction partners of the focal 
species. Although this method may seem circular, in that it 
uses observed interactions to predict interactions, it tells us 
about the inherent structure in the data (i.e. to what extent 
there are groups of species that share similar interactions as 
their ‘neighbours’). As such, it gives the upper limit on how 
much other metrics of dissimilarity could predict. If the net-
work does not contain groups of species with similar interac-
tion partners, then KNN will perform poorly regardless of 
what metric of dissimilarity is used (Desjardins-Proulx et al. 
2017). We also used similarity in traits and phylogenetic 

distance as metrics for selecting neighbours. If KNN predic-
tions based on traits and/or phylogeny show a fit comparable 
to that of KNN using interactions, then the interaction struc-
ture of the network is well explained by the traits measured 
and/or species’ relatedness.

To implement the K-nearest neighbour approach, we first 
constructed a dissimilarity matrix quantifying the relation-
ship between each pair of species within the species pool 
(Desjardins-Proulx et al. 2017). For this, we focused on 1) 
observed interactions among species, 2) traits, or 3) phylog-
eny to calculate the dissimilarity among pairs of species. We 
used Jaccard dissimilarity (Jaccard 1901) with shared inter-
action data, Euclidean distance with traits, and cophenetic 
distance with phylogenetic information. The K species least 
dissimilar to the focal species were then selected as neigh-
bours. In the current case we used three neighbours (K = 3) 
for all KNN analyses. Generally, the number of neighbours 
to consider in a KNN analysis is explored and the value 
resulting in the optimal result is adopted for further analyses. 
In the context of the present study, the large number of miss-
ing values in the data (i.e. species never observed to co-occur) 
prevented us from considering any number of neighbours 
larger than K = 3. Note that if fewer than three neighbours 
could be found for a particular species (because of missing 
values), then all the available neighbours were considered.

For each pair of species, the sum of interactions for the K 
nearest neighbours of both species divided by K × 2 was used 
as the prediction. For example, if two of parasitoid i’s three 
nearest neighbours interacted with galler j, and one of galler 
j’s three nearest neighbours interacted with parasitoid i, the 
interaction probability (and therefore the likelihood) would 
be (2 + 1)/(3 × 2) = 0.5.

Random forest
Random forest is a very flexible method and can capture 
more complex relationships between traits and interactions 
compared to parametric methods. To determine whether this 
flexibility is needed, we compared the parametric GLM and 
Fourth corner results to the flexible Random forest method. 
Random forest divides the data successively based on those 
particular trait values that give the best separation between 
categories (i.e. interactions versus co-occurrence, Fig. 1ii), 
thus creating a decision tree. To protect against overfitting, 
Random forest repeats this multiple times to create a ‘for-
est’ of decision trees and then uses the mean prediction of 
all trees (Breiman 2001). Random forest is the most flexible 
of the approaches used by us. Hence, compared to all other 
approaches here that use real traits, we expect it to give the 
upper prediction limit. We apply Random forest using both 
traits and (separately) phylogeny.

Random forest is, per definition, a univariate technique. 
Thus, as a first step we converted the matrix describing 
interactions to a long vector, with corresponding trait val-
ues used as explanatory variables. To predict interactions, 
we generated 2000 trees while defining the minimum size 
of the terminal nodes as 1 and setting the number of trait (or 
phylogenetic) variables sampled as candidates at each split to 
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p  (the default value), where p is the total number of vari-
ables. The Random forest analysis were carried out using the 
alien package, which is effectively a wrapper for the R pack-
age ‘randomForest’ (Liaw and Wiener 2002). As such, 

the default values were used for the arguments not discussed 
in the previous lines. We are aware that for optimal perfor-
mance, further parameter tuning may be valuable depend-
ing on the data the model is applied on. However, we found 

Figure 1. Conceptual overview of our approach, and of the information provided by each method. For each bipartite element in our tri-
trophic network, our observations concern a set of consumer species attacking a set of resource species (shown by the ‘Interaction network’). 
We then describe the observed interactions by a matrix of the resource species (numbers) and consumer species (letters), where a yellow 
filled dot denotes an interaction, an open dot describes a co-occurrence without interaction, and a grey cell describes two species that never 
co-occurred at the same site. For concreteness, we here illustrate the galler–parasitoid network. Each species is associated with a set of traits, 
here represented by gall type and ovipositor length (but our data actually include many more traits) and phylogeny. As illustrated under 
‘Model fitting and predictions’, we fit each model to the data (i–v), generating a prediction (vi–x) where darker purple colors specify a higher 
probability that species may interact. To fit the model, we used different data sources to inform link prediction, as indicated by the icons 
under ‘Method and data’; we used i) network structure (shown by the network icon) for KNN and IMC, ii) trait values (shown by the para-
sitoid icon) for all methods except IMC and iii) phylogeny (shown by the phylogeny icon) for KNN and Random forest. Note that in the 
figure we present overly simplified examples to convey a conceptual understanding. As such, we illustrate analysis using only two traits. 
Similarly, panel (ii) illustrates the fitting of a Random forest, and presents only a single decision tree for visual clarity. Full models are pre-
sented in the Statistical approaches.
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that even when using the default values, Random forest per-
formed well and could provide valuable insights about the 
structure of our networks. As the aim of this study is to show 
that using complementary methods together can help us gain 
a deeper understanding of our system, we therefore chose to 
apply the same adjustment across the two different datasets.

For Random forest, we also constructed phylogenetic vari-
ables in addition to (but separately from) traits. These phy-
logenetic variables were derived from the cophenetic matrix. 
Specifically, we used all axes obtained from a principal coor-
dinate analysis (PCoA) (Gower 1966) as calculated on the 
cophenetic matrix to evaluate the value of phylogeny in iden-
tifying interactions.

Indirect matching centrality
Indirect matching centrality (IMC) is a parametric method 
that uses the structure of the data to provide the upper limit 
on how much parametric methods using real traits could be 
expected to explain. For this purpose, we use it as the baseline 
to compare generalized linear models and the Fourth corner 
analysis.

The IMC framework uses latent traits to optimally 
describe the structure of the food web, as based on the match 
between predator and prey (latent) traits and the centrality 
of each species (Rohr et  al. 2010, 2016). ‘Latent’ traits are 
simply values assigned to each species to capture as much 
variation in the data as possible (Fig. 1iii). They may, but 
do not necessarily, correspond to any real traits. Species are 
arranged along a centrality dimension (describing a species’ 
propensity for making interactions) and a matching dimen-
sion (describing whom they are likely to interact with). These 
matching and centrality dimensions may correspond to one 
or a combination of real traits. Yet, real traits can maximally 
explain as much as a latent trait and generally significantly 
less (Eklöf et al. 2013, Rohr et al. 2016). Specifically,

Logit( ( 1)),

=1

1, 2,
2

1 1, 2 2,

P L

m m c c m

i j

k

d

k i
k

j
k

i j
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  (1)

where Li,j is the interaction between species i and j. The 
model is defined to have d matching dimensions – here we 
used d = 1 – but only one centrality dimension. m i

k
1,  and c1,i 

are respectively the kth (out of d) matching and centrality 
latent traits associated with one set of species (e.g. predator, 
indicated by the subscript 1) while m j

k
2,  and c2,j are the kth 

matching and centrality latent traits associated with the other 
set of species (e.g. prey, subscript 2). λk is the kth matching 
parameter weighting the importance of matching, while δ1 
and δ2 are parameters weighting the importance of central-
ity for species set 1 and 2 respectively. With only a single 
matching dimension as we use here, a higher value of λ than 
δ corresponds to a more modular network, while the oppo-
site corresponds to a more nested network (Rohr et al. 2010, 
2016). Lastly, m is the model intercept. To make it easier to 

relate the equation above to the description of the method by 
Rohr et al. (2010), we use the same notation.

Generalized linear models
GLMs are traditionally one of the most common methods 
for capturing the importance of trait matching. As a para-
metric model, the functional form between traits and interac-
tions is defined a priori (Eq. 2) and it is therefore less flexible 
than KNN and Random forest. Note that GLM (and Fourth 
corner) can be understood as matching-centrality methods 
using real traits instead of latent traits (for the latter, see IMC, 
above), or ‘direct matching-centrality’ methods.

Because the interaction matrix characterized the presences 
and absences of each interaction, we used a quadratic logistic 
regression model with interactions. Specifically, the logistic 
regression model is defined as

Logit( ( 1)), 0 1 1, 2 2, 3 1,

4 2, 5 1,
2
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T T
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  (2)

where Li,j is the interaction between species i and j, T1,i and 
T2,i are traits associated to the set of species i (e.g. predator), 
and T1,j and T2,j are traits associated to the set of species j 
(e.g. prey). The subscripts 1 and 2 simply identify two differ-
ent traits. All βs are the model’s estimated parameters, which 
were used to calculate the prediction. (Note that only con-
tinuous traits were squared, not categorical traits.)

Fourth corner
The Fourth corner approach attempts to use the three ‘corners’ 
of 1) the interaction matrix, 2) the matrix of resource species 
× their traits, and 3) the matrix of consumer species × their 
traits to predict the ‘Fourth corner’ of resource species’ traits 
× consumer species’ traits. Fourth corner then explains how 
interactions between resource and consumer traits, i.e. trait 
matching, affects the interactions recorded in the interaction 
matrix. In practice, GLM and Fourth corner differ only by 
the combination of traits used. Specifically, the Fourth corner 
analysis only includes trait matching combinations between 
species of different trophic levels, while GLM includes com-
binations both within and between levels. For example GLM 
may include the trait combination ovipositor length × ovi-
position strategy, but Fourth corner would not (because they 
are both parasitoid traits). Therefore, we compared the two 
methods to determine whether trait matching within a tro-
phic level is important in addition to matching between lev-
els. Fourth corner can at best perform as well as GLM, and 
hence the difference between the two tells us the importance 
of trait matching within a trophic level (Fig. 1v). In applying 
the Fourth corner approach, our interest was in studying the 
interaction matrix using the two sets of traits as explanatory 
variables. As such, the model was defined as follows:
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The notation used in the above equation is the same as for 
GLM. As for GLM, only continuous traits were squared. 
However, contrary to GLM, the Fourth corner method 
accounts for interactions solely between traits of species of 
different trophic levels. In other words, e.g. the term β14(T1,j 
× T2,j), representing an interaction between trait 1 and trait 2 
of species group j, occurs in the GLM model (Eq. 2) but not 
the Fourth corner model (Eq. 3).

We chose the five methods introduced above to provide 
ecological perspective on our data, but stress the availabil-
ity of additional methods not used here. These include Ives 
and Godfray (2006)’s phylogenetic analysis of trophic inter-
actions, methods relying on co-occurrence (Harris 2016) 
and other machine learning algorithms (Pichler et al. 2020). 
Methods based on latent variables show particular promise in 
accounting for sampling biases and unobserved interactions 
(Papadogeorgou et al. 2023).

Comparing subsets of traits
When all traits were used concurrently, it was difficult to 
determine which traits contributed the most to model fit. 
We therefore compared subsets of four traits at a time. By 
comparing which traits were frequent in subsets that per-
formed well (i.e. based on Tjur’s D), we can see which traits 
contributed the most to the relationship between traits and 
network structure. Additionally, this allowed us to compare 
models using the same traits – a solution not possible when 
using all traits, because GLM and Fourth corner were not 
able to use all traits concurrently (Supporting information). 
We ran each analysis that uses real traits (KNN using traits, 
Random forest using traits, GLM, and Fourth corner) with 
all possible combinations of four traits, where at least one 
trait came from the resource trophic level and one from 
the consumer trophic level (to allow for matching between 

consumer and resource traits). We then calculated and com-
pared model performance for each analysis across each trait 
combination.

Results

In summary, methods using network structure explained 
approximately twice as much structure as equivalent meth-
ods using species traits or phylogeny (KNN with interac-
tions versus KNN with traits or phylogeny, and IMC versus 
GLM and Fourth corner, Table 1, Fig. 2). However, all KNN 
models fit very poorly to the Salix–galler part of the network 
(Fig. 3, Supporting Information). The more flexible, non-
parametric Random forest method performed the best of all 
methods using traits for both networks, and performed better 
with phylogeny than traits. Gall type was the most important 
trait identified for GLM and Fourth corner (Fig. 4), while 
Random forest performed best with continuous traits, and no 
traits stood out strongly for KNN. Overall, this suggests that 
our traits – especially gall type – explain a substantial por-
tion of network structure, but certainly not all, and that more 
flexible models are more adept at capturing this relationship. 
These overall results are outlined in further detail below.

K-nearest neighbour methods

In the galler–parasitoid network, KNN using interactions 
gave a good fit to the data (Table 1, Fig. 3). KNN using phy-
logeny or traits explained roughly half as much as KNN with 
interactions in the galler–parasitoid network (Table 1). Thus, 
the galler–parasitoid network is structured into groups of 
gallers/parasitoids interacting with similar parasitoid/gallers 
and this structure may be partially – but not wholly – due 
to these species having similar traits or being phylogentically 
closely related. In the Salix–galler network however, KNN 
was by far the worst-performing analysis, even when using 
interactions to determine neighbours (Table 1). This suggests 
that the Salix–galler network does not have this structure. 
Indeed, the Salix–galler network is composed primarily of 
highly specialized galler species, making it difficult to find 
neighbours.

Table 1. Log-likelihood, Akaike information criterion (AIC) and Tjur’s D for the different analyses applied to the Salix–galler and galler–par-
asitoid data set. Note that the GLM and Fourth-corner methods have constraints that force them to use a subset of traits (Supporting informa-
tion). Also, because in KNN and Random forest analyses the number of parameters cannot be evaluated, AIC cannot be calculated. For the 
log-likelihood and AIC, values closer to zero are better. For the Tjur’s D, higher values are better.

Model
Salix–galler Galler–parasitoid

log-likelihood AIC Tjur’s D log-likelihood AIC Tjur’s D

KNN interactions −812 −0.07 −742 0.59
KNN phylogeny −563 −0.01 −1217 0.25
KNN traits −731 −0.06 −1213 0.30
RF traits −143 0.42 −500 0.63
RF phylogeny −89 0.63 −278 0.76
IMC −135 286 0.53 −854 1724 0.45
GLM traits −268 830 0.22 −1163 2673 0.27
Fourth-corner traits −279 782 0.20 −1223 2728 0.22
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Indirect matching-centrality

We used IMC to determine the upper limit of how much of 
network structure a parametric method could explain. For the 
galler–parasitoid network, IMC performed roughly as well as 
KNN using interactions, while IMC performed substantially 
better than KNN for the Salix–galler network (Table 1). The 
performance of IMC suggests that the networks can be well 
characterized using only two dimensions (one for match-
ing and one for centrality). From the fitted parameter val-
ues that scale the relative importance of matching (λ in Eq. 
1) versus centrality (δ in Eq. 1) dimensions, we can see that 
the Salix–galler network (λSG = 2.5, δG

SG =1.23 , δS
SG = 2.5 )  

relies on the matching (λ) dimension to a greater degree 
than the galler–parasitoid network (λGP = 0.74, δG

GP =1.42 ,  
δP

GP =1.38 ). Here, we note that the centrality dimension of 
gallers for the Salix–galler network ( δG

SG ) is much weaker 

than the centrality dimension of Salix species. This is due to 
a high proportion of galler species being strict specialists (i.e. 
only interacting with 1–2 species) in their interactions with 
Salix, but not with parasitoids.

GLM, Fourth corner and Random forest

GLM, Fourth corner and Random forest all use real traits 
to predict interactions. By comparing them to IMC, which 
uses latent traits, we can thus determine how well the traits 
explicitly sampled really explain network structure. At the 
same time, we can make a comparison between the paramet-
ric IMC, GLM and Fourth corner methods on the one hand, 
and the more flexible Random forest method on the other 
hand, to thereby determine whether the relationship between 
traits and interactions is well-explained by the structure of 

Figure 2. Probability of interaction as predicted by each model, separated by interactions which did exist in the data (yellow) and those that 
did not (white), for both the galler–parasitoid network (left panel) and the Salix–galler network (right panel). Better performing models 
have yellow boxes closer to one (predicting a high interaction probability for interactions that did exist) and white boxes closer to zero (low 
predicted interaction probability for interactions that did not exist). Boxes represent the median and first and third quartiles of model-
predicted interaction probabilities. 
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Figure 3. Galler–parasitoid (a) and Salix–galler (b) interaction matrices showing model predictions from K-nearest neighbour using shared 
interactions to calculate dissimilarity. Each column represents a parasitoid species (in (a)) or Salix species (in (b)) and each row represents a 
galler species. Observed interactions are shown by yellow points, while gray points indicate co-occurrence but not interaction. A missing 
point refers to a lack of cooccurrence. Model predictions are shown in purple or green, with darker shades specifying the prediction of more 
likely interaction. Gallers are grouped according to gall type: LF = leaf folder, LR = leaf roller, BG = bud galler, SG = stem galler, Pt = petiole 
galler, LBBG = leaf blade bean gall, LMBG = leaf midrib bean gall, LBSG = leaf blade sausage gall, LMPG = leaf midrib pea gall. See the 
Supporting information for similar figures of other methods, and for the names of the species in this plot.
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the parametric models or whether a more flexible method is 
needed.

When considering traits, we found that Random forest 
performed roughly equally to IMC (Table 1). At the same 
time, for both networks, GLM performed roughly half as 
well as IMC, with Fourth corner close behind (Table 1). 

The strong performance of Random forest suggests that the 
nature of the relationship between traits and interactions has 
complexities better captured by the more flexible method, 
while the performance of GLM and Fourth corner relative 
to IMC tells us that our measured traits only account for 
roughly half of the potentially explainable network structure. 

Figure 4. Model fit (Tjur’s D values) for trait-based methods using combinations of four traits. Boxes represent the median and first and 
third quartiles of model fits for traits combinations including the named trait. Traits with consistently higher values of Tjur’s D therefore 
contributed more to model performance. Salix, galler and parasitoid traits shown in green, yellow, and purple respectively. Note differences 
in x-axes scales.
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The difference in fit could be partly attributed to the fact 
that GLM and Fourth corner use a smaller subset of traits 
than Random forest (Supporting information). Despite this, 
it seems that the more flexible Random forest method bet-
ter captured the complexities of the relationship between 
traits and network structure than did GLM or Fourth corner 
methods, with a caveat: Random forest could only capture 
these complexities given sufficient flexibility, i.e. when using 
continuous variables, which can be split at any point, rather 
than categorical variables, which are limited to the number 
of categories in the variable. Meanwhile, the difference in 
performance between GLM and Fourth corner was greater 
in the galler–parasitoid than Salix–galler network, implying 
that interactions between traits at the same trophic level may 
play a greater role in the galler–parasitoid network than in the 
Salix–galler network.

Random forest using phylogeny was the best-performing 
method for both networks (Table 1) – a finding consistent 
with the greater correlation observed between phylogeny and 
interactions than between traits and interactions for almost 
all species groups (Supporting information).

Correlation between interactions, traits and 
phylogeny

We examined the correlations between the interaction, trait 
and phylogenetic dissimilarity matrices for species within the 
same trophic level. To do so, we calculated the Pearson’s cor-
relation between pairs of matrices that had been converted to 
vectors. This is another way of establishing whether species 
with similar traits (or species that are more closely related) 
interact with similar species at other trophic levels. In both 
data sets (Salix–gallers and galler–parasitoids), we observed 
higher correlations between species’ interaction similarity, 
trait similarity and phylogenetic similarity among resource 
species than among consumer species (Supporting informa-
tion). The correlations were strongest between phylogenetic 
similarity and interaction similarity.

Correlations between methods

To examine the consistency in predictions between dif-
ferent models, we calculated the correlation in the prob-
ability of interaction assigned to each species pair by the 
different methods. These correlations were uniformly high 

for the galler–parasitoid data (Table 1, Supporting infor-
mation), despite important differences in likelihood. With 
one exception, the strongest correlations were between the 
best-performing models; Random forest using phylogeny, 
and Random forest using traits, KNN using interactions 
and IMC. The weakest correlations in predictions occurred 
between GLM and Fourth corner with other methods, 
although they still showed relatively strong correlation with 
other methods using traits. The strongest correlation in both 
networks was between GLM and Fourth corner, although 
this is unsurprising given closely similar model structures.

The range of correlations proved much more diverse 
between methods for the Salix–galler than the galler–parasit-
oid data (Table 2, Supporting information). After the strong 
correlation shown between GLM and Fourth corner, the 
highest correlations were among the KNN models, which 
predicted similar structures (but did so poorly). However, 
KNN methods had very low correlation with all other meth-
ods. Predictions for the three best-performing methods for 
the Salix–galler network, two Random forest analyses and 
IMC, were tightly correlated, although notably lower than in 
the galler–parasitoid network.

In a nutshell, we found methods using network structure, 
real traits, and phylogeny to be mostly in agreement about 
which interactions are most or least likely to occur. This 
applies in particular to the galler–parasitoid network, where 
the resource–consumer interactions are not as specialised as 
in the Salix–galler network.

Which traits explain the most?

To establish the importance of individual traits, we identi-
fied traits which were frequently associated with improved 
model fit in combinations of only four traits. To this aim, 
we compared the performance of individual traits among the 
methods which explicitly focused on real traits (KNN with 
traits, GLM, Fourth corner and Random forest), observing a 
wide range of variation in values of Tjur’s D (Fig. 4).

Firstly, we observe that the type of trait, in particular, 
whether it was categorical or continuous, can strongly affect 
model performance. Overall, in both networks, Random 
forest was the best-performing method, however, Random 
forest also frequently performed poorly and, for certain com-
binations of traits, worse than GLM (Supporting informa-
tion). This occurred when using categorical traits with few 

Table 2. Correlation between model predictions when using all traits (or phylogeny) for the galler–parasitoid data (upper triangle, in purple) 
and Salix–galler data (lower triangle, in green). All correlations are significant, with p < 0.001.

KNN KNN (tr) KNN (ph) RF (tr) RF (ph) IMC GLM Fourth corner

KNN 1 0.667 0.591 0.775 0.813 0.752 0.529 0.512
KNN (traits) 0.772 1 0.628 0.701 0.634 0.671 0.596 0.582
KNN (phylo) 0.782 0.719 1 0.624 0.574 0.599 0.518 0.481
RF (traits) 0.070 0.142 0.159 1 0.876 0.709 0.631 0.603
RF (phylo) 0.153 0.185 0.213 0.697 1 0.772 0.547 0.510
IMC 0.130 0.152 0.177 0.494 0.584 1 0.554 0.496
GLM 0.007 0.051 0.051 0.461 0.271 0.231 1 0.879
Fourth corner 0.020 0.064 0.067 0.425 0.257 0.189 0.921 1
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categories – such as whether the parasitoid was an endo- or 
ectoparasitoid – (Supporting information), and can be attrib-
uted to the fact that these traits constrain the flexibility of 
the Random forest approach. Categorical traits can be split 
at most into the number of categories in the data, while con-
tinuous traits can be split in infinite ways. The linear GLM is 
much less affected by this difference.

Some models were more correlated in their predictions 
than others, when using the same subsets of four traits. Here, 
GLM and Fourth corner were almost perfectly correlated 
in their predictions for both networks, but showed weak 
correlation (galler–parasitoid network) or no correlation 
(Salix–galler network) with predictions from Random forest 
(Supporting information). KNN using traits showed strong 
correlations with GLM and Fourth corner and a weaker cor-
relation with Random forest for the galler–parasitoid net-
work. This results contrasts with the one obtained from the 
Salix–galler network, where predictions from KNN showed 
essentially no correlation with predictions from GLM and 
Fourth corner and a surprisingly strong negative correla-
tion with the prediction from Random forest (Supporting 
information).

At the level of specific traits, gall type was consistently 
identified as the most important trait by Fourth corner and 
GLM in both networks and by KNN for the galler–parasit-
oid network only (Fig. 4). In the galler–parasitoid network 
for GLM, Fourth corner, and KNN, oviposition strategy 
(whether the galler oviposits in the leaf blade, leaf vein or 
elsewhere) came a close second and gall-wall thickness third. 
For KNN in the Salix–galler network, no traits stood out this 
strongly (Fig. 4) and values of Tjur’s D were consistently low, 
suggesting a systematically poor fit. For Random forest, the 
traits consistently associated with good fits were traits with 
continuous values, including body length of both galler and 
parasitoid, and ovipositor length.

Discussion

Ultimately, all interactions will be structured by traits, since 
most species will be fundamentally unsuited for interact-
ing with each other, as due to vast differences in size, feeding 
organs or the like. The great hope of trait-based approaches is 
then that a few traits will be strongly predictive of who inter-
acts with whom – since if different traits are relevant to each 
and every interaction, then a trait-based approach will be use-
less. Based on our analysis of one of the largest systematically 
compiled data sets of species interactions to date (Kopelke et al. 
2017), as here supplemented with new trait data, we find that a 
limited set of traits is indeed important for structuring interac-
tions. Our key insight from applying a full suite of trait-based 
methods is that depending on the structure of the network, 
different methods tell us different components of the story. 
In brief, we find distinctly different imprints of traits within 
two coupled, bipartite network elements (Salix–galler versus 
galler–parasitoid interactions). Methods using network struc-
ture (KNN using interactions) or latent traits (IMC) rather 

than real traits gave a good fit to galler–parasitoid interactions 
and (for IMC only) Salix–galler interactions. These results 
show that interactions are arranged in a way that could poten-
tially be explained by a limited set of traits. Whether or not we 
have then measured the right traits to explain this structure is 
less clear. The traits used here explain a major part of detect-
able structure, while clearly not capturing all variation. In the 
galler–parasitoid data, methods using empirically-established 
trait values explained roughly half of the network structure 
explained by equivalent methods not using traits. Methods 
using traits performed less well for the Salix–galler network 
(explaining roughly 60% less than equivalent methods not 
using traits). This suggests either that traits were less important 
for interactions in this network or, more likely, that we have 
collected information on the wrong traits. Methods using phy-
logeny performed very well in the galler–parasitoid network 
and, for Random forest with phylogeny, in the Salix–galler 
network. Using Salix-based networks as a model system, our 
results thus reveal how the relationship between species traits, 
network structure, and phylogenetic history can be understood 
through a combination of complementary analyses. Below, we 
will go through the role of different traits for different types of 
interactions, and the insights shed by the different methods.

Similar species are more likely to share interactions 
(in the galler–parasitoid network)

We first asked whether similar species are more likely to share 
interactions. Based on the KNN analyses, we find that this 
is indeed the case in the galler–parasitoid subnetwork, but 
not the Salix–galler subnetwork. The poor performance of 
KNN in the latter network is due to a combination of highly 
specific interactions (most gallers only interacted with 1 or 2 
Salix species) and the fact that many Salix and galler species 
never co-occured. Together, this results in most species hav-
ing few neighbours and suggests that KNN is a poor method 
for such networks.

In the galler–parasitoid network, KNN using traits or phy-
logeny explained approximately half of the network structure 
explained by KNN using interactions. Of the traits used by 
us, gall type was the most important trait for explaining this 
structure, as closely followed by the trait of oviposition strat-
egy. The remaining structure, unexplainable by our traits or 
phylogeny, may be driven by other, unmeasured traits, which 
may not be phylogenetically conserved.

Gall type is the most important trait structuring 
interactions

Gall type was the trait most responsible for the structure 
detected by KNN, but also for GLM and Fourth corner 
(Fig. 4). This makes sense if we explore this from an ecologi-
cal perspective. Since the gall provides a defensive structure, 
interactions between gallers and parasitoids will depend, in 
large part, on the parasitoid’s ability to penetrate the gall 
(Stone and Schönrogge 2003). Thus, traits allowing a parasit-
oid to breach the gall wall are likely important in structuring 
interactions and, if the parasitoid can access one gall, it can 
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presumably access other, similar galls too. Intriguingly, in the 
galler–parasitoid, but not the Salix–galler network, the trait 
‘oviposition strategy’ was nearly as successful as gall type for 
explaining network structure. For a galling insect, oviposition 
strategy can essentially be seen as a looser grouping of gall 
type, and largely corresponds to how difficult it is to access 
the gall; leaf rollers and folders oviposit on the leaf blade; leaf 
blade sausage galls, leaf midrib pea gallers and bean gallers all 
oviposit through the leaf midrib (Kopelke 1999); and bud 
and shoot gallers oviposit into the bud and shoot, respec-
tively. From the perspective of a parasitoid, a leaf fold is likely 
much the same as a leaf roll, a bud gall is likely as difficult 
to access as a stem gall, and leaf blade sausage galls and leaf 
midrib pea and bean galls all have a roughly similar structure 
and gall wall to penetrate (Stone and Schönrogge 2003). As 
a result, the galler–parasitoid network had a nested struc-
ture, where some parasitoids showed many interactions. This 
structure was well explained by the traits measured as well as 
by phylogeny, because traits such as gall type are phylogeneti-
cally conserved (Nyman et al. 2000, 2007). This structure is 
also captured by IMC, where both the matching and cen-
trality dimensions show similar importance for the galler–
parasitoid network.

While our results imply that there are likely other impor-
tant traits that we have missed, they are also encouraging. 
What they suggest is that a limited set of traits can explain 
a substantial portion of network structure, and that trait 
matching is indeed an important mechanism structuring net-
works. From a practical perspective, the success of gall type is 
particularly hope-inspiring; in terms of using traits to predict 
interactions, the ideal traits are those that are easily measured 
(Violle et al. 2007). Gall type is easily categorized and is one 
of the first pieces of information recorded when describing 
galler species (Liston  et  al. 2017). Indeed, it was the only 
galler trait accompanying the interaction data when the data 
set behind this paper was originally published (Kopelke et al. 
2017). The success of gall type over other traits associated 
with gall type, such as gall-wall thickness, may be due to the 
fact that several different traits are important and gall type 
effectively summarizes them.

The relationship between traits and interactions is 
best captured by more flexible methods in the 
galler–parasitoid network…

Multiple traits likely govern a parasitoid’s ability to access and 
parasitize a galler, such as ovipositor length and phenology 
(Peralta  et  al. 2020). Indeed, these traits emerged as influ-
ential traits in our analysis. These traits, both of the same 
trophic level, probably interact, as revealed by the better per-
formance of GLM relative to Fourth corner. They likely do 
so in complex ways, as suggested by the better performance 
of more flexible methods such as Random forest and KNN. 
This answers our second question, as to whether common 
parametric models are sufficient to capture trait matching, or 
whether more flexible methods are necessary.

… but not the Salix–galler network

For the Salix–galler network, however, the less flexible IMC 
model is one of the best performing models, and performs 
better than Random forest. KNN performs particularly 
poorly (Table 1). GLM and Fourth corner perform simi-
larly well, suggesting that interactions between traits on the 
same trophic level are of little importance. An examina-
tion of the ecology of this system, however, suggests that 
the above results are actually due to the importance of ‘trait 
syndromes’, where a combination of traits are frequently 
observed together (Agrawal and Fishbein 2006), driving a 
tight match between Salix and galler species. Many Salix 
species exhibit high intraspecific variation in both phe-
notypic traits and chemical properties (Skvortsov 1999, 
Hörandl  et  al. 2012). Despite this variation, we observed 
that most galler species are highly specialized with respect 
to their interactions with Salix. Most species only interacted 
with one, and at most four, Salix species. Clearly, there are 
mechanisms preventing gallers from interacting more widely, 
and these mechanisms are likely trait-associated. Galls are 
induced by substances secreted during oviposition (Kopelke 
1999, Yamaguchi et al. 2012) and depend on a tight match 
of galler traits with the Salix species, in order for the galler 
to successfully manipulate the plant into producing a gall. 
Such traits of the gallers involve e.g. ovipositor morphol-
ogy (Liston et al. 2017), the chemistry of phytohormones 
released during oviposition (Yamaguchi  et  al. 2012) and 
oviposition behaviour (Roininen et al. 1999). Furthermore, 
Salix species utilize a variety of chemical compounds as 
protection against herbivory (Volf et al. 2015); such highly 
toxic or unique secondary metabolites frequently prevent 
unspecialized insects from feeding on the plants producing 
them (Agrawal and Fishbein 2006), while specialists evolve 
mechanisms to overcome relevant defenses (Denno  et  al. 
1990, Treutter 2006, Roslin and Salminen 2008). These 
trait syndromes and interactions between traits makes it 
easier to arrange species along a foraging or vulnerability 
axis, which can then be captured by a single ‘matching’ 
latent trait (Rohr  et  al. 2010, Eklöf  et  al. 2013), thereby 
explaining the strong performance of IMC.

Theoretically, trait syndromes should also be captured by 
traits. A priori, we would then expect a stronger performance 
of GLM over Fourth corner, and both performing closer to 
the upper limit given by IMC. However, we had only coarse 
information on Salix chemistry, and sparse information on 
galler oviposition traits, which together were clearly insuf-
ficient to explain the tight match between Salix and galler. 
Phylogeny proved a strong performer, with Random forest 
using phylogeny providing substantially the best fit of all 
methods, suggesting that many of these traits are phylogenet-
ically conserved. Indeed, gall type, the most important trait, 
is phylogenetically conserved, and we found that related Salix 
species tended to interact with similar gallers (Supporting 
information) and related gallers interacted with similar para-
sitoids (Supporting information).
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Related resource species tended to interact with 
similar consumers, but not vice versa

The finding that similar Salix species tended to interact with 
similar gallers also formed part of our ecologically perhaps 
most intriguing finding – that the predictive power of phylog-
eny proved asymmetric: while related resource species tended 
to interact with similar consumers, related consumers showed 
no particular tendency to interact with similar resources. This 
pattern was supported by several complementary observa-
tions, and strikingly repeated across trophic levels. In terms 
of the Salix–galler network, we observe a high correlation 
between Salix species’ phylogenetic history and their interac-
tion similarity (Supporting information). This implies that 
related Salix species tend to be exploited by the same galler 
species. Conversely, no similar correlation occurred between 
the phylogenetic history of galler species and their interaction 
dissimilarity when interacting with Salix (Supporting infor-
mation). In terms of the galler–parasitoid network, we again 
found a correlation between galler species’ phylogenetic his-
tory and their dissimilarity when interacting with parasitoids, 
whereas the opposite was not true (Supporting information).

The patterns observed resound with previous observa-
tions of related resources sharing similar interactions but not 
related consumers (Bersier and Kehrli 2008, Naisbit  et  al. 
2012, Eklöf and Stouffer 2016). As a driving force, this type 
of pattern may arise because consumers compete directly for 
shared prey. Such processes are likely to be a stronger driver for 
divergence than the apparent competition of resources shar-
ing predators (Naisbit  et  al. 2012). Indeed, Rossberg  et  al. 
(2006) found that foraging traits need to evolve faster than 
vulnerability traits to produce food webs like the ones we find 
in nature, and consumer shifts to new hosts has been pro-
posed as a major mechanism leading to speciation (reviewed 
by Berlocher and Feder 2002). A consumer that can develop 
traits allowing it to match the chemical, morphological, or 
physical traits of a new host can gain access to new enemy- 
and competitor-free space. If some individuals develop traits 
better suited to the new host – but this change results in 
lower suitability to the old host – then these genetic trad-
eoffs in performance can eventually lead to divergent natural 
selection (Nyman et al. 2007, Nyman 2010, Leppänen et al. 
2014). For gall-inducing sawflies on their Salix hosts, there is 
genetic evidence to support this type of host-associated diver-
gence (Leppänen et al. 2014). Together, these findings suggest 
that host-associated differentiation (Leppänen  et  al. 2014) 
has driven the development of the Salix–galler–parasitoid 
network that we see today.

Conclusions

In conclusion, the results of the five different methods here 
applied add credence to the hope invested in trait-based 
approaches. They suggest that a limited set of traits will be 
informative for understanding who interacts with whom across 
large networks. They also point to what traits are most impor-
tant, and what traits we might preferentially measure. Most 

intriguingly, though, they reveal how species’ traits, network 
structure, and phylogenetic history actually interact and drive 
each other. Through complementary evidence from the models 
combined, we thus learnt not only about the current ecology 
of this ecosystem, but also how it came to be and why the two 
components of the network are structured as they are. Future 
applications of our approach will likely yield an even deeper 
understanding of this and other systems by accounting for 
not only the presence or absence of interactions, but also their 
intensity, strength and frequency. Aside from IMC, all other 
analyses considered in this study can be used with such data.
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