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Urban tree detection on historical aerial imagery in Sweden. A 
test in automated detection with open source Deep Learning 
models 



 

 

Urban trees are a key component of the urban environment. In Sweden, ambitious goals have been 

expressed by authorities regarding the retention and increase of urban tree cover, aiming to mitigate 

climate change and provide a healthy, livable urban environment in a highly contested space. 

Tracking urban tree cover through remote sensing serves as an indicator of how past urban planning 

has succeeded in retaining trees as part of the urban fabric, and historical imagery spanning back 

decades for such analysis is widely available. This short study examines the viability of automated 

detection using open-source Deep Learning methods for long-term change detection in urban tree 

cover, aiming to evaluate past practices in urban planning. Results indicate that preprocessing of old 

imagery is necessary to enhance the detection and segmentation of urban tree cover, as the currently 

available training models were found to be severely lacking upon visual inspection. 
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Urban tree detection using remote sensing technologies has emerged as a critical 

tool in urban planning and environmental management (Rashed & Jürgens 2010; 

Roloff & Auch 2016). As urban areas continue to expand, the management of urban 

forests becomes increasingly important, not only for enhancing the aesthetic value 

of cities but also for mitigating environmental issues such as air pollution, heat 

islands, and loss of biodiversity. Remote sensing, which includes the use of aerial 

images, satellite data, and LiDAR (Light Detection and Ranging) technology, 

provides a comprehensive and efficient method for mapping and monitoring urban 

trees. 

The significance of urban trees extends beyond beautification. Trees play a 

pivotal role in improving urban air quality by filtering pollutants, providing oxygen, 

and reducing noise levels (Konijnendijk et al. 2005). They also contribute to energy 

savings in residential areas by providing shade, which lowers temperatures and 

reduces the need for air conditioning. On top of that, urban green spaces, including 

trees, have been linked to numerous health benefits, ranging from reduced stress 

levels to increased physical activity among city dwellers. 

Remote sensing technology offers several advantages for urban tree detection. 

Traditional methods of tree surveying can be labor-intensive, time-consuming, and 

often limited in scope due to accessibility issues. In contrast, remote sensing allows 

for the analysis of large and inaccessible areas with high accuracy. Satellites and 

aerial sensors can capture data over vast urban landscapes, making it possible to 

conduct comprehensive surveys of urban tree cover without the physical limitations 

of ground-based observations. 

Urban tree cover (or urban canopy cover), is a measure of tree and shrub 

abundance over a city and is usually derived from aerial or satellite images. As 

such, it is an important indicator of the health and sustainability of urban 

environments, as it refers to the combined amount of tree and vegetation cover 

within urban areas that plays a critical role in providing numerous benefits (or 

ecosystem services) to communities everywhere. These ecosystem services 

include, but are not limited to, improved air quality and stormwater mitigation 

(Nowak et al. 2006; Berland et al. 2017) reduced urban heat island effects that are 

a major cause of premature deaths (Schwaab et al. 2021) and enhanced aesthetic 

and recreational value (Price 2003). However, urban tree cover is not static, and it 

1. Introduction 
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can change over time due to a variety of factors, including urban development, land-

use changes, and natural disturbances. Unfortunately, trends show that due to the 

vulnerability of urban trees, the urban tree cover is declining in many cities across 

the globe (Nowak & Greenfield 2012). It is, however, unclear if Swedish cities are 

following the same trend/trajectory as long-term monitoring studies are uncommon, 

and we lack the necessary empirical evidence for claims about clear trajectories or 

trends.  

In this report, we test the available open-source algorithms to assess their 

applicability using modern and historical aerial imagery within the scope of long-

term monitoring of urban tree canopy change. 
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For this project, we utilized two open-source Deep Learning algorithms with 

distinct methodologies to detect urban tree canopies in aerial imagery. Firstly, we 

employed a tree detection algorithm developed by ESRI, which is based on 

DeepForest—a Python software package designed for airborne object detection and 

classification. This algorithm has been trained using data sourced from the National 

Ecological Observatory Network. Secondly, we employed the Segment Anything 

Model (SAM), an image segmentation AI developed by Meta. Both of these pre-

trained models were accessible through ESRI’s Living Atlas and are available 

through ArcGIS Pro (ESRI Software, 2014) data portal. 

Both models necessitate Very High Resolution (VHR) imagery formatted in 

three spectral bands as input. The segmentation models conduct pixel-wise 

classification, assigning pixels to various classes corresponding to different objects 

or regions within the image. On the other hand, object-based identification utilizes 

the random forest classification where multiple decision trees are created using 

different random subsets of the data and features to delineate objects of interest, 

rather than relying on hand-crafted pixel features. Subsequently, it draws a square 

bounding box with a unique identifier around each detected object. 

To visually evaluate the performance of these two models, we initially executed 

them on modern multi-band imagery with a resolution of 15cm. In order to replicate 

this analysis for the historical aerial imagery from 1962 with a resolution of 50cm, 

we had to preprocess the raster files. As the necessary input is a three-band raster 

layer, yet the historical imagery is captured in a single grayscale band, we stacked 

three identical instances of the raster as a three-band raster to be able to run the 

model. 

 

We obtained the imagery from the Swedish Land Authority (Lantmäteriet) via 

the GET imagery portal (Geodataportalen, 2024). 

2. Methods 
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3.1 Automated detection on modern imagery 

We ran two tests over a smaller area in Lund, Sweden where we adjusted the 

likelihood/confidence between tests. The Deep Learning algorithm drew square 

bounding boxes over the features that were identified as trees. The results are visible 

in different colors, with the red color showing object detection with comparatively 

higher confidence. 

 

 

Figure 1: Result of the tree detection algorithm over a smaller area in Lund, Sweden. Several areas 

that under visual inspection should be detected as tree canopy were not, despite very good image 

quality. 

 

In the second test we used SAM algorithm for segmentation of images. The 

algorithm was not calibrated to segment just tree canopy, but rather all types of land 

cover. 

 

3. Results 
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Figure 2: Result of Segment Anything Model segmentation of a small area in Lund, Sweden. 

 

3.2 Automated detection on historical imagery 

We ran both algorithms over a park area (Kungsparken) in Malmö, Sweden. The 

Deep Learning algorithm drew bounding boxes over the features that were 

identified as trees in teal color (Figure 3) and segments were identified in the next 

step (Figure 4). 
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Figure 3: Result of the identical tree detection algorithm as in Figure 1 on historical imagery in a 

small area in Malmö, Sweden. As expected, the algorithm has performed worse on image resolution 

that is lower than Figure 1 and in a grayscale form. Several areas with abundance of trees are not 

identified as such. 
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Figure 4: Result of Segment Anything Model of a park in Malmö, Sweden. When comparing to the 

result in Figure 2 we can see that large cohesive areas of trees and other types of land use are not 

segemented. 
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Both segmentation and object detection deep learning models often struggled 

when detecting trees on historical aerial imagery due to several inherent challenges. 

Historical aerial imagery frequently suffers from issues such as low resolution, 

varying image quality, occlusions, and environmental changes over time. 

Segmentation models, which aim to delineate individual objects within an image, 

can falter when faced with the complex and irregular shapes of trees, especially 

amidst cluttered backgrounds or partial occlusions. Moreover, the lack of consistent 

labeling standards for historical imagery makes it difficult for segmentation models 

to accurately learn the intricate features of trees across different time periods and 

locations.  

Similarly, object detection models, which identify and localize specific objects 

within an image, can struggle to distinguish trees from other visually similar 

elements like buildings or vegetation, particularly in instances where trees exhibit 

varying appearances due to seasonal changes or growth patterns. The limited 

availability of annotated datasets for historical aerial imagery hinders the training 

of deep learning models, resulting in suboptimal performance and generalization 

capabilities when using models trained on modern imagery. Overall, the 

combination of these factors contributes to the poor performance of both 

segmentation and object detection deep learning models when tasked with detecting 

trees on historical aerial imagery. 

To obtain precise metrics of success, such as accuracy, precision, recall, and F1 

score, a larger control dataset is essential for constructing a reliable confusion 

matrix. A confusion matrix is a fundamental tool in evaluating the performance of 

classification models, including those used in object detection and segmentation 

tasks. It tabulates the true positives, true negatives, false positives, and false 

negatives, allowing for a comprehensive assessment of model performance. 

A larger control dataset provides a more representative sample of the population, 

encompassing a broader range of scenarios and variations that the model might 

encounter in real-world applications. This expanded dataset helps mitigate biases 

and ensures that the evaluation results are more statistically robust and 

generalizable. With a larger dataset, there are more instances available for each 

class, reducing the impact of random variability and enabling a more accurate 

estimation of the model's performance metrics. Therefore we would encourage 

4. Discussion 
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future researchers to build a reference historical imagery dataset for similar studies. 

Unfortunately, providing a dataset for this control was not feasible within the 

duration of this research venture, but further attampts to advance this topic should 

prioritize allocating resources towards it. 

The results show that training a specialized automated detection model is crucial 

for enhancing the success of existing deep learning models in detecting trees on 

historical aerial imagery for several reasons. Firstly, historical aerial imagery often 

presents challenges such as varying image quality, resolution, and environmental 

changes over time, making it difficult for traditional algorithms to accurately 

identify objects like trees. By training an automated detection model specifically 

tailored to these nuances, the model can learn to adapt to the unique characteristics 

of historical imagery, thereby improving its accuracy and robustness in detecting 

trees. Continuous training and refinement of the detection model allow it to stay 

updated with evolving datasets and detection requirements, ensuring its 

effectiveness in detecting trees across different temporal and spatial contexts. By 

investing in the training of automated detection models, we can significantly 

enhance the efficiency and reliability of tree detection on historical aerial imagery, 

facilitating crucial applications in environmental monitoring, urban planning, and 

land management. 

Our analysis results could pe potentially improved by adding fidelity and texture 

information to raster bands. Fidelity bands represent the original spectral 

information of the scene, while texture analysis focuses on the spatial patterns and 

variations within the image. By incorporating both fidelity and texture information 

into raster data analysis, analysts can extract a more comprehensive set of features 

that capture both the spectral and spatial characteristics of the underlying objects or 

phenomena (Awrangjeb et al. 2011). This combined approach enhances the 

capabilities of automated detection systems by providing richer and more 

discriminative feature representations. We would suggest that future attempts at 

using automated detection with sub-par imagery quality utilize this approach. 
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