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Abstract

Background and Objectives: Loaf volume is the main indicator of wheat

flour quality, but test baking has major limitations. Here, prediction models

were used to evaluate which methodology best captured the baking quality in

Swedish commercial wheat flour and if the chemical composition of flour

increased prediction accuracy.

Findings: Flour type (e.g., winter vs. spring wheat) affected prediction model

results significantly. Thus, separate prediction models should be developed for

each flour type. Combining data from alveograph, farinograph, and glutomatic

tests with protein and damaged starch gave the best prediction results. The

main loaf volume predictors were dough strength for winter wheat, stability

for spring wheat, and extensibility for flour blends. The composition of protein

and arabinoxylan influenced several quality parameters but did not improve

loaf volume predictions.

Conclusions: Best predictions were obtained for winter wheat. Spring wheat

and flour blend models contained only one latent variable, indicating that

protein content was the main determinant for loaf volume in these samples.

Significance and Novelty: This study is one of few using prediction models

to evaluate instrument suitability to determine loaf volume. Instruments

suitable for predicting quality were determined for commercial winter wheat

flour, which is the main product of Swedish mills.
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1 | INTRODUCTION

Wheat is the most traded crop globally (Food and
Agriculture Organization Corporate Statistical Data-
base, 2020), and the grain is used for a wide range of
products. To secure the most suitable wheat quality for
their products, mills and bakeries use specifications when

purchasing wheat grain or flour. However, these do not
always capture the parameters with the most significant
effect on baking quality. This results in unexpected
differences in the baking quality of commercially milled
wheat flour. Flour quality appears to be mainly deter-
mined by the gluten protein content and composition
(Hamer et al., 2009), but other flour components also have
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an impact on the baking quality of bread (Goesaert
et al., 2005). Thus, differences in bread loaf volume may
arise as a result of variations in protein quality despite the
same protein content in the flour (Carson &
Edwards, 2009). In industrial bakeries, consistent per-
formance in the production and of the end‐use consumer
product is highly preferable, as flour with varying and
unpredictable functionality could lead to variation in end‐
product quality, process interruptions, and food waste
(Carson & Edwards, 2009). Many consider dough strength
to be the most important quality trait, and it is often used
to specify which flour is suitable for a baking application.
Flours of weak gluten strength, such as winter wheat
flours, are often blended with stronger flours in Swedish
mills to achieve an appropriate and stable quality.

Dough strength is primarily determined by the
protein content and molecular size distribution (Huebner
& Wall, 1976; Johansson et al., 2013; Zhang et al., 2008).
The content and composition of the gluten proteins, and
in particular of the high‐molecular‐weight glutenin
subunits, have an impact on dough strength (Guzmán
et al., 2022). Size‐exclusion high‐performance liquid
chromatography (SE‐HPLC) is commonly used to rapidly
estimate the amount and size distribution of protein in
wheat flour (Helguera et al., 2020; Johansson et al., 2001).
The percentage of unextractable polymeric protein in
total polymeric protein (%UPP) has been shown to
correlate to gluten strength (Malik et al., 2011). Several
different solvents and extraction methods have been
applied for quantifying gluten proteins (Shewry &
Lafiandra, 2022). Glutenin polymers are stabilized by
SS bonds (Tatham et al., 1990) and interact strongly with
other polymers and gliadins through arrays of hydrogen
bonds (Belton, 1999; Wellner et al., 2005). There is no
consensus on which extraction method is best for
separating polymers without disrupting SS bonds
(Shewry & Lafiandra, 2022).

Dough strength can be tested by several empirical
rheological tests, including alveograph, extensograph,
farinograph, and mixolab tests. Alveograph and extenso-
graph tests also indicate dough elasticity and extensi-
bility, which need to be balanced for air to be retained
during fermentation, and a too‐low extensibility leads to
lower ovenspring (Carson & Edwards, 2009). Addition-
ally, farinograph tests measure water absorption, that is,
the amount of water needed to reach a predetermined
dough resistance. The water absorption of the dough is
affected not only by the gluten content and composition
but also by the amount of arabinoxylan (AX), damaged
starch, and the flour particle size distribution (Posner &
Hibbs, 2011).

The type of flour and dough quality control tests used
in mills vary between countries, and the system is

partially influenced by tradition. In addition to the use of
empirical rheological tests, wheat flour quality is also
evaluated using baking tests in Swedish mills. However,
test baking has major limitations, being laborious and
results varying with the method used (Thanhaeuser
et al., 2014). To the Swedish milling industry, producing
flour with a stable baking quality is more important than
achieving a high baking quality. The Swedish milling
industry finds their current system of empirical rheologi-
cal tests and test baking not satisfactory in ensuring
stable flour quality. By evaluating the instruments
currently used within the Swedish milling industry and
additional instruments available, predictions of the
outcome in terms of loaf volume and quality might be
improved. The present study aimed at (1) using predic-
tion models to evaluate which available tests are most
appropriate to the Swedish milling industry, (2) evaluat-
ing how the stability of baking quality is affected by the
chemical compounds in the flour, such as content and
composition of protein, damaged starch, and AXs, and
(3) evaluating the applicability of loaf volume prediction
models for various types of flour. A large sample set was
collected from mills in Sweden to ensure relevant
variation in the studied parameters. The research
questions were addressed using principal component
analysis (PCA) and partial least square regression (PLS),
as these methods are suitable for the evaluation of
dependent variables. Unlike multiple linear regression,
PLS can analyze X‐variables that are strongly correlated
and noisy, which is expected from several of the
parameters studied (Wold et al., 2001).

2 | MATERIALS AND METHODS

2.1 | Materials

The material used in the present study has been
described previously by Selga et al. (2023). Thus, a total
of 197 commercial sieved wheat flours were collected
continuously from two mills (Lantmännen Cerealia) in
Malmö (southern Sweden) and Strängnäs (central
Sweden). The material was collected during harvest
years 2018 and 2019, and there was a high‐temperature
drought during 2018 (Lama et al., 2022). The material
included four flour types, composed of (i) Swedish winter
wheat, (ii) Swedish spring wheat, (iii) a blend of 0%–15%
Swedish winter wheat, 15%–35% Swedish spring wheat,
and 50%–70% of a high‐protein German winter wheat,
and (iv) a high stability (S) blend of Swedish spring and
winter wheat. The flours did not contain any additions,
such as malt or ascorbic acid. After the milling, samples
were stored at −20°C until further analysis.
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2.2 | Flour quality analysis

The protein content (dry matter basis, %dm) of the
samples was determined by near‐infrared transmittance
spectroscopy (NIT; Infratec, FOSS) following the manu-
facturer's procedure. A wide array of tests were
performed according to the AACC approved methods
of analysis, that is, wet gluten analysis (AACC 38‐12.02),
dough proofing analysis (AACC 89‐01.01, Rheo F4; KPM
Analytics), farinograph tests (AACC 54‐21.02), alveo-
graph tests (AACC 54‐30.02), starch damage (AACC
76‐33.0, SDmatic; KPM Analytics), solvent retention
capacity (SRC) (AACC 56‐15.01, SRC‐Chopin 2; KPM
Analytics), and mixolab tests (AACC 54‐60‐01). The
analysis of AX composition has been described previ-
ously (Selga et al., 2023).

Test baking was performed by the mill according to
their standard procedures. Test baking used flour (2 kg),
the water of controlled temperature was added according
to farinograph absorption, yeast (100 g), sugar (35 g), lard
(35 g), salt (35 g) and ascorbic acid (3 g), and barley malt
was added to correct the falling number to 270 s. Doughs
were mixed in a Wendel mixer (Diosna). A fixed mixing
time was used, which had been predetermined by the
mill for each flour type. The mixing time was 4min for
winter wheat, 6 min for flour blends, and 6.5 min for
spring wheat. Six freeform loaves with a weight of 420 g
were mechanically shaped. A fixed proofing time was
used, which was slightly shorter for winter wheat than
for the other flour types. After baking, the loaf volume
was measured using a Volscan profiler (Stable micro
systems) and the average volume was reported for each
sample. The standard procedure followed by the mill did
not include measuring the weight of baked loaves; thus,
specific volume was not reported.

2.3 | SE‐HPLC

The amount and size distribution of monomeric and
polymeric protein was analyzed according to Gupta et al.
(1993) with modifications according to Lan et al. (2023). The
analysis was performed in duplicates on 16.5mg freeze‐dried
sieved wheat flour. The samples were suspended in 1.4mL
0.5% sodium dodecyl sulfate (SDS) phosphate buffer
(pH 6.9), then vortexed for 10 s, shaken at 2000 rpm for
5min, and centrifuged at 10,000g for 30min. The super-
natant was used for the quantification of extractable
proteins, and the pellet was used for the determination of
unextractable proteins. The supernatant was heated to 80°C
for 2min to inactivate proteases, in accordance with
Larroque et al. (2000). The pellet was resuspended in
1.4mL 0.5% SDS‐phosphate buffer (pH 6.9) and sonicated

for 45 s at amplitude 5, using a 3mm exponential microtip
(Soniprep 150; Tamro). The samples were centrifuged for
30min at 10,000g, and the supernatants were collected and
heated at 80°C for 2min.

All samples of extractable and unextractable proteins
were quantified by SE‐HPLC (Waters) on a BioSep‐SEC
s4000 Phenomenex column, according to Lan et al.
(2023). The samples were separated according to
molecular size distribution in 30min and detected by
UV absorbance at 210 nm. In accordance with Johansson
et al. (2001), the resulting chromatograms were divided
according to molecular size into large polymeric proteins
(LPPs), smaller polymeric proteins (SPPs), large mono-
meric proteins (LMPs), and smaller monomeric proteins
(SMPs) (Figure 1). These chromatogram areas were used
to calculate five protein parameters, as described in
Table 1. These are total extractable protein (TOTE), total
unextractable protein (TOTU), the percentage of unex-
tractable polymeric protein in total polymeric protein
(%UPP), the percentage of large unextractable mo-
nomeric protein in total large monomeric protein
(%LUMP), and the ratio of monomeric protein to
polymeric protein (Mon/Pol).

2.4 | Statistical analysis

Significant differences were calculated at 95% confidence
by Tukey's honestly significant difference test, using
Minitab (Minitab). Tukey's honestly significant differ-
ence test was used as it is the most suitable post hoc
comparison when testing a large number of pairs

FIGURE 1 SE‐HPLC chromatograms of SDS‐extractable
proteins (solid) and SDS‐unextractable proteins (dashed).
Chromatogram areas were divided at the following retention times:
8–11.3 min for large polymeric proteins (LPPs), 11.3–13.8 min for
smaller polymeric proteins (SPPs), 13.8–17.1 min for large
monomeric proteins (LMPs), and 17.1–19.9 min for smaller
monomeric proteins (SMPs). [Color figure can be viewed at
wileyonlinelibrary.com]
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(International Business Machines Corporation, 2021).
PCA and PLS were performed using SIMCA 17
(Sartorius). Separate models were built for each flour
type. Test sets composed of 33% of the samples were
generated for each flour type by distributing samples
according to loaf volume and selecting every third
sample. The test sets were excluded when building the
PLS models and were used to calculate the root mean
squared error of prediction (RMSEP). The PLS models
were optimized to minimize Q2 by stepwise removal of
parameters with low variable importance in projection
(VIP) scores and the removal of parameters which were
highly unstable across cross‐validations. Quality instru-
ments which yielded parameters with low overall VIP
scores were excluded to obtain a high Q2 based on a
limited set of instruments. Linear regressions were
performed in Excel using the calibration sets and test
sets described above.

3 | RESULTS AND DISCUSSION

3.1 | The effect of flour composition
on baking quality

Significant differences were obtained between winter and
spring wheat flour for all parameters evaluated, with the
exception of water absorption (Table 2) and total AX
content (Selga et al., 2023). PCA analysis identified that
the high variation between flour types mainly originated
from differences in protein content, loaf volume,
alveograph extensibility (L) and TOTE (results not
shown). Separate PCA models for flour blends, winter,
and spring wheat flours (Figure 2a–c) displayed stronger
internal correlations and a higher explained variation for
winter wheat compared to the spring wheat and flour
blends due to a higher overall variance (Table 2). The
variation captured in principal components (PC) 1‐2
ranged between 32% and 43% for the different PCA

models (Figure 2), which is not uncommon when
modeling data with large measurement errors and is to
be expected from the empirical rheological tests used.
The variance covered by each PC in PCA depends on
many aspects of the raw data, such as the level of
covariance, measuring error, and variance in the
variables included (Esbensen et al., 2002). When PCA,
as in this case, is applied for exploring the data rather
than to make predictive classification models, it is very
important to evaluate the number of relevant PCs in
relation to knowledge of the context‐specific problem
studied (Esbensen et al., 2002). The scores in Figure 2
clearly show that both PC 1 and 2 contribute to the
separation of the sample categories.

Several of the utilized methodologies intend to
measure the gluten strength of the flour/dough: alveo-
graph strength (W), lactic acid SRC (LAc SRC), gluten
index (GI), farinograph stability, mixolab stability, and %
UPP. All these parameters measuring gluten strength
were well correlated in the spring and winter wheat PCA
models, respectively (Figure 2a,b). The gluten strength of
the samples from harvest year 2018 was higher than in
samples from 2019, as determined by SE‐HPLC and the
alveograph (Table 2) due to the drought during 2018
(Lama et al., 2022). Loaf volume was placed differently in
the PCA models for the different flour types, and a
correlation to protein content was only seen for the
spring wheat flours (R= 0.49, p< .01). Loaf volume was
negatively correlated to dough strength for both the
spring and winter wheat (Figure 2a,b), which corre-
sponded with previous studies and is a result of the
relatively gentle mixing with a fixed mixing time used in
test baking in Sweden (Johansson et al., 2001). The
correlation between loaf volume and dough strength
varies depending on the test baking method (Dupuis &
Fu, 2017), although a recent study on CIMMYT wheat
varieties pointed out gluten strength as the most
important parameter for bread‐making (Guzmán
et al., 2022). However, the overall variation in

TABLE 1 Calculations of parameters describing protein molecular size distribution, based on SDS‐extractable (e) and SDS‐
unextractable (u) polymeric proteins (PP = LPP + SPP) and monomeric proteins (MP = LMP+ SMP).

Parameter Definition Calculation

TOTE Total SDS‐extractable proteins ePP + eMP

TOTU Total SDS‐unextractable proteins uPP + uMP

%UPP Percentage of unextractable polymeric protein in total polymeric
protein

uPP

uPP + ePP

%LUMP Percentage of large unextractable monomeric protein in total
large monomeric protein

uLMP

uLMP + eLMP

Mon/Pol Ratio of monomeric protein to polymeric protein eMP + uMP

ePP + PP
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TABLE 2 Mean values, with coefficients of variation (%) displayed in parenthesis, for parameters evaluated in spring wheat (SW) flour,
winter wheat (WW) flour, and flour blends (Blends). Gluten composition parameters are defined in Table 1.

Flour type Milling location Harvest year

SW Blends WW Malmö Strängnäs 2018 2019

Test baking

Loaf volume, mL (Loaf V) 2468a (6) 2464a (6) 1901b (6) 2170a (15) 2149a (13) 2144a (15) 2185a (14)

Composition

Protein, %dm (PC) 14a (4) 13b (3) 12c (4) 12a (10) 13a (6) 13a (9) 12a (9)

Damaged starch, %dm (DS) 5.7b (8) 5.8b (7) 6.6a (8) 6.1b (10) 6.5a (10) 6.4a (9) 6.1b (10)

Ash, %dm 0.65a (5) 0.60b (6) 0.58c (5) 0.58b (8) 0.64a (5) 0.60a (8) 0.59a (8)

Wet gluten

Wet gluten, %dm (WG) 36a (6) 36a (5) 32b (7) 34a (9) 35a (5) 34a (8) 34a (9)

Gluten index (GI) 94a (4) 94a (4) 88b (9) 92a (6) 87b (11) 92a (6) 90a (9)

Farinograph

Water absorption, % (14%mb) (WA) 60a (2) 60a (2) 59a (3) 59b (2) 61a (2) 60a (2) 59a (3)

Dough development time, min (DDT) 4.9a (20) 4.3b (19) 3.0c (24) 3.6a (34) 4.0a (20) 3.6a (32) 3.8a (30)

Stability, min (S) 8.4a (27) 7.9a (26) 5.9b (25) 7.3a (30) 5.6b (28) 7.2a (30) 6.7a (33)

Degree of softening, BU (DoS) 72b (21) 73b (21) 84a (20) 75b (21) 90a (17) 74b (22) 82a (20)

Alveograph

Tenacity, mmH2O (P) 80b (14) 80b (12) 88a (15) 82b (15) 93a (11) 89a (13) 80b (16)

Extensibility, mm (L) 107c (14) 103b (13) 75a (17) 92a (23) 80b (26) 88a (23) 91a (24)

Strength, 10−4 J (W) 258a (14) 254a (11) 208b (14) 229a (18) 240a (16) 245a (13) 220b (20)

P/L 0.8b (28) 0.8b (23) 1.2a (29) 0.9b (35) 1.3a (35) 1.1a (34) 0.9b (39)

Elasticity index, % (EI) 54a (5) 54a (4) 47b (7) 50a (9) 50a (11) 51a (7) 50b (11)

Dmin −2.1a (12) −2.2b (11) −2.8c (15) −2.4a (18) −2.7b (21) −2.6b (18) −2.4a (20)

Solvent retention capacity (SRC)

Lactic acid, % (14%mb) (Lac SRC) 135b (4) 137a (4) 122c (5) 128a (7) 125b (6) 130a (6) 126b (7)

Sucrose, % (14%mb) (Suc SRC) 106a (3) 106a (3) 100b (3) 103a (4) 103a (3) 104a (3) 102b (4)

Na2CO3, % (14%mb) (CO3 SRC) 84a (4) 84a (5) 85a (6) 85a (5) 85a (5) 87a (4) 83b (5)

Water, % (14%mb) (H2O SRC) 65a (4) 65a (4) 66a (5) 65b (4) 67a (5) 67a (4) 65b (5)

Gluten performance index 0.70b (4) 0.72a (3) 0.66c (5) 0.68a (6) 0.66b (6) 0.68a (6) 0.68a (6)

Mixolab (ML)

C1, Nm (consistency at absorption) 1.10a (2) 1.10a (3) 1.10a (3) 1.10a (3) 1.10a (2) 1.10a (2) 1.10a (3)

Cs, Nm (consistency at 8 min) 1.03a (3) 1.02a (3) 0.98b (4) 1.00a (4) 1.00a (5) 1.01a (3) 1.00b (5)

C2, Nm (protein weakening) 0.54b (7) 0.58a (6) 0.57a (8) 0.57a (7) 0.55b (8) 0.58a (6) 0.55b (7)

C3, Nm (starch gelatinization) 1.64b (4) 1.77a (3) 1.79a (6) 1.76a (6) 1.75a (6) 1.74b (4) 1.77a (7)

C4, Nm (hot gel stability) 1.47a (9) 1.43a (11) 1.38b (7) 1.40b (8) 1.46a (11) 1.36b (7) 1.45a (9)

C5, Nm (starch retrogradation) 2.66c (9) 2.87a (7) 2.78b (7) 2.80a (7) 2.71b (11) 2.76a (6) 2.80a (9)

WA, % (14%mb) (WA [ML]) 59a (2) 59a (2) 59a (3) 59b (2) 60a (2) 59a (2) 59a (3)

DDT, min (DDT [ML]) 4.1a (36) 3.3b (42) 2.2c (41) 3.0a (49) 2.8a (49) 2.7a (47) 3.0a (49)

S, min (S [ML]) 9.3a (4) 9.2a (6) 8.2b (15) 8.7a (12) 8.8a (11) 9.0a (12) 8.4b (7)

(Continues)
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commercial wheat flours is low compared to wheat
grown in field trials and this also influenced parameter
interactions. By using a fixed mixing time during test
baking, wheat of exceptional quality risks being under-
mixed. Thus, the test baking method would not be ideal
for wheat of exceedingly high or low quality. However,
the method applied here is the one being used
commercially in Swedish mills, where the purpose
behind mill test baking is to identify flours of deviating
quality, not to rank low‐ and high‐quality flour, as the
goal is to ensure stable flour quality.

Flours milled at the Strängnäs mill in central Sweden
differed significantly from flours milled in the Malmö
mill, in the south of Sweden, for several of the
parameters evaluated (Table 2, Figure 2d,e). The total
AX content was reported in a previous study to be
significantly higher in samples from Strängnäs compared
to samples from Malmö (Selga et al., 2023). This might be
caused both by differences in milling practices and
differences in growing conditions. Samples from Sträng-
näs also had a significantly higher ash content and
damaged starch content (Table 2), indicating quality
differences arising from differences in milling practices
between the two locations. The Strängnäs flour mainly
had higher levels of WE‐AX (Selga et al., 2023), which
originates from the endosperm (Marion & Saulnier, 2020),
so WE‐AX levels were not caused by bran inclusion
during milling. Thus, differences between Malmö and
Strängnäs were also likely caused by differences in
growing conditions.

Water absorption was the largest loading on PC 1 for
winter wheat (Figure 2a) due to a positive correlation
between fiber content, damaged starch, and protein
content. These parameters have been reported to

correlate with water absorption in previous studies as
well (Courtin et al., 1999; Greer & Stewart, 1959). For the
spring wheat and blends, water absorption appeared
mostly influenced by WU‐AX and damaged starch
(Figure 2b,c). It is notable that damaged starch did not
correlate to protein content in all the sample sets, even
though protein and damaged starch showed similar
coefficients of variation (Table 2). Damaged starch
differed significantly between harvest years and loca-
tions, while protein content did not (Table 2).

Alveograph tenacity (P) and damaged starch were
placed close to each other in the PCA plots for all three
wheat types evaluated here (Figure 2), which correspond
to previous studies (Preston et al., 1987). Following the
methodology for alveograph analyses, the amount of
water was not adjusted when the dough was prepared.
However, the gluten network requires water to form
(Belton, 1999), and as both damaged starch and WU‐AX
bind water, these components have an impact on free
water being available in the dough. Shortage of water
results in a short dough in the alveograph with high
tenacity. The AX composition varied distinctly in all the
studied flour types, and WU‐AX showed large positive
PC 1 values for all flour types (Figure 2). The SRC‐
Chopin 2 was used to evaluate if the flour composition
could be estimated by the flour SRC. Each of the SRC
parameters corresponded to %UPP, damaged starch, and
total AX in winter wheat, as visualized by the PCA plot
(Figure 2a). However, this relationship was not noted for
the spring wheat and blend samples. Thus, the results of
the winter wheat might be hampered by the correlation
among damaged starch, total AX, and protein content in
these samples. Fermentation volume, tested with a Rheo
F4, did not correlate significantly to loaf volume.

TABLE 2 (Continued)

Flour type Milling location Harvest year

SW Blends WW Malmö Strängnäs 2018 2019

Rheo F4

Proofing volume, mL (Proof V) 1573a (4) 1541b (4) 1509c (5) 1528b (5) 1579a (4) 1531a (4) 1546a (5)

CO2 retention, % (CO2 ret.) 80b (3) 80a (3) 81a (3) 81a (3) 78b (3) 80a (3) 80a (3)

Gluten composition

TOTE, %dm 10.1a (5) 9.4b (5) 8.7c (5) 8.7a (10) 8.7a (8) 9.4a (10) 9.4a (9)

TOTU, %dm 3.8a (10) 3.7a (9) 3.1b (11) 3.4a (15) 3.5a (12) 3.5a (13) 3.3b (16)

%UPP, %dm 50a (4) 50a (5) 47b (6) 48b (6) 49a (5) 49a (5) 47b (7)

%LUMP, %dm 12a (19) 12a (20) 11a (18) 11a (15) 12a (27) 12a (20) 11a (16)

Mon/Pol 1.36a (4) 1.34b (3) 1.32c (4) 1.34a (4) 1.33a (5) 1.33a (4) 1.34a (4)

Note: Different letters (a, b, c) indicate significant differences (p< .05) in the parameter within sample categories flour type, milling location, and harvest year.
%dm = dry matter basis, %mb = moisture basis.
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FIGURE 2 Loadings and scores from PCA of (a, d) winter wheat (WW), (b, e) spring wheat (SW), and (c, f) flour blends. Scores are
colored darker for harvest year 2018 (18) and lighter for 2019 (19), with samples from Strängnäs (S) labeled. Circle indicates 95% Hotelling's
T2 distribution. Loadings are colored according to methods, and parameter abbreviations are defined in Table 2. [Color figure can be viewed
at wileyonlinelibrary.com]
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However, its positive placement to protein and negative
placement to W were consistent for all sample types.

3.2 | Predicting loaf volume

One PLS model was selected for each flour type based on
their Q2Y values (Table 3) and the lower number of
instruments used (Figure 4). Similar sets of instruments
were selected for winter and spring wheat PLS models,
with alveograph, farinograph, glutomatic wet gluten, and
NIT included in both models. Additionally, damaged
starch, as quantified by SDmatic was included in the
spring wheat PLS model (Figure 4b). However, the
parameters included in each instrument differed between
models (Figure 4), and none of the models could reliably
predict the other flour types. This difference between flour
types was caused by low variation in the quality of the
commercial samples used in this study. While overall
trends between quality measurements and loaf volume
have been seen in previous studies using wheat from field

trials (Guzmán et al., 2022), these trends may not always
be relevant in a commercial setting, where the variations
in quality are much lower. Here, the focus is rather on
identifying deviating samples. PCA and PLS models may
identify parameter patterns leading to a deviating quality,
and this pattern may differ between flour types.

The flour blend PLS model included alveograph,
mixolab, SDmatic, and NIT parameters (Figure 4c). The
interpretability of the mixolab curve would need to improve
for it to be used for routine quality control in Swedish mills.

Except for protein content, damaged starch, and ash
content, flour composition data did not improve PLS
predictions. While %UPP yielded a very high VIP score
when included in the winter wheat PLS model, both Q2Y
and RMSEP remained unchanged when %UPP was
excluded. The relevant information carried by %UPP
appeared to be fully captured through the combination of
other parameters estimating gluten strength, mainly
gluten index, elasticity index, and farinograph stability.
This reaffirms the value of empirical rheological methods
for quality control.

The winter wheat PLS model (Figures 3a and 4a) had the
lowest RMSEP and was the only PLS model with more than
one latent variable, for example, PLS factor (Table 3). This
indicated a more complex relationship between the parame-
ters than only covariance to protein content. For comparison,
linear regression of loaf volume based only on protein
content gave an RMSEP of 102mL. The winter wheat PLS
model did not appear to be overfitted, as the prediction error
remained in the same range when the number of parameters
or latent variables was changed. Winter wheat displayed the
lowest range in measured loaf volume (Figure 3), which may
have contributed to these RMSEP values being relatively low.
Both protein and wet gluten content had high positive

TABLE 3 PLS models predicting loaf volume (mL).

Sample set n A n X R2Y Q2Y RMSEP

Winter wheat 70 3 15 0.62 0.50 74mL

Spring wheat 26 1 10 0.55 0.38 113mL

Flour blends 35 1 9 0.35 0.30 126mL

Note: R2Y (cumulative) measures model fit to Y, and Q2Y (cumulative)
measures the total variation of Y that can be predicted, as estimated by
cross‐validation.
Abbreviations: A, number of latent variables (e.g., PLS factors); n, number
of samples in calibration set; n X, number of parameters included in model;
RMSEP, root mean squared error of prediction.

FIGURE 3 Measured loaf volume (mL) versus PLS predicted loaf volume (mL), with dashed unity line, for winter wheat (WW) flour (a),
spring wheat (SW) flour (b), and flour blends (Blend and high stability blend, S blend) (c), from 2018 harvest (18) and 2019 harvest (19).
Samples from Strängnäs (S) are labeled. Both test sets and calibration sets are plotted. Note that the axis differs between plots. [Color figure
can be viewed at wileyonlinelibrary.com]
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loading weights while gluten index (GI) and elasticity index
(EI) had high negative loading weights across all latent
variables. Additionally, the first latent variable had high
positive loading for the degree of softening and high negative
loading for farinograph stability, and the second latent
variable displayed a high positive loading weight for

extensibility and high negative loading weights for water
absorption and ash. Overall, a low gluten strength and high
protein content, coupled with a high extensibility and low
water absorption, produced the highest loaf volumes for
winter wheat flour. While a high gluten strength is generally
beneficial to loaf volume (Guzmán et al., 2022), this differs
between the test baking method used (Dupuis & Fu, 2017),
and previous studies using a similar Swedish test baking
method observed similar trends (Johansson et al., 2001). This
model used instruments currently used in the mill, making it
highly commercially viable.

The spring wheat PLS model (Figures 3b and 4b)
yielded a higher RMSEP and a lower Q2Y compared to the
winter wheat PLS model. For comparison, linear regression
of protein content vs. loaf volume gave an RMSEP of
147mL, and by this comparison, spring wheat PLS
modeling gave the biggest improvement in RMSEP.
However, the spring wheat PLS model had the most
unstable parameters over cross‐validations, which was also
reflected in the low Q2Y (Table 3). Additionally, spring
wheat flour had the lowest number of samples and the
highest range in measured loaf volume (Figure 3) of the
different flour types. The cross‐validation results indicated
that parameter variation patterns differed a lot between
samples, making it challenging to generate a representative
test set and the RMSEP should therefore be interpreted
accordingly. Protein content and DoS were the largest
positive loading weights, and damaged starch was the
largest negative loading. TOTE yielded a high VIP score
when added to the spring wheat PLS model, and improved
Q2Y and RMSEP somewhat. TOTE was however excluded
from the final model, due to the complexity of performing
SE‐HPLC to evaluate flour in a mill context. There were
differences in loaf volume between the harvest years which
were not well captured by any measured parameters, except
for differences in damaged starch between the 2 years. This
could be seen in the spring wheat PCA scores (Figure 2e),
which was the only model where the samples did not assort
according to harvest year (Figure 2d,e). Barrera et al. (2007)
observed a negative correlation between loaf volume and
damaged starch, when obtaining high damaged starch
levels by excessive milling. This could arise from gluten
proteins and damaged starch competing for water (Barrera
et al., 2007). However, Dhaka et al. (2012) saw no
correlation between loaf volume and damaged starch when
comparing wheat varieties with a range in damaged starch
closer to those observed in this study. Damaged starch
alone did not seem likely to cause the differences in loaf
volume between harvest years, as the differences between
harvest years in damaged starch were larger for winter
wheat flours, and damaged starch did not improve winter
wheat predictions. There was a difference in loaf volume
between Malmö and Strängnäs during 2018 but not during

FIGURE 4 Regression coefficients for winter wheat PLS model
(a), spring wheat PLS model (b), and flour blends PLS model (c).
Abbreviations are defined in Table 2. Coefficients are colored
according to the data source: flour components (light green), wet
gluten (dark green), farinograph (light blue), alveograph (yellow),
or mixolab (pink). [Color figure can be viewed at
wileyonlinelibrary.com]
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2019, while the differences in damaged starch between
Malmö and Strängnäs were present both during 2018 and
2019. Differences in milling practices between the two mills
are therefore not likely to be a major cause of differences in
loaf volume. Considering the low production in the mills
and high variability in baking performance, using tradi-
tional quality control for spring wheat flour may be
preferable over implementing prediction models.

The blends PLS model (Figures 3c and 4c) yielded the
largest RMSEP and lowest Q2Y. Unlike the other models,
protein content had the lowest VIP score out of the
parameters included in the model. The correlation between
protein content and loaf volume was only 0.27 (p< .05) for
the flour blends. When using linear regression between
protein content and loaf volume, the RMSEP was 158mL.
The alveograph parameter Dmin was the highest positive
loading weight and damaged starch was the highest negative
loading weight. Both these parameters differed significantly
between harvest years (Table 2), leading to distinctly
different predictions for the two harvest years (Figure 3c).
The PLS model did not appear to take in information related
to the composition of spring and winter wheat in the blends.
Including parameters that differed with wheat composition,
such as WU‐AX content (Selga et al., 2023), did not improve
the RMSEP. The inadequate performance of the PLS model
was probably caused by the flour blends displaying the
lowest variance in the measured parameters (Table 2). The
lack of variation appeared to prevent prediction models from
being a useful tool for quality control of this flour type.

4 | CONCLUSIONS

Each flour type yielded unique PCA results, and
separate PLS models for each flour type yielded the
best predictions. While gluten and AX composition
facilitated interpretability of the quality tests, they did
not improve predictions of loaf volume, except for
TOTE in spring wheat flour. Notably, %UPP performed
well when modeling winter wheat loaf volume but was
ultimately excluded as the relevant dough strength was
fully captured by the empirical rheology tests included.
The mills in Sweden do not currently utilize all quality
tests presented here. The alveograph contributed to all
prediction models. However, the results were influ-
enced by the WU‐AX content and damaged starch
content and should be interpreted accordingly. The
farinograph is well adapted for Swedish conditions with
differences in water absorption; however, %UPP corre-
lated more to W than stability in this sample set.
SDmatic rapidly measures damaged starch, the levels of
which differed between locations and harvest years.
This test may therefore be useful, especially when

starting milling during new harvests. While the
mixolab contributed to loaf volume predictions for
flour blends, these loaf volume predictions remained
poor. Finally, while the SRC Chopin gave promising
results in winter wheat, these results were not
reproducible in spring wheat and not relevant for
predicting loaf volume. PCA and PLS models are great
for combining dependent variables and excluding
measurement errors, which are prevalent in empirical
rheological measurements, and especially in test
baking. PLS modeling has potential to be used to
predict loaf volume for winter wheat flour in Swedish
mills, as this model performed best overall. This is the
main product of Swedish mills and modeling would
reduce test baking costs drastically simply by using data
that can already be collected in the mills.
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