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Abstract

This article presents a study on the world's first unmanned machine designed for

autonomous forestry operations. In response to the challenges associated with

traditional forestry operations, we developed a platform equipped with essential

hardware components necessary for performing autonomous forwarding tasks.

Through the use of computer vision, autonomous navigation, and manipulator

control algorithms, the machine is able to pick up logs from the ground and

manoeuvre through a range of forest terrains without the need for human

intervention. Our initial results demonstrate the potential for safe and efficient

autonomous extraction of logs in the cut‐to‐length harvesting process. We achieved

a high level of accuracy in our computer vision system, and our autonomous

navigation system proved to be highly efficient. This research represents a

significant milestone in the field of autonomous outdoor robotics, with far‐

reaching implications for the future of forestry operations. By reducing the need

for human labor, autonomous machines have the potential to increase productivity

and reduce labor costs, while also minimizing the environmental impact of timber

harvesting. The success of our study highlights the potential for further development

and optimization of autonomous machines in the forestry industry.
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1 | INTRODUCTION

This article presents results of using an unmanned electro‐

hydraulically actuated machine, which has been prototyped to

carry on with fully autonomous forestry logging operations

(Lideskog et al., 2015). This machine has been developed since

2014 by the Swedish Arctic Off‐Road Robotics Lab (AORO),

resulting in a platform for research and development in the area

of forestry machine automation (AORO, 2021). The article's topic

involves the very first results of performing a fully autonomous

forwarding task, that is, the task of collecting and transporting

logs out of the forest after tree‐harvesting. To this end, the

machine is able to perform autonomous navigation, object

recognition, and manipulation, as well as robot motion control,

combination of which are essential to successfully carry on with

the forwarding operation.
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1.1 | Background

Forestry has come a long way from the earliest machine made from a

recycled tractor to the use of sophisticated hydraulic machinery

(Nordfjell et al., 2019). Among the core examples are the harvester

and forwarder machines, which are the main cutting‐edge industrial

tools for tree harvesting in Scandinavia. Among these machines, the

harvesters cut trees to small logs within the harvest area, while

forwarders collect and transport them out to the roadside for further

relocation. This form of operation is known as the fully mechanized

cut‐to‐length system (CTL), a highly productive tree harvesting

system, making Sweden the third largest exporter of pulp and sawn

timber (Eriksson & Lindroos, 2014; Lundbäck et al., 2021).

Operating forestry machines is a demanding and difficult job

(Purfürst, 2010). Yet, standard machines come equipped with old‐

fashioned open‐loop control systems, where every degree‐of‐

freedom (DOF) and function is individually controlled through

joysticks and buttons. Therefore, the ability to demonstrate a good

working performance depends on the multitasking skills of each

individual operator, resulting in large productivity variation

(Pagnussat & Hauge, 2020). Apart of this, machine operators need

to take thousands of multiple forest management decisions every

day, while they control the machine's functions simultaneously. Over

time, this cognitive load and the rough machine vibrations have a

negative impact on the operators well‐being, affecting also the work

performance and productivity. Therefore, the interest of working as

an operator has been declining in Scandinavia, making it difficult for

forestry companies to recruit new qualified operators in recent years.

Research studies show that automation of forestry machines is

challenging, due to the complexity of the forest environment and

machine dynamics. Nevertheless, partial automation, which relieves

some control of the machine from the operator's hands, has shown to

be a promising technology to facilitate the work (Lindroos et al.,

2017; Morales et al., 2014; Nurminen et al., 2006; Oliveira et al.,

2021; Visser & Obi, 2021). As a result, machine manufacturers have

recently shown an increasing interest in adopting basic automation

technology, as one incremental step to boost work productivity and

efficiency by making the control of machines more intuitive for

operators. Examples of this adoption features the Intelligent Boom

Control from John Deere, the Smart Flow and Smart Crane from

Komatsu Forest, and the so‐called intelligent hydraulic valves, which

have given rise to the innovation of these new products (EATON,

2019; Gingras & Charette, 2017; Komatsu Forest, 2017; Lindroos

et al., 2019; Manner et al., 2019; Reitz et al., 2019; Technion

Onlinesince, 2017).

Due to the financial impact of forestry in the Scandinavian

economy, the interest of moving toward unmanned machines for

large‐scale forestry operations began decades ago, at least in Sweden

(Halme & Vainio, 1998; Lindroos et al., 2019). Early examples consist

of radio controlled machines, such as BESTEN (eng. The Beast) The

death of the forest (Beast, 2006) and the eBeaver The radio‐

controlled bio‐energy harvester forest (Ebeaver, 2011). However,

machines of this kind did not meet industry's expectations, because

they were difficult to remotely operate using standard open‐loop

control commands. Therefore, production of such machines did not

reach adoption in the market. Nevertheless, unmanned machines

with different levels of automation can address some of the

challenges facing forestry today, including reduced soil damage,

pollution, costly manufacturing, and lack of skilled machine operators

(Lindroos et al., 2017, 2019). Thus, research to move from manual

control to full‐automation with such machines has continued since.

1.2 | Literature review

1.2.1 | General review about unmanned forestry
machines

Automation involving unmanned forestry machines performing real

forestry operations is quite rare, and very few projects exists openly

available in literature. To the best of our knowledge, most relevant

research projects utilize standard commercial machines from well‐

known brands equipped externally with portable hardware to

perform tests. These developments are typically supported by

machine manufacturers or forestry companies, since purchasing or

owning forestry machines is too expensive for academic research. A

relevant example is the excavator presented in Jelavic et al. (2022),

which uses a Menzi Muck M545 multipurpose machine equipped

with portable hardware to show some of the first autonomous

abilities of a heavy‐duty machine able to autonomously navigate,

recognize objects and use its manipulator to do meaningful tasks.

Despite not being an unmanned machine, the work of Jelavic et al.

(2022) successfully demonstrates functionalities that are required to

carry on with fully autonomous forestry operations, motivating the

interest of using robotics in forestry. Although, no specific test case

related to an actual logging operation has been demonstrated yet,

complex tasks for construction work have been reported by Johns

et al. (2020).

Another related example is the research program Forestry 4.0

from the Canadian FPInnovations office (Automated harvesting with

robots in the forest, 2020), where the aim is to automate forestry

operations using robots. However, apart of small to medium size

laboratory test benches, no example of a real forestry robot machine

has been demonstrated so far. Similarly, the company Rakkatec

produces a commercial version of an unmanned ground vehicle based

on a machine once known as the RCM Harveri, an unmanned

harvester machine developed in Finland Unmanned ground vehicles

for the most demanding conditions (Rakkatec, 2021). Although the

company claims that their ground vehicle can be used for autono-

mous operations, no demonstration of such case has ever been done.

The last example is the Ground Carriage Pully developed by the

company Konrad (Visser & Obi, 2021). This was a prototype featuring

a semi‐autonomous/remotely operated ground unmanned forwarder

to transport logs. The vehicle navigated autonomously by following

the tension of a winch cable attached to it, after receiving initial

commands from an operator. No complex navigation capabilities
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were given to this system, more than forward and backward motions

in the direction of the winch cable, but it could operate in most

terrains. Nevertheless, this system is not part of the company's

products, and information about further development of this system

is not available.

All these examples show a clear interest of the industry for

machines able to perform autonomous forestry operation. However,

due to the challenges related to automation of outdoor machines

using robotics, real world demonstrations have not been shown so

far, at least publicly.

1.2.2 | Literature review about autonomous
navigation in forestry

Autonomous navigation relies heavily on precise positioning informa-

tion from sensors. However, obtaining this information can be

challenging in harsh, unstructured, and partially occluded environ-

ments such as forest terrains.

In environments with limited GNSS signals, alternative

positioning methods are often used for autonomous navigation.

In forest environments, research often focuses on path planning

and navigation control utilizing sensor fusion and Simultaneous

Localization and Mapping (SLAM). One review study investigated

positioning methods in forest environments using GNSS, Radio

telemetry, Inertial navigation systems, SLAM, Bluetooth, RFID,

Acoustic Positioning, bar and QR codes, and relative positioning

methods (Keefe et al., 2019). In another research work, obstacle

free paths were generated based on forest image data (Wu et al.,

2009). In a study on GNSS denied environments, a UGV‐SLAM

solution was proposed based on SLAM and Shooting and Bellman

methods for path planning and tracking (Fethi et al., 2018). In a

recent study for unknown environments, an aerial‐ground collab-

orative approach was considered (Zoto et al., 2020). For a similar

research problem, navigation of unmanned vehicles using a drone

to identify obstacles and execute a global path planner based on

rapidly evolving random trees (RRT) using dubin curves was

studied (Daniel Tenezaca et al., 2020). A recent research study

further proposed a path planning algorithm for partially observed

environments based onTask And Motion Planning (TAMP) by using

Rapidly exploring Random Graphs (RRGs) and belief space graph

methods (Phiquepal et al., 2022). However, the algorithm was

evaluated for an indoor partial observable environment only.

1.2.3 | Literature review about computer vision in
forestry

Computer vision has the potential to assist in forestry operations by

enabling forest machines to perceive their surrounding environment.

Although there is still no mature and widely used solution that utilizes

computer vision in forestry, relevant research, and experimental

attempts are continuously emerging.

Specific computer vision systems have been designed for

particular tasks in forestry operations, such as harvesting, forwarding,

and seedling planting. For instance, conventional color cameras and

machine learning algorithms have been used to detect and estimate

the distance of trees near forest machines during navigation (Ali et al.,

2008). Similar techniques have been implemented using LiDAR and

point cloud processing (Sihvo et al., 2018).

To aid in automatic grasping of objects, researchers have used

image segmentation and shape reconstruction with structured light

camera data to estimate the position of logs (Park et al., 2011).

Additionally, a study has explored the use of a vision system

comprising a conventional color camera and machine learning

algorithm for the automatic detection of spruce seedlings during

planting operations (Hyyti et al., 2013).

In recent years, deep learning algorithms have undergone great

performance improvements, making considerable progress in appli-

cations that include tree trunk detection (da Silva et al., 2022; Wells

& Chung, 2023), tree crown detection (Roslan et al., 2020), tree

separation/classification (Liu et al., 2021; Roslan et al., 2020), and

tree health detection (Nguyen et al., 2021; Yarak et al., 2021). Deep

learning is enabling the deployment of computer vision systems on

forest machines to achieve real‐time complex forestry operations.

For instance, to estimate the posture of stacked logs one study used

conventional color cameras and image segmentation based on deep

learning (Fortin et al., 2022).

While there is currently no mature industrial application of on‐

site computer vision systems in forestry, research is increasingly

focused on developing such systems. These systems use imaging

sensors to acquire data, and corresponding algorithms are built to

achieve specific functions across various operational tasks. As real‐

time computer vision systems become more powerful, they will likely

accelerate the development of forest machine automation.

1.2.4 | Literature review about crane motion control

Compared with industrial robotic manipulators, forestry cranes lack

motion sensors, as they are seldom designed with having autono-

mous operations in mind. As a result, the necessary hardware for

automation is often not readily available, making implementation of

automation challenging. Therefore, forestry cranes are typically

operated using joysticks that provide open‐loop control commands.

The operator sits in a cabin and manually controls the crane joint‐by‐

joint, which can be unintuitive and requires strong multitasking skills

for efficient operation (Morales et al., 2014; Purfürst, 2010).

Most research found on the topic of automating forestry cranes

focuses on upgrading the control method from joint‐by‐joint to

Cartesian end‐effector control. This approach is more user‐intuitive,

as it allows the operator to control the crane's end‐effector directly

instead of manipulating each individual link separately. To achieve

this, the crane needs to be equipped with motion sensors to

implement a feedback control system for motion planning and

tracking. According to literature, the most common motion planning

944 | LA HERA ET AL.

 15564967, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rob.22300 by Sw

edish U
niversity O

f A
gricultural Sciences, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



approach used for this case is inverse kinematics (Spong et al., 2006).

The work of Hansson and Servin (2010), Mü nzer (2004), Westerberg

(2014) showcases this solution with experimental hardware. Recent

industrial examples applying this technology include the Intelligent

Boom Control from John Deere (IBC), the Smart Crane from Komatsu

Forest, and there are many other examples sold by consultancy firms

around Scandinavia (Manner et al., 2019; Technion Online

since, 2017).

Fully autonomous manipulation of logs is still a challenging task

within the field of robotics, which is why literature on unmanned

control of forestry cranes is rare. Nonetheless, two examples report

experimental results of methods that could lead to fully autonomous

crane operations. The first is the work of Ortiz Morales et al. (2014),

where the authors present a motion control system for the crane of a

Komatsu 830 forwarder machine. The main goal of their develop-

ment was to showcase the ability to plan and control motions that

resemble those of human operators, while also highlighting the

potential of autonomous control to outperform humans in terms of

speed. However, their development did not feature real world

demonstrations in the forest. The second is the work of Jelavic et al.

(2022), where the authors use a Menzi Muck M545 multipurpose

machine. To control the manipulator, the authors use an adaptation

of their former work introduced in Bellicoso et al. (2016), which was

later adapted for a task of piling stones in Johns et al. (2020).

However, work involving real forest operation tasks has not yet been

demonstrated. Outside of academic research, there are no commer-

cial industrial examples reported in literature, featuring any form of

unmanned crane control. Nevertheless, industrial prototype

machines involving this method have been undergoing development

in Scandinavia (CINTOC, 2020).

1.3 | Problem formulation

Clear‐cutting of productive forests with the two‐machine system has

been the dominant silvicultural practice in Sweden since the 1950s

(Lundmark et al., 2017). There are two particular characteristics that

provide the potential for automation of forwarder machines in clear‐

cut operations:

1. After the harvester machine finishes its clear‐cutting operation in

a forested area, the paths it creates during its activities are

commonly known as “machine‐trails,” as discussed in Hosseini

et al. (2019). These machine‐trails serve as designated routes for

forwarder machines to navigate through the forest. Typically,

these trails are wide enough to accommodate the size of

forwarder machines and may contain occasional obstacles like

stones and stumps, which are generally manageable for the

forwarder's traversal capabilities. While the digital path informa-

tion for these machine‐trails is not currently readily available,

there are several ongoing projects dedicated to collecting,

accessing and processing this essential data directly from

harvester machines (Hansson et al., 2022). This collected digital

path information holds the potential to enable autonomous

navigation for forwarder machines.

2. Logs that have been cut by harvesters are systematically

organized and stack alongside the machine‐trails or network of

machine‐trails. This arrangement helps to reduce the time needed

for the forwarder to gather the logs as it traverses through the

harvesting area, specially considering its bulkier build compared

with the harvester. It is worth noting that the locations and

distributions of the logs, which have been cut by the harvesters,

are integral pieces of information that can potentially facilitate the

automation of forwarding tasks. While it is noteworthy that the

introduction of motion sensors on forestry cranes are a relatively

recent development, the collection and provision of this log‐

related data will likely become a viable option in the future.

Thus, in a clear‐cut scenario, the forwarder machine benefits

from navigating through nearly obstacle‐free paths and having

simplified visual recognition of objects, because logs are piled up

on the ground making them easy to recognize unless they are

covered with snow during winter. These characteristics have led to

the hypothesis that forwarder machines could transition to full

automation faster than harvester machines in forestry. To break

down the overall forwarding process, the combined tasks of the

operator and machine can be summarized in the following steps:

1. Navigation through defined machine‐trail paths, where the

information about the paths are given in digital form from

harvester data or through detailed plan maps.

2. Visual log recognition along the machine‐trails, done by the

machine operator.

3. Decision on how to drive and stop the machine at an angle and

proximity appropriate to grab logs with the crane. In most cases,

an operator will place the machine in a position that allows

grabbing multiple piles of logs without moving the machine.

4. Crane motion from the bunk toward the logs on the ground,

coordinated through joysticks by the operator. Subsequently, the

grapple is used to grab logs once the crane has reached a nearby

location. Given the fact that standard grapples have a big holding

area, multiple logs can be collected in one go.

5. Crane motion to carry the logs from the ground toward the bunk.

Subsequently, machine operators sort the logs according to

assortments, for example, tree species and diameters, within the

bunk. The sorting might not be needed, if only one assortment is

collected during the given round‐trip.

6. Once the bunk is fully loaded, the machine returns through the

machine‐trail to the unloading area, where logs are piled up for

further transport.

These steps usually happen sequentially, and they are repeated

until there are no more logs to collect.

Based on these observations, this article is dedicated to present

our first results having the following functionalities to approach fully

autonomous forwarding tasks:
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1. Autonomous navigation capabilities through waypoints, where

the locations of these points are manually given as GPS data.

2. Log recognition using a 3D stereo camera, where the processing

happens simultaneously as the machine is driving.

3. A task manager that provides the information of how to position

the machine to collect logs after the visual system has

identified them.

4. The crane motion control system able to autonomously collect

logs from the ground to the bunk.

2 | EXPERIMENTAL PLATFORM

The AORO platform has been under development since 2014 as part

of different projects of Luleå University (LTU) (see e.g., Lideskog

et al., 2015; Rånman, 2015). These projects included course projects

in the mechanical engineering program, as well as masters' and

doctoral theses. The mechanical design was developed with the

intention of utilizing a wide range of readily available off‐the‐shelf

components, aiming to reduce manufacturing and construction time.

Components not found in the market were manufactured in‐house at

a local workshop. It is important to note that no external companies

had active participation in the engineering development of the AORO

platform, making LTU the sole entity responsible for the machine's

construction. An overview of the relevant hardware used in the

machine is presented in Figure 1.

2.1 | Computing hardware

Two different computing systems are used on the AORO platform:

1. A Jetson AGX Xavier (henceforth called Jetson), with Linux as

operating system, has high GPU capabilities with respect to its

size and low power usage and it is used for the more

computationally intensive tasks of perception and localization.

The Jetson uses libraries, tools, and framework from the Robot

Operating System (ROS) (ROS—Robot Operating System, 2021) as

well as some Python programs. It also has two exteroceptive

sensors directly connected via USB, which we will present later.

2. A UEISIM from United Electronic Industries (UEI) (2021) is used to

run most of the machine's internal control systems and to read

sensors. It has a light‐weight Linux OS and has several I/O cards

installed for sensor inputs and control outputs. This is pro-

grammed using the built in toolboxes from MATLAB/Simulink The

Mathworks (1990). Using Simulink Coder, models are created in

Simulink and run in real‐time on the UEISIM target.

These two computers are interconnected via ethernet and

communicate mainly via UDP messages. This choice is driven by

the nature of our data exchange needs. UDP is a connectionless,

lightweight protocol that excels in scenarios where rapid data

transmission and minimal overhead are paramount. In our case, the

data packets being exchanged between the Jetson and the UEISIM

are relatively small, corresponding to very few values, and do not

require the reliability and error‐checking mechanisms inherent in

TCP/IP. TCP/IP, while robust and reliable, involves additional layers

of communication overhead, including handshaking and acknowledg-

ment mechanisms, which can introduce latency and unnecessary

complexity to our real‐time control system. By opting for UDP, we

can maintain the low‐latency, high‐speed communication necessary

for our control algorithms and vision software while efficiently

utilizing network resources between computers.

2.2 | Exteroceptive sensors

Exteroceptive sensors help measure the machine's relation to its

environment and external objects. There exists two of these sensors

in our machine:

1. The machine's position and orientation relative to the world is

described by a dual‐antenna GNSS, called Leica GPS80, con-

nected to a national network of fixed reference stations. It is

F IGURE 1 The AORO platform's hardware components. Experiment monitoring is handled by a regular laptop and a manual, wireless
emergency stop function is run entirely separate.
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called Swepos Network‐RTK and it is the Swedish mapping,

cadastral and land registration authority's (Lantmäteriet's) satellite

positioning support system. Having good satellite communication

enables positioning of the antennas in sub‐decimeter accuracy in

Cartesian world coordinates. The dual antenna setup enables the

Leica system to produce a high accuracy reading of the machine's

orientation relative to absolute North since both the antenna

positions are known and affixed on the machine. When the

machine travels in dense forest terrain, other than clear‐cuts, the

satellite communication rapidly deteriorates to submetres, or

worse.

2. A stereo camera, called Stereolabs Zed2, is installed at the front of

the machine, pointing downwards to map the ground in front

of the machine. The Zed2 stereo camera produces a plethora of

sensor data, such as IMU, barometer and magnetometer data.

However, so far the data we use comprise a 2D RGB image and a

2D depth map, as well as intrinsic camera data parameters.

2.3 | Vehicle and actively articulated suspension
system via swing arms

The core structural elements of the AORO platform, encompassing

the machine's front, rear, and pendulum arms, were designed from

the ground up by LTU and subsequently fabricated at a local

workshop. Other components were purchased from external

suppliers.

The platforms are equipped with four swing arms where one end

is connected to the frame and the other end to a hydraulic motor and

a wheel. The swing arms thereby enable individual height control of

each wheel in relation to the frame. The powertrain consists of a

diesel engine as power supply with two hydraulic pumps mounted in

series. One of the hydraulic pumps (variable displacement) is used to

provide flow and pressure to the four hydraulic motors mounted at

the end of each swing arm. This drive system is also equipped with an

“anti spin” system actuated via flow valves. The other pump (variable

displacement and load sensing) provides flow and pressure to the

auxiliary equipment (crane in this case), swing arm cylinders, parking

brake, and articulated steering cylinders, and so forth.

2.4 | Hydraulic crane

The AORO platform uses a model FC8 crane from the company

CRANAB CRANAB FC8 (2021). This is a four degrees‐of‐freedom

hydraulically actuated manipulator that follows a RRRP1 configura-

tion, according to robotics nomenclature (Spong et al., 2006). The

end‐effector for grabbing logs is attached at the boom‐tip, model

CR250 grapple, having two active degrees‐of‐freedom for orientation

and grabbing. However, it is important to note that the grapple

system is underactuated, meaning it lacks actuation at the attach-

ment joint indicated as the boom‐tip in Figure 2. This underactuation

results in the grapple system exhibiting behavior akin to that of a free

pendulum.

This FC8 crane belongs to a new line of products from

CRANAB developed to support the introduction of smart crane

functions in the industry. The special feature of this crane is to

have built‐in analog encoders as joint position sensors able to

measure q1, q2, q3, and q4. However, at present CRANAB and its

partner companies do not offer similar feature for the grapple, as

it is difficult to add sensors into it for measuring the rotation q5

and the opening q6.

Apart of motion sensors, we equipped the electro‐hydraulic

valve with pressure sensors to measure pressure at each cylinder's

chamber. Referring to Figure 3, all sensors are connected to the

18‐bit DAC from the main UEISIM unit. The UEISIM is the main

processor where all algorithms for motion control are implemented.

Therefore, the UEISIM unit is in charge of providing the control

signals to transform desired motion commands into mechanical

motion by activating the hydraulic system.

3 | SYSTEM'S FUNCTIONALITY AND
METHODOLOGY

As described in Section 1.3, the AORO machine performs a

sequential set of steps, result of which resembles tasks made with

a human operated forwarder machine. The purpose of this

section is to describe the system's functionality step‐by‐step,

and consequently give a description of the methods and

algorithms that are implemented on the machine to achieve the

expected results.

3.1 | Functionality and limitations

Currently, the AORO platform follows a sequence of steps that

repeat in a loop. Referring to Figure 4, these steps and the procedure

to use the AORO machine are as follows.

1. Planning the mission. Referring to Figure 4a, at this stage, the

human supervisor provides the route for the mission by defining

GPS coordinates, which work as waypoints for autonomous

navigation. These are set through a user interface that commu-

nicates wirelessly with the main Jetson computer. The logs to be

collected lay on the ground around this route in the crane's reach.

2. Lifting the vehicle height for navigation. The pendulum arms for the

wheels are initially on their lowest position. To initialize naviga-

tion, they are lifted up to a drivability height, to easily traverse the

forest over medium size rocks and stumps.

3. Autonomous navigation. Referring to Figure 4b, the machine starts

traversing the forest at a constant speed of 2.3 km/h, using GPS

information, according to the plan specified initially. As the terrain1R = revolute, P = prismatic.
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refers to clear‐cut, nearly no obstacles exists on these paths, apart

of stumps and rocks that the vehicle can drive over.

4. Scanning for logs. Referring to Figure 4c, the system constantly

scans for logs on the ground during vehicle navigation, using the

stereo camera placed in front of the machine.

5. Stopping the vehicle when logs have been found. Once a log or

groups of logs have been found, the machine shortly stops at a

distance of 4m to get a better visual recognition and positioning

of the logs. This information is then translated to the machine's

coordinate system, which is used to provide coordinates to the

crane's motion control unit.

6. Placing the load bunk for collection. At this stage, the vehicle travels

an average distance of 5m passed the logs, and stops at a distance

where the logs lay almost next to the load bunk. This facilitates

the crane's tasks, by minimizing the crane's distance of travel.

When several logs are found, the system stops at a distance

where the crane will be able to reach all logs in a nearby area

without the necessity to move the vehicle.

F IGURE 2 Forwarder crane: hydraulic manipulator with four degrees‐of‐freedom, specified in this graph as the slewing q1, inner boom q2,
outer boom q3, and telescope q4. It holds an end‐effector attached at the boom‐tip, serving as a tool to grab logs. It is known as the grapple,
having two active degrees‐of‐freedom, specified as q5 for rotation, and q6 for its opening. All sensors measure positive in counter‐clockwise
direction.

F IGURE 3 Hardware architecture used as part of the crane's control system.
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7. Lowering the vehicle. At this stage, the vehicle height is lowered to

its minimum range to have a lower center of gravity and better

stability when the crane is moving and carrying logs.

8. Collecting logs. Referring to Figure 4d, at this stage, the crane's

motion control system plans the necessary trajectories to reach

the logs and load them into the load bunk. From this point, the

sequence starts all over again from step 2 and ends when the last

waypoint is reached or by manual means.

As this article refers to the very first results with this machine,

and knowing that this project is undergoing development, there are

certain limitations in the system's current functionality that are

important to highlight:

1. The plan for the operation needs to be inserted by a human

supervisor using coordinates in GPS format, indicating the

waypoints that will be used for autonomous navigation. The

possibility to extract and process the path information data from

harvester machines is work in progress belonging to broader

“forest digitalization” initiatives in Sweden, and it will take time

before it reaches fruition Holmström (2020).

2. Currently, neither the grapple's rotation q5 nor its opening q6 are

equipped with measurement capabilities. Therefore, in this initial tests,

there is no motion control system in place to control the rotation q5,

and the opening q6 is controlled via an open‐loop command that

merely opens and closes it. As a result, to effectively use the crane for

grasping tasks, the logs need to be positioned on the ground at an

angle relative to the main navigation path. Based on observations,

following the sequence outlined earlier, attempting to grasp logs that

are either parallel or perpendicular to the machine's orientation is

more likely to result in failure. However, anything in between, owing

to the grapple's wide opening, remains a viable possibility. It is worth

mentioning that the control of the rotator has formerly been

developed within our research (La Hera et al., 2009), and it is a

matter of time until we have the hardware needed to include this part

of the development in the AORO machine.

3. As neither the grapple's rotation nor opening are measured, there are

not any log orientation capabilities in place for the experiments.

Nevertheless, after the experimental tests presented in this paper

took place, a solution has been published by the research group (Li &

Lideskog, 2023) and by others (Fortin et al., 2022) that can be

implemented to assist log grasping if the grapple's angle is known.

F IGURE 4 Sequence of steps that the AORO machine follows. (a) Planning the mission. (b) Autonomous navigation. (c) Scanning for logs.
(d) Collecting logs.
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4. When the machine stops to collect logs, there is currently no camera

on the crane to observe the logs on the ground. Therefore, the

accuracy of the crane's work currently depends on the correctness of

the log position estimation using the camera mounted at the front of

the machine. As this affects the possibility to collect multiple logs in

one go, performing such action is out of the scope of this article, and it

still work in progress.

5. The sequence of steps is repeated until the last waypoint is reached or

by a human operator that stops the system. Currently, the system

does not have a method to estimate when the load bunk is full.

6. Currently, the system is only capable of loading the load bunk, but

not the reverse task, because control of the grapple's rotation q5

and a dedicate camera in the crane to provide visual information

are needed to perform this action.

3.2 | Methods and algorithms

The algorithms required to perform the tasks described above have been

divided into actions that are supervised and commanded through a task

manager. The activity manager provides the required flags to switch

between each action, such that two actions cannot happen

simultaneously.

The main functions implemented on the AORO platform are the

following:

1. Autonomous navigation, in which the machine is able to navigate

by specifying waypoints in GPS format.

2. Autonomous log recognition, in which the machine is able to use its

vision capabilities to observe logs laying on the ground, and defining

their location according to the machine's reference frame.

3. Autonomous crane motion control, in which the machine is able to

use its crane to collect the logs that have been recognized by the

vision system.

The overview of the algorithms and the description of the task

manager that sequentially switches among them is given below.

3.2.1 | Navigation control

The machine navigates between an initial and a final destination

by following a trajectory that connects GPS waypoints. In this

study, we adopted a straightforward approach based on the

direction of the machine's front end. The algorithm calculates

the difference between the bearing of the current waypoint and

the heading of the machine's front end, and feeds this informa-

tion into a P controller that determines the desired rate of

steering angle. The controller then sends this information to a

hydraulic valve that controls the cylinders that adjust the

articulation angle. When the machine approaches a certain

distance from the waypoint (based on the machine's steering

radius), it switches to the next.

Robot localization

The robot localization node utilizes built‐in functions and packages from

ROS to create a real‐time kinematics model of the machine using

kinematic equations (see Figure 5). First, an XML file is composed where

basic geometry, all links, and joints are described. Then, feeding sensor

data as input to the localization node, rigid transformations define the

position of each degree‐of‐freedom at each time step.

3.2.2 | Vision system

At the moment, the objective of visual perception is to enable fast‐

enough log detection, so that position coordinate outputs can be

used in subsequent crane control. The visual perception runs in ROS

and contains two nodes. The first is called DNN and comprises a deep

neural network used for real‐time object recognition. The second is

referred to as Vision, comprising the data evaluation of detected

objects where logs are extracted and positioned in absolute terms.

For the DNN node we use a modified version of the Legged

Robotics ROS package called darknet_ros (YOLO ROS: Real‐Time

Object Detection for ROS, 2021), which comprises a real‐time object

detector named YOLOv3 built within a neural network framework

named darknet (Redmon, 2021). Darknet‐53 performs well for our

purpose, at the time of testing working twice as fast with the same

classification accuracy for comparable nets (Lawal, 2021). This is an

important property given the necessity of real‐time execution. At the

time for full testing, YOLOv3 had shown substantial improvement

compared with earlier versions (Redmon & Farhadi, 2018) and had

ROS integration. The detector was previously tested in forestry

applications (Li & Lideskog, 2021).

F IGURE 5 AORO robot joint and link definitions graphically
depicted in Rviz (3D visualization tool for ROS applications).
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DNN node: Data collection, labeling, and augmentation

To train the neural network in the DNN node, RGB data was

collected at the forest area to be used for forwarding demonstrations

and experimental validation.

Image data was collected using the stereo camera Zed2 with a

resolution of 1280×720 pixels. To this end, we manually moved the

camera by hand in an area of 75×75m where logs had been strategically

dispersed to represent different placements and orientations. The

weather was sunny with a slight overcast, producing shaded parts on

the grounds. No rain had fell for days and the grounds were dry. That

enabled the opportunity to ensure data was collected both having the sun

at the back and front facing the camera. Logs were also dispersed in both

shaded and sunlit areas, as well as areas with and without vegetation. The

logs consisted of birch trees with a mean diameter of 25 cm and a length

of 2m. Images were captured so that distance and angle to logs were

differed to ensure images spanned the entire range of possible

encounters for a machine in that area (see Figure 6). Only birch logs

were used in all images, ensuring no confusion with other tree species

(apart from standing trees). In total, 1700 images containing over 3500

annotated logs were captured and used as a training and validation

data set.

A common step to increase the robustness of an object detector

working on RGB imagery is to augment the training data set by

adding copies of already existing data, but having them slightly

modified in terms of, for brightness and contrast. That alleviates over‐

fitting when training the detector and acts as a regularizer (Shorten &

Khoshgoftaar, 2019). The original data set was augmented with

modifications in image rotation, saturation, exposure, blur and noise,

increasing the total data set size to 6300 images of which a major

part of 95% was used for training and the rest for validation. The

validation data set was selected randomly from the original raw data.

After finalized training, testing procedures was done on film material

from the same environment to ensure proper function.

DNN node: Preparing the data set for training

The data set was resized to 608 × 608 pixels, where black edges over

and under the image ensured the correct ratio. This image size is

specifically tailored to suit the training process for our choice of

neural network.

The ROS package darknet_ros was also used for training, with a

neural network having 53 convolution layers, named Darknet‐53. Within

Darknet‐53 the encapsulated YOLOv3 has a training process that reflects

the original YOLOv3 algorithm. By feeding the training set into Yolo‐ROS,

we can get a so‐called weights file trained on the prepared data. A

weights file is a binary file containing the parameters for the 53‐layered

neural network. With transfer learning, we utilized a pre‐trained model

that was previously trained on logs as objects, building on a source data

set of approximately 1000 images. This data set comprised annotated

single birch logs scattered on a grassy field, and the pre‐trained model

was trained similarly using the darknet_ros package. Our final weights file

achieved a mean average precision (mAP) of 80.51%, which is an

evaluation metric (Salton & McGill, 1983) commonly used in the PASCAL

Visual Object Class (VOC) challenge (Everingham et al., 2010). The input

image size to the network were 608×608 pixels, momentum was set to

0.9 and initial learning rate to 0.001. Decay was set to 0.0005 and the

training steps to 3200 and 3600. The resulting Precision/Recall curve is

depicted in Figure 7.

3.2.3 | Vision node

The vision package encompasses the log positioning algorithm, which

uses input from the stereo camera depth map and input from the

F IGURE 6 Examples of labeled images from test site where data was recorded, and subsequent demonstration and experiments were
performed.

F IGURE 7 Precision/recall curve extracted from resulting
training.
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DNN as bounding box positions to calculate and publish log positions

relative to the camera coordinate system.

Positioning detected objects in relation to the camera (and thus

the machine itself) is conducted as follows. After target objects are

recognized by the DNN node, the corresponding depth map of the

area and corresponding bounding box 2D image coordinates are fed

into the vision node. The depth information within the bounding box

is used to calculate the actual position of the object. We use the

mean value of depth data in an area of 8 × 8 pixels within the

bounding box center to calculate the object depth, which significantly

increases calculation robustness, but may add a few milliseconds to

the calculation time. Furthermore, this is a viable method since the

camera is directed downwards and to a great extent depicts terrain

areas and not areas that otherwise would rapidly change.

Using the model of a pinhole camera Forsyth and Ponce (2003),

the relationship between the coordinate of a 3D space point [X, Y, Z]

and the pixel coordinate of its image projection in 2D [u, v] is given by

Z
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where R and t denotes rotation and translation, which relate the

world coordinate system to the camera coordinate system, fx and fy

are the camera's focal length in X‐ and Y‐axis, and cx and cy are the

center of the camera's aperture. Equation (1) gives that
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(2)

If the pixel coordinate (u, v) and the depth information of the pixel Z

is known, the actual spatial position represented by the corresponding

pixel can be calculated according to the camera parameters fx, fy , cx, and

cy , which are usually provided by the camera manufacturer.

3.2.4 | Active suspension height control

To set the vehicle height, a reference height is sent from the

activity manager to the swing arm control system. This reference

value is then used to control each swing arm hydraulic cylinder

individually. To this end, a proportional controller is used to

generate the control signals for the hydraulic valve of the swing

arms' cylinders.

To improve the machine's navigation, the vehicle is equipped

with passive suspension through float control valves. These

valves can be activated on either the front or rear axle, but never

on both simultaneously to prevent the vehicle from tipping over.

When activated, the swing arm cylinders on the left and right

sides are cross connected, that is, the inlet port on one cylinder is

connected to the outlet port on the other, and vice versa. This

causes the cylinders to move simultaneously in opposite direc-

tions, thus keeping the ground pressure equal on both sides,

similar to a beam axle on a car. The float configuration is activated

just before the machine moves for drivability and deactivated

during the log loading operation for stability.

3.2.5 | Crane's motion control system

Controlling heavy‐duty hydraulic manipulators is challenging. Some of the

main reasons are the unpredictable loads and nonlinear dynamics, which

include large amounts of residual vibrations resulting from oil compress-

ibility and mechanical flexibility (Manring, 2005).

Our research group has been involved in the development of

automation technology for forestry cranes for nearly two decades.

Therefore, the motion control algorithms applied in the AORO platform

are modifications of former work, some of which are presented in La

Hera andMorales (2014), La Hera et al. (2021), La Hera and Ortíz Morales

(2015), and references therein. In short, the reference tracking feedback

controller is a nonlinear controller using sliding mode control, giving

robustness to unmodeled dynamics and disturbance rejection. In addition,

this control strategy allows to attenuate residual vibrations, a common

problem from the crane's dynamics behavior. The validation of the

performance of this type of control system has been presented in La Hera

and Ortíz Morales (2015).

To plan motions, we use Dynamic Movement Primitives

(DMP), following the machine learning algorithm detailed in La

Hera et al. (2021). This approach is based on the concept of

learning by demonstration, in which we manually demonstrate

point‐to‐point motions to the crane, following quasi‐parabolic

paths, as those used by professional machine operators. This is

done using joysticks. Consequently, the crane is able to use these

demonstrations to dynamically plan any point‐to‐point motions

from an initial to a desired position, mimicking the characteristics

of the demonstrated motions.

Algorithm 1 Motion planning based on DMP

     Input: Location of logs given in Cartesian World Coordinates [X,Y,X]
and rotation ϕ

     Output: Joint reference trajectories q t( )iref where i = [1, 2, 3, 4, 5, 6]

1: procedure MOTIONPLANNING

2: From bunk towards log:

3:       If trigger_signal = 1 then

4:            q q q q DMP Algorithm X Y Z[ , , , ] = _ ( , , )target target target1 2 3 4ref ref ref ref

5:            q q CloseGrapple ϕ[ , ] = ( )target5 6ref ref

6: From the sides towards bunk:

7:        If (target_reached = 1) & (grapple_closed = 1) then

8:            q q q q DMP Algorithm X Y Z[ , , , ] = _ ( , , )bunk bunk bunk1 2 3 4ref ref ref ref

9:            q q OpenGrapple ϕ[ , ] = ( (0))5 6ref ref

10:       finished sequence_ = 1.

The algorithm to control crane motions is sequentially executed

once the activity manager has sent a trigger command. This trigger

command results from successfully recognizing a log on the ground

and getting its Cartesian location, as well as stopping the machine at a
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preplanned distance to collect the log. The input to the algorithm is

the position of the logs in Cartesian Coordinates, according to the

crane's reference frame. Consequently, the algorithm plans crane

trajectories from the bunk to the side of the vehicle where the logs

are located. The grapple opens during this motion. Once the target

position is reached, the grapple closes and holds the logs. The reverse

of this sequence is executed to load logs into the bunk. A pseudocode

giving an idea of how the algorithm works is presented in algorithm 1.

3.2.6 | Activity manager

To control different activities and monitor progression toward

achieving the mission, an activity manager was developed using

Simulink Stateflow and integrated in the main Simulink software

structure (The Mathworks, 1990). To control the start of the

sequence and enable emergency stop, a manual switch between

“Idle mode” and “Auto mode” is used. The activity manager structure

in Auto mode is visualized as a flowchart in Figure 8.

When activating the Auto mode via this manual switch, a

check of the vehicle height is performed. If the height is outside a

suitable transport level, the activity manager sends a set‐height

command to a pendulum arm control system (outside the activity

manager see Figure 9) which then independently adjusts the

pendulum arms until the set‐height is reached. When the

transport height is correct the “Log Search” activity starts. In

“Log Search,” the drive control system is activated, and the

vehicle starts following the predefined fly‐by waypoints. As

previously stated, note that it is assumed that the drive path

follows a strip‐road from the harvester track and that all logs to

be picked up can be reached from this path.

During navigation, stereo camera information of the surrounding

is gathered via the perception system and used to continuously store

average values of the identified log positions. In addition, based on

the GNSS‐position of the vehicle given by the localization system, the

distance between the crane reference frame and the closest log is

calculated. When this distance is below a threshold δ > ϵ > 0, the

closest log is set as the target log whereas the tracking system is

deactivated and thus the vehicle stops. To improve the positioning

accuracy, the detected log positions are then updated at standstill.

After a predefined hold‐time the tracking system is activated and

thus the vehicle starts to drive. For collecting the logs, the crane's

reference frame should be positioned at a certain range and ahead of

the target log. This is achieved by using a circle with origin at the

target position and a predefined radius. The position of the crane foot

in relation to the target log is then monitored to ensure that the crane

foot first enters the circle. Then, as the crane foot exits this circle, the

tracking system is deactivated and thus, the vehicle stops.

At this stage, a validity check is performed by evaluating that the

target log position is realistic in the local crane coordinate system

(used for the log collection). If not, the system goes back to the log

search. Otherwise, a check for log collection height is performed. To

improve the load capability and machine stability, a low set‐height is

sent to the pendulum arm control system, which independently

adjusts the pendulum arms until the set‐height is reached. Then the

log collection activity is performed by sending the target log position

relative the crane foot to the crane control system, which generates

local crane trajectories (including the grapple). These trajectories are

F IGURE 8 Activity manager flowchart in auto mode.
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used to control the actual crane movements. When the collection

activity is finished, a command is sent to the activity manager which

then returns to check the transport height. This state‐transition

behavior then loops until the mission has been completed, i.e. when

the final waypoint has been reached, whereas the system is set into

Idle mode.

4 | TESTING SCENARIO

The tests we present below have the intention to present our

development in two stages. In the first stage, the intention is to

evaluate the performance of each individual component separately,

that is, autonomous navigation, log recognition, and crane motion

control. In the second stage, the intention is to evaluate whether the

task manager is capable to combine these methods to perform a fully

autonomous forwarding task.

4.1 | Tests for the individual system's functionality
components

4.1.1 | Testing the autonomous navigation control
system's performance

Tests were performed to verify the machine's ability to autonomously

navigate by defining waypoints in GPS format. These tests consisted

on defining a nearly rectangular path defined by four waypoints (see

Figure 12), and letting the machine traverse this route for four

consecutive laps. To test the robustness and converge to the same

path from different initial conditions, the machine's initial position

was changed for each new test sequence.

4.1.2 | Testing the crane's motion control system's
accuracy

Tests were performed to verify the performance of the crane's

motion control system and to calculate an estimation of its accuracy.

These tests consisted on performing automatic motions from an

initial configuration toward different desired goal locations in the

world coordinate system (Cartesian coordinates), to calculate the

deviation at the final position. The initial configuration was the center

of the trail where logs are piled up (see Figure 10). The goal location

referred to the desired Cartesian coordinate target where the crane's

tip was meant to reach. Referring to Figure 10, four desired test

locations were selected to cover the four quadrants in the x–y axis,

having the coordinate system at the base of the crane.

To calculate an estimation of the positioning accuracy, the

deviation of the crane's tip position to the desired target was

calculated by Euclidean distance. To calculate the tip position, we

used the forward kinematics presented in La Hera et al. (2021). To

get a reliable estimation, several repetitions of the same motion to

each target location were performed. Consequently, the mean value

for all the deviation errors of the four target locations was used to get

a final estimation of the crane's positioning accuracy.

F IGURE 9 Activity manager software architecture.
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4.1.3 | Testing the logs' location algorithm accuracy

Tests were performed to calculate the accuracy of the log recognition

algorithm. These tests consisted in estimating the location of logs

that were manually placed on the ground at specified known

locations. To this end, the test consisted on placing two logs, 5m

apart from each other, according to the reference frame presented in

Figure 11. The logs were placed according to the following

characteristics:

1. In the first instance, the logs where placed at 0°, specified by the

reference system observed in Figure 11. In this position the

machine has the highest visibility to the whole log, as the direction

of travel is perpendicular to the logs.

2. In the second instance, the logs were placed at 45° of rotation. In

this position the machine observes the logs at an angle.

3. In the third case, the logs were placed at 90° of rotation. In this

position the machine has the least observation of the logs, as the

direction of travel is parallel to the logs.

For each of these cases, the machine started autonomously

driving from a distance of 40 meters away from the first log (see

Figure 11 for reference).

The log recognition software provides 15 estimations per second

according to the machine's main reference system. Consequently,

this data is transformed into different reference systems to, for

example, provide logs' location coordinates to the crane control

system, or to navigate the vehicle to better position itself when

collecting logs. In these particular tests, the data was transformed

into the world coordinate observed in Figure 11.

The purpose of the estimation is to give the coordinates of the

center of the logs, as this is the value that is transferred to the crane's

motion control system. To get a reliable estimation, several

repetitions were performed to obtain an averaged value of the

recognition software accuracy. Consequently, we measure the

deviation of the estimation to the values measured by hand using

Euclidean distance. The deviation from true values gives us an

estimation of the recognition software accuracy.

Precision measurement

To assess the entire system's precision with an external measuring

tool, we used a mobile two‐camera setup. For each position a log was

recognized and targeted by the system, two images were taken. We

chose to program a short pause in the crane's movement toward the

log, stopping for a second on top of the log just before activating the

grapple and grabbing the log. That enabled the cameras to record an

image frame each in the machine rear end's longitudinal and

transversal direction. With knowing the grapple true size, each image

was given a measurement scale and thus a measure from the

grapple's ideal grabbing point and the log's center point was

determined. No rounding of measures has been done in the resulting

values; however, at least a ±2 cm error is to be expected.

4.2 | Testing the complete forwarding task

The experimental scenario refers to the location where the AORO

machine was unveiled to the public, which is also the place where

we performed experimental tests The world's first self‐propelled

forestry machine (2021). It is a region in the northern county of

F IGURE 10 Crane's desired motions from it initial configuration at the center of the trail, toward four desired locations in the Cartesian
Space.
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Sweden belonging to one of our industry partner, with the closes

city being Hörnefors. The specific coordinates of the site in the

WGS84 decimal (lat, lon) system is 63.657853, 19.895562.

Referring to the left side of Figure 12, the testing area had a

length of 40 m and width of 30 m.

The experimental testing was designed according to the

following mission:

1. Referring to the area marked in yellow in the left side of

Figure 12, four GPS waypoints sufficed to define the mission

path (see right side of Figure 12). These points were inserted

manually and communicated to the main machine's computer

wirelessly.

2. As shown in the right side of Figure 12, logs were placed manually

on the longer sides of the routes, either to the right or to the left

of the main path. As explained in Section 3.2.2, only birch logs

were used in these tests, because this is a common species for

commercial harvesting in Sweden and possibly easy to recognize.

3. Each time the machine passed through the longest sides and

collected the logs, they were immediately replaced by other logs

for the next time the machine would pass through.

4. Referring to Figure 10, a trailer was attached to emulate a

forwarder machine. The dimensions of the trailer were added to

the recognition software, to have the coordinates required for the

crane to release the logs it picked up from the ground.

5 | EXPERIMENTAL RESULTS

5.1 | Results for the individual system's
functionality components

5.1.1 | Navigation control

Referring to the explanation of the mission plan presented

in Figure 12, the initial experiment verifies the machine's ability

F IGURE 11 The setup to test the log recognition accuracy. Two logs are placed on the ground, 5m apart. The machine starts autonomously
driving from 40m, giving estimations for both logs as it goes.

F IGURE 12 Left: Forest site where the experiments were carried out. The square points to the particular area for the experiment. Right: The
mission planned for testing the machine's ability to carry on with fully autonomous forwarding. Note that this is just an illustration and not the
exact vehicle path.
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to navigate by defining waypoints. To this end, the machine

was started from different initial conditions, to validate the

exponential convergence of the motion to the same path.

Figure 13 shows three of the results from these tests,

having the square and circular markers pointing at the initial

and final locations of the machine respectively. In all these

cases, we let the machine run for two laps to verify that the

motion converges toward the same path connecting the way-

points. Figure 14 shows the heading error for the same tests.

While the machine is aiming toward one of the waypoints, the

heading error should be zero. In addition, each peak represents a

turn, where the setpoint for the heading is abruptly changed by

approximately 90 degrees, to head toward the next waypoint.

The settling of the heading is about 9 degrees/meter. In

Figure 15, we show the results of six test cases superimposed

on the same image, which clearly shows that the machine's

autonomous navigation control system is able to exponentially

converge toward the same path, despite starting at different

initial conditions.

5.1.2 | Logs' recognition

Referring to the tests described in Section 4.1.3, Figure 16 shows

results from the log recognition algorithm. From left to right, the

three plots in Figure 16 refer to the cases where the logs are placed

(a) straight to the camera, having the highest visibility of the log, (b) at

45° angle, where the camera observes the log at an angle, and (c) at

90° angle, where the camera would have the least visibility of the log.

As the system is able to provide 30 estimations per second, our

software uses the averaged value to give a final estimated result.

Figure 17 shows results using a histogram for the log marked as two

in Figure 11. From left to right, the histograms in Figure 17 represent

the cases (a), (b), and (c) described above. The bars on this histogram

represent the Euclidean distance for every observation in respect to

the origin. In addition, the dark gray bar shows the Euclidean distance

where the log was actually placed.

According to manual measurements and calculations from GNSS,

the log was placed at an approximate distance of 5.2 m from the

origin (see Figure 16). It is noticeable that the observations for cases

F IGURE 13 Examples of running the navigation control system from three different initial conditions. The square markers point at the initial
conditions, while the circular marker point at to the final position. The four via points are plotted with back diamond shaped markers. The units in
these graphs are in meters.

F IGURE 14 Heading error for the trajectories shown in Figure 13 (error in degrees vs. distance traveled in meters).
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(a) and (b) follow a normal distribution having a maximum peak

around the vicinity of 5.2 m. For the first case, measurements have an

error of 3 cm, while for the second case there is an error of

approximately 10 cm. However, for the case where logs are placed at

a 90° angle, the error increases to near 30 cm. Nevertheless, due to

the size of the crane's grapple, the machine will still be able to grab

these logs.

Similar results for the log marked as one in Figure 11 can be

observed in Figure 18. The location of this log represents the origin

for our calculations in this particular test case. For this test, we see

that for cases (a) and (b) the error is also within a decimeter range,

while it increases to 30 cm for case (c). Our results conclude that the

log recognition algorithm is able to provide estimations within 10 cm

of error for the cases where the camera has good visibility of the logs.

The error increases to 30 cm for the worst case where camera has

the minimum visibility of logs.

5.1.3 | Crane motion control

Referring to the tests described in Section 4.1.2, Figure 10 shows an

example of the crane paths that our motion planning algorithm

F IGURE 15 Results of the navigation
control system for six different test cases. The
square markers point at the initial conditions,
while the circular marker point at to the final
position. The four via points are plotted with
back diamond shaped markers. The units in
these graphs are in meters.

F IGURE 16 Results of the log recognition software. The gray dots are the estimated logs' locations using our algorithm. The black circle
represents the logs' centers. The rectangular shapes represent the position of how the logs were placed for the tests. The units in these graphs
are in meters.
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defines to move the crane toward the desired goals. For this

particular test case the Cartesian coordinates for the goal positions

were defined as follows: Point 1 = [4.27, 1.86, 1], Point

2 = [4.27, −1.86, 1], Point 3 = , Point 4 = [6, −1.86, 1].

The motions were performed multiple times to get an estimate of

the crane's motion control system's accuracy. These were performed

both with the grapple empty and with a load of 200 kg. As an

example, Figure 19 shows data of the Cartesian coordinates of the

crane tip's location for 20 tests at each testing point, that is, 80 data

points in total. The tip location was calculated by the equations of

forward kinematics having values for each joint given by sensor

measurements. On the left of Figure 19, we show a 3D representa-

tion of the results of all tests, while the right side shows a zoomed out

view of each individual point for the X‐Y axis. In all the cases, the data

with a square represent the motion with an empty grapple, while the

data points marked with an x represent the grapple with a load of

200 kg.

To show the accuracy of the crane's motion control system, we

use the Euclidean distance of a data point to its desired location as a

measurement of error, because this value tells how much the crane

deviates from the goal location. Figure 20 presents a histogram

showing these values for all data points, that is, the data for all four

desired locations are piled up into a single histogram plot. The left

plot is the Euclidean distance calculated in 3D, that is, using the data

in the x y z[ , , ] axis. The middle plot is the Euclidean distance

calculated in 2D, that is, using the data in the x y[ , ] axis. The right

plot is the error in height, that is, z axis.

Results show that the Cartesian coordinate positioning error in

3D follows a normal distribution, having an average value of 8 cm,

that is, the crane reaches the vicinity of the desired location with an

average error of 8 cm. However, we see that the error in the x y[ , ] axis

is smaller on average, that is, 4 cm. This implies that the highest error

in the crane positioning is the height of the tip, which deviates by an

average of 6 cm in respect to the desired height. This phenomena can

F IGURE 17 Results of the log recognition software using a histogram for log 2. The light gray bars represent the estimations, which clearly
show a normal distribution in the vicinity of 5.2 m. The dark gray bar represents the position where the log is actually placed.

F IGURE 18 Results of the log recognition software using a histogram for log 1. The light gray bars represent the estimations, which clearly
show a normal distribution in the vicinity of the origin. The dark gray bar represents the position where the log is actually placed.
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be observed in the left of Figure 19, which shows that the longer the

crane needs to reach the higher the deviation in the z‐axis.

5.2 | Testing the complete forwarding task

According to the layout presented in Figure 12, a total of 24 logs

were laid out within the reach of the crane along the machine's

path. Table 1 shows results with a trial of all these runs. Overall,

23 out of 24 logs were detected correctly. Successful attempts

were classified as those where the log was successfully loaded

onto the trailer.

The reason for the failed attempts were attributed to poor image

quality that lead to inaccurate log recognition, leading the crane

movements to a target location unable to grasp the logs near its

center point. Although there was no specific experiments to

determine the tolerance to grabbing logs, we could visually determine

that any log located within the maximum opening range of the

grapple could be successfully grasped. The grapple has 140 cm

opening range in q6 (see Figure 2), which implies that any logs located

outside this range would cause a failed attempt. As our log

recognition software provided an estimation error below this value,

no further analysis was performed in this regard.

6 | DISCUSSION

Forest industry plays an important role in the global economy and has

significant influences in our lives and the environment that we live in.

Therefore, considering improvements in technologies for forest

logging operations is vital to secure wood supply with environmen-

tally sound methods.

F IGURE 19 Example of results for each testing points. The square data points represent the grapple without load, while the x marks data
points with a loaded grapple. The units for the axis in these graphs are in meters.

F IGURE 20 Cartesian positioning error for the crane's motion control system. From left to right, the histograms represent the error
measured by the Euclidean distance to the desired location for 3D ([x,y,z] axis), 2D ([x,y] axis), and height (z axis), respectively.
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With the rapid advancements of technologies related to

digitalization, automation, and robotics, a transition toward more

resourceful forest operations is slowly coming to fruition. Early

industry adoptions of these technologies have been well received, as

they provide improvements in various aspects of the work and drive

the need for further advancements.

Within forestry, Scandinavian countries are well known for their

high‐performance machinery and the research to automate them.

However, despite years of developments, projects featuring full scale

demonstrations with unmanned machines are rare to find in scientific

literature. This makes the development shown in this article one of a

kind, because it shows the practical application of combining

different research areas to successfully perform fully autonomous

forestry work in real world conditions using a dedicated platform. To

the best of our knowledge, this is the first time that such

demonstrations have taken place in the public domain, and the

success on the preliminary results motivates the vision that 1 day

fully unmanned forestry machines will be able to part take the work

in forestry, as envisioned by this industry. However, there is much

work to be done to achieve this goal.

The development presented in this article has centered around

the introduction of an unmanned forestry machine that has been

purposely built as a research platform to test advanced automation

for forest operations' work. Apart of the construction of the machine,

that underwent 5 years, we showed successful application of three

key areas, that is, autonomous navigation, log recognition via

computer vision, and autonomous crane manipulation. Each of these

subjects possesses its own challenge, but the initial results combining

these technologies show that the accuracy of our current develop-

ment is reliable enough to perform basic forwarding tasks.

TABLE 1 Error measured in the X and Y directions in mm (Y =machine rear longitudinal direction).

Log no. X Error Y Error Z Error
Euclidian
Distance Error

Successful
attempt Reason for failure

1 33.7 146.6 55.2 160.3 Yes

2 −175.9 215.8 −132.3 308.2 Yes

3 −710.8 −120.4 181.1 743.3 No Inaccurate estimation

4 −646.0 −23.6 −224.6 684.3 No Inaccurate estimation

5 −295.6 −19.9 −82.2 307.5 Yes

6 −370.2 226.7 −0.4 434.1 Yes

7 −202.7 −82.8 −9.3 219.1 Yes

8 −268.2 56.6 −79.2 285.3 Yes

9 −306.5 −181.6 −28.0 357.4 Yes

10 −292.6 222.7 −69.5 374.2 Yes

11 −100.9 88.6 70.1 151.5 Yes

12 −308.0 174.0 −42.2 356.3 Yes

13 45.8 40.1 −43.3 74.7 Yes

14 −363.6 190.5 −72.8 416.9 Yes

15 33.2 −10.9 −7.7 35.7 Yes

16 −271.3 298.0 −122.6 421.2 YES

17 – – – – No CV did not detect a log

18 −120.4 70.9 −84.8 163.4 Yes

19 −191.1 −101.1 54.2 222.9 Yes

20 74.1 −8.1 −94.6 120.4 Yes

21 −402.1 −244.0 −69.0 475.4 Yes

22 −125.0 19.2 −198.4 235.3 Yes

23 −196.1 97.9 −36.3 222.1 Yes

24 −47.8 73.3 −150.3 173.9 Yes

Mean error 232.6 113.0 79.5 289.3
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6.1 | Discussion about results

To perform autonomous navigation, we have currently proposed

using GPS waypoints, as this has shown to be reliable in related

industries, for example, agriculture and mining. Our main reasoning

comes from the fact that forest harvesting operations are preplanned

before hand in Scandinavia. Therefore, having information about the

routes for forwarding tasks is preliminary known and confirmed while

the harvester is working in the forest. This allows our algorithms to

have the information needed to plan routes that connect GPS

waypoints.

Using our algorithm for navigation control, we were able to

demonstrate performance properties, such as exponential stability and

repeatability, as the machine was able to exponentially converge toward

the same path in multiple rounds, despite starting at different initial

conditions and weather conditions. Although it is difficult to show the

weather influence in an article, our machine has been able to perform

similarly in different weather conditions and terrains. The results in this

article have been from a time where the terrain was muddy due to

persistent rain fall, making it difficult to drive without sliding.

A major concern in this project was the subject of computer

vision, and in particular the effectiveness of the log recognition

software. As this information is needed for subsequent log manipu-

lation via crane motion control, the accuracy on the estimation of the

logs' pose and location is highly important. Results show that our

system is currently able to estimate logs with an averaged deviation

error between 3 and 10 cm, when the camera has good visibility of

the logs. This error worsens if the logs ahead of the machine are

placed nearly parallel to the machine's direction of travel, because

this does not let the camera observe the logs' shape properly. This

result is quantitatively sufficient for our development, because logs

that have been cut‐to‐length are much bigger in magnitude in relation

to the estimation error.

Unlike industrial robot manipulators, highly accurate control of

forestry cranes is challenging, due to size, weight, and hydraulic

manipulator dynamics. In heavy duty hydraulic applications, we often

need to make a compromise between dynamic performance and

control accuracy. In these regards, our crane motion control system

provides the ability to perform smooth motions with reliable

accuracy. According to results, the expected deviation from the

target goal shows to be within a decimeter. However, 50% of the

deviation comes from inaccurate height control (z‐axis), and it is

attributed to the difficulty to control height due to the length and

weight of the crane, as explained in former work. Nevertheless, for

forestry cranes of this magnitude (9 meters reach), the deviation error

is almost negligible, and in fact it works in our advantage, because it

increases the certainty that the grapple will grab logs. Therefore,

considering the size of the grapple, and the size of the logs that these

cranes collect, our control system does not need higher accuracy.

Our current results have several strengths. First, we were able to

demonstrate autonomous navigation in a terrain that is common in

forestry. Second, our results show that object recognition using

machine learning can provide logs' location estimation with high

accuracy for subsequent manipulation through the machine's crane.

Third, our results demonstrate the feasibility of collecting logs

autonomously using the crane, relying only on estimations done with

the help of the camera installed in front of the machine. Four, we

obtained successful results performing a fully autonomous forward-

ing task in an scenario that is common in clear‐cut. Therefore, our

system setup with minimum sensing equipment already presents the

ability to carry on with forwarding tasks, because of the accuracy of

algorithms developed during this project.

Despite the positive results, some limitations to our current

development should be addressed. First, although we attempt to

show results in real forestry conditions, our experimental environ-

ment is still idealized. So far, we have concentrated on collecting

single logs, due to the lack of a dedicated vision system for the crane,

and the lack of sensor's to measure the grapple's motions. Most

forwarding tasks involve more complex manipulation and decision

making than the ones we are showcasing in these initial results.

Second, one of our objectives was to demonstrate autonomous

navigation in a clear‐cut terrain. To achieve this goal, our system uses

DGNSS, which is available in Sweden, covering the whole nation.

However, other countries might not count with similar coverage,

making the AORO platform currently restricted to areas having

access to DGNSS reception. In addition, a clear‐cut terrain tends to

have obstacles that are easy to drive over without complex obstacle

avoidance methods. However, higher complexity on terrains does

exist in many parts of Scandinavia and the world, and should be

properly tackled with obstacle avoidance algorithms. Third, the

crane's motion control system currently depends on good log location

and pose estimation to successfully collect logs. As long as the crane

is brought to a vicinity of a log positioned within the grapple's

opening range, grasping is successful. However, to perform highly

accurate collection of logs demands the need for a dedicated camera

that is able to help on visually‐guided motion control of the crane.

This would help advancing toward more complex manipulation where

we need to incorporate the rotation of the grapple q5 as well, for

example, for unloading or grabbing multiple logs.

6.2 | General discussion

Automating the work of machines represents a paradigm shift in

forestry. Machines in the market are already starting to exhibit

automation features to facilitate the work for the operator.

Upcoming developments are promising to relieved some of the work

from the machines' operators hands. With the advancements in the

area of robotics and automation, it is clear that this trend will

continue toward removing the necessity of on‐board operators. At

that point, the human operator will remotely supervise the work, as it

is currently done in other industries. However, there is much to be

done to build an infrastructure in forestry that can meet the

requirements for automation, before this vision in forestry can

become a reality. In addition, development of automation technology

for forestry machine is recently starting to take place.
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Although we are at the early stages of making the AORO

platform a system that can autonomously perform forwarding tasks,

our current development demonstrates that we are reaching a point

in which algorithms currently existing in robotics are robust enough

to handle real world applications. Our initial results demonstrate the

beginning of an unmanned machine with the ability of handling

simplified work already, despite being still an ideal testing scenario.

Some of the added benefits of our development include the

ability to separate the key areas of our developments in computer

vision, autonomous navigation, and autonomous crane motion

control. Individually, they are the essence for market products

featuring semi‐autonomous functions that can relief some work from

machine operators' hands in the near future. However, we refrain

from discussing such topic further, as this has been explained in some

of our former work.

In conclusion, this article has provided an initial view of results

from the AORO platform aiming at performing fully autonomous

forwarding tasks. Results show that our algorithms in the key areas of

computer vision, autonomous navigation, and crane motion control,

meet our expected requirements in terms of accuracy and reliability.

Consequently, our activity manager software is able to combine these

functions to successfully perform idealized forwarding tasks in real

world conditions. These results highlight the possibility that in the

future, further advancements will be able to tackle forwarding tasks

with comparable performance to human operators.
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