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INTRODUCTION

Tree diversity is a key factor affecting forest ecosystem 
functions (Gamfeldt et al., 2013; Grossman et al., 2018; 
Huang et  al.,  2018; Ratcliffe et  al.,  2017; Van der Plas 
et  al.,  2016). An increasing body of evidence suggests 
that tree diversity effects on ecosystems emerge from 
altered species interactions, including those between in-
sect herbivores and their natural enemies (i.e. predators 
and parasitoids; Albert et  al.,  2022; Jactel et  al.,  2020; 

Moreira et al., 2016; Schuldt et al., 2018, 2019). The in-
fluential “Enemies Hypothesis” (Root, 1973) posits that 
plant diversity promotes the diversity and abundance of 
natural enemies via increased habitat complexity, greater 
niche availability, and higher prey diversity (Langellotto 
& Denno, 2004; Moreira et al., 2016), which often results 
in enhanced top- down pressure on herbivores (Haddad 
et  al.,  2009; Jactel et  al.,  2020; Letourneau et  al.,  2011; 
Wan et  al.,  2020). In the case of forests, several recent 
studies provide evidence for the positive effects of tree 
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Abstract
Tree diversity can promote both predator abundance and diversity. However, 
whether this translates into increased predation and top- down control of 
herbivores across predator taxonomic groups and contrasting environmental 
conditions remains unresolved. We used a global network of tree diversity 
experiments (TreeDivNet) spread across three continents and three biomes to test 
the effects of tree species richness on predation across varying climatic conditions 
of temperature and precipitation. We recorded bird and arthropod predation 
attempts on plasticine caterpillars in monocultures and tree species mixtures. 
Both tree species richness and temperature increased predation by birds but not 
by arthropods. Furthermore, the effects of tree species richness on predation were 
consistent across the studied climatic gradient. Our findings provide evidence 
that tree diversity strengthens top- down control of insect herbivores by birds, 
underscoring the need to implement conservation strategies that safeguard tree 
diversity to sustain ecosystem services provided by natural enemies in forests.
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diversity on the abundance and diversity of natural 
enemies (Ampoorter et  al.,  2020; Butz et  al.,  2023; Li 
et al., 2023; May- Uc et al., 2020; Nell et al., 2018; Penone 
et  al.,  2019; Stemmelen et  al.,  2022), but experimental 
tests involving assessments of predation pressure are still 
limited. The few available studies have reported mixed 
findings, with some supporting positive effects of tree di-
versity on predation (Leles et al., 2017; Nell et al., 2018), 
whereas others have reported no effects (Castagneyrol 
et al.,  2017; Interian- Aguiñaga et al.,  2022), or variable 
responses depending on the spatial scale or predator 
group studied (Muiruri et  al.,  2016; Yang et  al.,  2018). 
This mixed support was recently revealed by a meta- 
analysis that found limited evidence for positive ef-
fects of tree diversity on predation pressure (Stemmelen 
et  al.,  2022), calling into question the generality of the 
Enemies Hypothesis and pointing to the need for broad- 
scale experimental studies (Staab & Schuldt, 2020).

Variation in tree diversity effects on predation pres-
sure might be due to taxon- specific responses of preda-
tors (Penone et  al.,  2019; Staab & Schuldt,  2020). Birds 
and arthropods are two major taxonomic groups often 
exerting strong top- down control on insect herbivores 
(Mooney et  al.,  2010; Staab & Schuldt,  2020; Van Bael 
et  al.,  2003), although such effects are not universal 
and herbivores can also be subject to bottom- up con-
trol (Barber & Marquis, 2011; Denno et al., 2003; Welti 
et al., 2020). Notably, marked functional differences be-
tween birds and arthropods, including different foraging 
behaviours, could shape their responses to tree diversity. 
For instance, natural enemy diet breadth has been pro-
posed as an important factor modulating plant diver-
sity effects on top- down herbivore control (Root, 1973). 
In this context, generalist natural enemies are expected 
to benefit more than specialist ones from the greater re-
source availability and diversity found in more species- 
rich forest patches and thus show stronger responses to 
tree diversity (Bellone et al., 2020; Legault & James, 2018; 
Staab & Schuldt, 2020; Zhang et al., 2017). Based on this, 
we would anticipate stronger responses for birds because 
these typically have a generalist diet which includes fruits, 
seeds, and even small vertebrates alongside insects (Lopes 
et  al.,  2016). In contrast, predatory arthropods have a 
more specialist diet (i.e. a narrower spectrum of prey spe-
cies compared to insectivorous birds) and thus may show 
weaker responses to tree diversity. Furthermore, interac-
tions between predator groups, such as intra- guild preda-
tion, can also result in variable responses to tree diversity 
(Staab & Schuldt,  2020). For instance, increased avian 
predation in more diverse stands may potentially dampen 
diversity effects on predation pressure by arthropods 
(Holt & Polis, 1997; Interian- Aguiñaga et al., 2022). Thus, 
an improved mechanistic understanding of tree diversity 
effects on predation pressure necessarily requires multi- 
taxa predator investigations.

Previous experimental tests of the Enemies Hypothesis 
in forests have been conducted at local scales (i.e. specific 

geographic locations). While meta- analyses provide valu-
able synthetic insights (Stemmelen et al., 2022), standard-
ized experimental studies conducted at broader spatial 
scales are ultimately needed to robustly test the generality 
of this hypothesis and to harness variability across con-
trasting environments. Indeed, species abundance and 
diversity, and consequently biotic interactions, are known 
to vary in relation to broad- scale variation in abiotic fac-
tors (e.g. across latitudinal gradients) (Dobzhansky, 1950; 
Schemske et  al.,  2009). Accordingly, predation pressure 
often increases under warmer, wetter, and more stable cli-
mate conditions (Dyer & Coley, 2002; Romero et al., 2018; 
Roslin et al., 2017; Zvereva & Kozlov, 2021), though the 
strength of such effects is likely contingent on predator 
biology. For example, predation by ectothermic preda-
tors (e.g. arthropods) has been reported to show greater 
geographic variation than that by endotherms (e.g. birds), 
and these patterns have been speculated to be linked to 
the former's stronger responses to temperature (Roslin 
et al., 2017; Zvereva et al., 2019; Zvereva & Kozlov, 2021), 
although explicit tests of this hypothesis have not been 
performed yet. Predatory arthropods may also be partic-
ularly sensitive to water availability, directly via desicca-
tion (Benoit et al., 2023) or indirectly via changes in plant 
productivity (Bang et  al.,  2012). Importantly, climate 
variation alongside geographic gradients often covaries 
with other factors, including tree diversity (De Frenne 
et al., 2013), making it challenging in observational studies 
conducted in natural settings to tease apart the contribu-
tions of both factors to predation rates. In this context, 
climate and tree diversity could have interactive effects 
on predators which modify predictions on how tree diver-
sity affects top- down control of herbivores (i.e. climate- 
dependent tree diversity effects). For instance, according 
to the Stress Gradient Hypothesis, positive biotic interac-
tions are predicted to become stronger as abiotic stress in-
creases (Bertness & Callaway, 1994). This hypothesis has 
been well- explored in terrestrial plant communities, but 
there has been less focus on investigating mechanisms in-
volving multi- trophic interactions and food webs (Adams 
et  al.,  2022). Following this, an untested prediction is 
that tree diversity would exert stronger positive effects 
on predators under challenging climatic conditions (e.g. 
higher temperatures or frequent droughts) by providing 
more micro- climatic refugia to sensitive populations and 
ameliorating abiotic stress to a greater extent in these 
environments (Betts et  al.,  2018; McGinn et  al.,  2023; 
Schnabel et al., 2023). Because of the scale at which most 
work has been conducted, the majority of experimental 
studies conducted so far have been unable to test for the 
joint and interactive impacts of tree diversity and macro- 
climatic variation on predation (Nell et al., 2018; Romero 
et  al.,  2018; Yang et  al.,  2018), thus limiting our under-
standing of taxon- specific responses to tree diversity and 
its abiotic contingency at a macro- ecological scale.

In this study, we used the TreeDivNet global network 
of long- term tree diversity experiments (www. treed 
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ivnet. ugent. be, Paquette et al., 2018) to conduct a broad- 
scale test of tree species richness effects on predation 
by birds and arthropods, as well as its dependence on 
macro- climatic variation (i.e. mean annual tempera-
ture and precipitation). To do so, we estimated preda-
tion attempts by each predator group in monocultures 
and tree species mixtures using plasticine caterpillars 
(Low et  al.,  2014), a particularly suitable method for 
comparing relative differences in predation pressure 
across geographic gradients (Roslin et al., 2017). First, 
based on the Enemies Hypothesis, we predicted that 
tree diversity would have a positive effect on predation 
rates, with stronger effects on insectivorous birds be-
cause these are generalist predators with a wider diet 
breadth. Second, because predator abundance and 
diversity are predicted to increase under favourable 
climate conditions, we expected that predation rates 
would increase with temperature and precipitation, 
but these effects would be stronger for arthropods be-
cause they are ectothermic predators and may be more 
sensitive to changes in local abiotic conditions. Finally, 

we expected interactions between tree diversity and cli-
mate effects, with stronger tree diversity effects under 
harsher climatic conditions (e.g. reduced precipita-
tion) driven by greater habitat stress- amelioration and 
consequently stronger effects on predators under such 
conditions.

M ATERI A LS A N D M ETHODS

Study sites

We tested the effects of tree diversity on predation by 
birds and arthropods at 14 and 12 study sites, respec-
tively. The sites are part of the TreeDivNet and span 41 
degrees of latitude across the Northern Hemisphere and 
three biomes (Figure  1). Both temperature (4.6–26.3°C 
mean annual temperature—MAT) and precipitation 
(552–1585 mm mean annual precipitation—MAP) vary 
strongly across the sites (Figure  1, Table  S1). At each 
TreeDivNet site, we selected a minimum of three and a 

F I G U R E  1  (a) Map showing the location of the sites belonging to the TreeDivNet network included in this study. We used a total of 14 and 
12 sites for estimating bird and arthropod predation, respectively. See Table S1 for information on site- specific characteristics. (b) Whitaker 
diagram (Ricklefs, 2008) showing the distribution of the sites within the climatic distribution of primary biome types.
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maximum of 12 target species. As sites differed in the 
tree species richness gradient used, within each site we 
selected plots that captured the full tree species rich-
ness gradient available (Table S1), including the mono-
cultures of each target species, the most diverse mixture 
plots containing the target species, and, when possible, 
mixtures of intermediate richness (Table S1). We did so 
to maximize plot replication based on tree species rich-
ness alone, resulting in a total of 605 plots spanning 
across sites and a gradient from one-  (i.e. monocultures) 
to 16- species mixtures (Table S1). Mixture plots included 
two to four target species. Within each plot, we selected 
six to eight focal trees (avoiding plot edges) depending 
on the proportion of a given target species in each plot. 
Specifically, we selected six focal trees in monocultures, 
three focal trees per species in mixtures composed of two 
target species, and two focal trees per species in mix-
tures containing three or four of the target species. This 
yielded a total of 3598 trees selected.

Estimation of predation attempts

We made model plasticine caterpillars (caterpillars here-
after) mimicking the size (3- cm long and 0.5- cm in di-
ameter) and shape of naturally occurring larvae from 
odourless, non- toxic, green colour clay (Low et al., 2014). 
Caterpillars were installed on selected focal trees during 
the spring and summer (May–July) of 2013 (Satakunta 
Experiment), 2015 (ORPHEE and UADY Experiments), 
and 2016 (the remaining seven experiments), with stand 
age varying from 2 to 14 years (Table  S1). Using either 
wire or glue (Loctite®), we secured 1–5 caterpillars to 
mid- canopy branches of each focal tree. In total, we de-
ployed and surveyed 40,193 caterpillars. We checked the 
caterpillars periodically to assess predation attempts 
and identified the taxonomic groups of predators (ar-
thropods, birds, mammals, or reptiles) using the guides 
by Low et  al.  (2014). We then recorded the number of 
predation attempts per tree by each predator group. The 
number of surveys (i.e. checking for predation attempts 
on caterpillars) ranged from one to 11 across sites within 
experiments, and the period of exposure of caterpillars 
ranged from one to 21 days (Table S1). After each survey, 
we repaired damaged caterpillars or replaced those that 
were lost (Low et al., 2014). Arthropods and birds were 
the most common predators (Figure  S1; see Results), 
and therefore our subsequent analysis focussed on these 
two groups; we did not further consider predation at-
tempts by other groups (e.g. mammals and reptiles) due 
to their low representation (Figure S1). We summed up 
predation attempts by each predator group across trees 
for each plot. To account for differences in survey dura-
tion and the number of caterpillars among sites within 
experiments (Table  S1), we calculated the number of 
“caterpillar days” as the number of caterpillars per 
plot multiplied by the period of exposure to predators 

(Roslin et al., 2017). We then analysed plot- level data of 
arthropod and bird predation separately as the propor-
tion of predation attempts per caterpillar day. We opted 
for this approach rather than analysing tree- level data 
to simplify analyses and minimize variation due to tree- 
level effects, as our main focus was on testing plot- level 
effects driven by differences in tree species richness.

Climate data

We extracted climate data from the high- resolution 
CHELSA database with a resolution of 30 arcsec and 
extrapolated local climate from climatic data recorded 
over the 1979–2013 period (Karger et al. 2017). We opted 
for this climate database over alternative options due 
to its ability to provide reliable precipitation estimates. 
Briefly, through the integration of downscaled reanaly-
sis data (ERA5) using the CHELSA algorithm and cloud 
cover information obtained from MODIS, this approach 
substantially enhances the spatial–temporal accuracy 
of precipitation predictions and offers a more accurate 
representation of fine- scale variability in global precipi-
tation patterns (Karger et al. 2017). We then used MAT 
and MAP as climatic predictors because these variables 
are commonly used to characterize broad- scale vari-
ation in climate types and biomes (Ricklefs, 2008) and 
in macro- ecological studies exploring drivers of geo-
graphic patterns in both birds and arthropods (Kaspari 
et al., 2000; Mottl et al., 2020; Olson et al., 2009; Pigot 
et al., 2010; Welti et al., 2020).

Statistical analyses

We used generalized linear mixed models (GLMMs) 
with binomially distributed errors and a logit- link to 
test for the independent and interactive effects of tree 
diversity and climate (i.e. MAT and MAP)—all fixed 
effects—on the proportion of predation attempts by 
caterpillar day (predation hereafter) using plot- level 
data separately for bird and arthropod predation. We 
included the stand age as a covariate in the models to 
account for variation in predation rates due to age dif-
ferences in canopy structure. To take into account birds' 
ability for avoidance learning and rejection of unsuit-
able prey (Zvereva & Kozlov,  2022), we tested whether 
bird predation decreased for caterpillar exposure peri-
ods longer than seven days (due to avoidance learning). 
A model with the period of exposure as a fixed factor 
categorized as either long (>7 days) or short (<7 days), 
demonstrated a lack of bird avoidance effects (X2 = 1.70; 
p = 0.193) and did not improve model fit (LRTX

2 = 1.62; 
p = 0.203). Consequently, this factor was not retained in 
the final model. We compiled tree species richness data 
across sites, resulting in 10 richness levels ranging from 
1 to 16 species (1, 2, 3, 4, 5, 6, 7, 8, 12, and 16). Because 
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the richness gradient differed among sites (Table S1), we 
log- transformed tree species richness. We scaled and 
centred explanatory variables to make model coefficient 
parameters comparable within and between models 
(Schielzeth, 2010). We included site (14 levels) and block 
nested within site as random factors. We specified a 
random slope for the relationship between tree species 
richness and predation for each site to account for site- 
level variation in tree species richness effects unrelated 
to climatic variation across sites (Figure S2). We did not 
include tree species identity and plot species composition 
in the models because both were largely site- specific and 
already accounted for by using site as a random factor. 
Due to an absence of predation by arthropods at the 
Satakunta and IDENT- Freiburg sites (Figure S1), we ex-
cluded them from the arthropod predation analysis. We 
estimated model fit by calculating marginal and condi-
tional R2 values (Nakagawa & Schielzeth, 2013). Finally, 
we plotted the effects of each model predictor (i.e. tree 
species richness, MAT, MAP) as bivariate linear asso-
ciations between each predictor and predicted values of 
predation (Log- Odds) from each model.  We also plotted 
relationships using raw data (Figure S3).

We ran GLMMs and obtained predicted values from 
each model using the glmer and predict functions, re-
spectively, both from the lmerTest package (Kuznetsova 
et al., 2017) in R software version 4.2.1 (R Core Team, 2013).

RESU LTS

We observed predation marks in 519 of the 605 plots, that 
is, 85.79%. Of the 40,193 caterpillars surveyed, 7973 had 
identifiable predation marks, corresponding to an over-
all predation intensity of 19.8%. Birds and arthropods 
were responsible for 27.4% and 65.6% of these predation 
attempts, respectively. Predation attempts by mammals 

and reptiles were rare and represented only 6.6% and 
0.4% of total predation marks, respectively (Figure S1). 
Bird predation significantly and positively covaried with 
stand age across sites, while arthropod predation exhib-
ited a negative covariation, albeit only marginally sig-
nificant (Table 1).

We found a significant and positive association be-
tween bird predation and tree species richness (Table 1; 
Figure 2a), as well as a significant and positive associ-
ation between bird predation and MAT, but no associ-
ation with MAP (Table 1; Figure 2c, e). Bird predation 
increased by 53.0% and 69.1% with a one- unit increase 
in tree species richness (log- scale) or temperature (°C), 
respectively. In contrast, there was no significant asso-
ciation between arthropod predation and tree species 
richness (Table 1; Figure 2b) and either MAT or MAP 
(Table 1; Figure 2d, f). Finally, we found no significant 
interactive effects of tree species richness and MAT or 
MAP on either bird or arthropod predation (Table 1).

DISCUSSION

This study represents the first broad- scale test of the 
Enemies Hypothesis in tree diversity experiments, pro-
viding insights into its generality and contingency on the 
types of predator taxa and climatic conditions. We found 
predator group- specific responses, namely predation by 
birds increased with tree species richness and tempera-
ture, whereas predation by arthropods was not affected 
by either tree diversity or climate. In addition, and con-
trary to our expectations, we did not find evidence of 
interactive effects between tree diversity and climate, 
suggesting that diversity effects on predation rates re-
mained consistent across climates.

The observed increase in predation by birds with tree 
species richness is consistent with the predictions of the 

(a) Bird predation (b) Arthropod predation

X2 p β (±SE) Χ2 p β (±SE)

Stand age (years) 5.44 0.020 0.17 (±0.07) 3.80 0.051 −0.31 (±0.16)

Tree species richness (log) 4.27 0.039 0.12 (±0.06) 0.27 0.603 0.04 (±0.06)

MAT (C°) 10.34 0.001 0.80 (±0.25) 1.24 0.266 0.01 (±0.59)

MAP (mm) 0.28 0.595 −0.14 (±0.25) 0.46 0.496 −0.15 (±0.61)

Richness × MAT 0.58 0.446 0.04 (±0.06) 1.27 0.260 −0.06 (±0.05)

Richness × MAP 0.17 0.678 0.2 (±0.06) 0.87 0.352 −0.04 (±0.05)

σ2Siteintercept 0.719 4.354

σ2Siteslope 0.037 0.024

σ2Block 0.241 0.071

R2
marginal 0.17 0.12

R2
conditional 0.37 0.63

Note: Models included the stand age as a covariate. Model estimates (Chi- square = X2; p- value = P; 
slope ± standard error = β (±SE); variance = σ2) and R2 values (marginal and conditional) are shown. 
Significant p- values (<0.05) are highlighted in bold.

TA B L E  1  Summary of generalized 
linear mixed effect models testing the 
independent and interactive effects of tree 
species richness, mean annual temperature 
(MAT), and mean annual precipitation 
(MAP) on the proportion of plasticine 
caterpillars displaying predation attempts.
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F I G U R E  2  Independent effects of tree species richness (a, b), mean annual temperature (c, d), and mean annual precipitation (e, f) on the 
proportion of predation attempts by birds (14 sites included) and arthropods (12 sites included) on plasticine caterpillars. Circles represent 
predicted values from the corresponding GLMMs (i.e. Log- Odds ratios for bird and arthropod predation). Circles with different colours 
correspond to different sites (see codes in Figure 1). Regression lines represent linear associations between model predictors and model 
predicted values (solid and dashed lines denote significant and not significant effects, respectively). Chi- square (χ2) and associated p- values (p) 
for each model predictor are shown.
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Enemies Hypothesis (Root, 1973) and suggests that tree 
diversity strengthens top- down control of insect herbi-
vores by insectivorous birds in forests. Importantly, the 
top- down control of herbivores by birds may be more 
pronounced in older, natural forests, given that bird pre-
dation positively covaried with stand age. Considering 
that the majority of our experimental sites were in the 
initial developmental stages (with an average stand age 
of 5.57 ± 0.99 SE), we might be underestimating the rel-
evance of predation by birds in regulating herbivory. 
In contrast, we did not find a significant association 
between tree species richness and predation by arthro-
pods. As we initially speculated, different foraging char-
acteristics among predators, including diet breadth, may 
explain stronger responses to tree diversity by birds than 
predatory arthropods. Future investigations should ex-
plicitly test the hypothesis that tree diversity effects are 
stronger in generalist than in specialist predators (e.g. 
by comparing responses of omnivores and exclusively 
insectivores). Furthermore, the lack of a tree diversity ef-
fect on predation by arthropods could also be attributed 
to their limited dispersal capacity (Arribas et al., 2021; 
Perry et  al.,  2021), making them less efficient at track-
ing resources across space (i.e. among forest patches 
differing in tree diversity), although this may not hold 
for some particular groups (e.g. wasps) which can move 
across longer distances. Alternatively, increased intra- 
guild predation by birds in mixed stands (Staab & 
Schuldt, 2020) could have dampened the detection of tree 
diversity effects on arthropod predation, a phenomenon 
for which at least two studies have found support, one 
involving birds (Interian- Aguiñaga et al., 2022) and the 
other spiders (Schuldt & Staab, 2015). Our results thus 
warrant further experimental research characterizing 
bird (May- Uc et al., 2020; Nell et al., 2018) and arthropod 
(Li et al., 2023) communities to explore the contribution 
of predator foraging characteristics and intra- guild pre-
dation to tree diversity effects on top- down control of 
insect herbivores.

Our assessment of climatic drivers showed that pre-
dation by birds but not by arthropods was positively 
associated with mean annual temperature. This result 
challenges the classical view that more pronounced el-
evation and latitudinal gradients in predation by ec-
totherms (e.g. arthropods) than that by endotherms 
(e.g. birds; Roslin et al., 2017; Zvereva & Kozlov, 2021) 
are mediated by stronger responses of ectotherms to 
temperature, as we initially hypothesised. On the one 
hand, while arthropods are expected to be physiolog-
ically more sensitive than birds to changes in abiotic 
conditions such as temperature, arthropod abundance 
and foraging activity might be more related to local re-
source availability and micro- climate conditions than 
to large- scale variation in climate (Fricke et  al.,  2022). 
This may be especially the case in forests, where local- 
scale differences in micro- climatic conditions between 
adjacent or nearby forest stands (e.g. due to differences 

in tree species composition or vertical structure) could 
hinder the detection of broad- scale associations between 
climate and arthropod predation. On the other hand, 
our study shows that predation by birds, as endother-
mic predators, might exhibit greater responsiveness to 
broad- scale climate variations than predation by ecto-
therms. This may occur through direct effects on birds 
(e.g. on nest site selection, developmental plasticity, ther-
moregulation, or foraging efficiency; Martin,  2001; du 
Plessis et al., 2012; Weeks et al., 2022) or indirect effects 
via changes in vegetation structure and food availability 
(Ferger et al., 2014), ultimately leading to changes in bird 
communities (Davey et al., 2012; McCain, 2009).

Our joint test of biotic and abiotic drivers indicated 
no evidence that tree species richness effects on preda-
tion were contingent on broad- scale variation in tem-
perature or precipitation. To our knowledge, no previous 
studies have tested how climate shapes linkages between 
tree diversity and predation, making it difficult to draw 
firm conclusions. Nonetheless, the fact that tree species 
richness effects on predation by birds remained consis-
tent across widely varying abiotic conditions is notewor-
thy. This result contradicts our initial expectation that 
tree diversity would have stronger positive effects on 
predators under limiting abiotic conditions (i.e. reduced 
precipitation), due to a greater amelioration of abiotic 
stress in mixed- species stands. Specifically, it may be 
attributed to the remarkable foraging plasticity of birds 
that enables them to closely track food sources, such as 
prey availability, and reduces their dependency on the 
abiotic stress- buffering effects of tree diversity.

Teasing apart the confounding effects of biotic and 
abiotic drivers of biogeographic patterns, including those 
in species interactions, has posed a significant challenge 
for large- scale empirical studies conducted in natural 
settings (De Frenne et al., 2013). Our study addresses this 
challenge by experimentally manipulating tree diversity 
within sites across climate gradients, thus allowing us to 
disentangle the effects of climate and tree diversity by 
accounting for their reciprocal influences in our models. 
Nevertheless, we must acknowledge the inherent limita-
tions of our study that may have prevented the detection 
of stronger effects. First, our precipitation gradient spans 
a limited range (552–1585 mm), and our study sites were 
mainly located in temperate forest and woodland/shru-
bland biomes (Figure 1). While tree- dominated biomes 
occur only above certain precipitation levels (>500 mm), 
our experimental gradient lacks representation in par-
ticularly cold and wet biomes (Figure  1), potentially 
hindering the detection of interactive effects. Second, 
site- specific factors co- varying with climate along our 
experimental gradient and affecting predation, such as 
prey abundance or diversity, host- tree species identity, or 
species composition (Mooney & Singer, 2012; Vehviläinen 
et al., 2008; Wilby & Orwin, 2013), could also contribute 
to macro- ecological patterns in predation and influence 
our results. This explanation, however, seems unlikely, 
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given that we accounted for site- specific effects in our 
models. Similarly, methodological aspects, including 
variation in the period of exposure of clay caterpillars 
in each site which may influence predator behaviour 
(Zvereva & Kozlov, 2022), could have also contributed to 
variation in the accuracy of predation rate estimations. 
We encourage further broad- scale experimental stud-
ies to examine the Enemies Hypothesis in less- explored 
ecosystems (e.g. rainforests and boreal regions) and 
along more contrasting gradients of climate conditions. 
Ideally, future studies should also include predator ex-
clusions (Mooney, 2006) and medium-  to long- term mea-
surements along with data on predator communities and 
behaviour (May- Uc et  al.,  2020). This combination of 
approaches will produce a more comprehensive under-
standing of how abiotic factors influence tree diversity 
effects on predators and resulting top- down regulation 
of food webs and ecosystem functions.
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