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A B S T R A C T   

Quantification of plant biomass and carbon in ecosystems is critical for establishing climate change mitigation 
potential. For large trees in various ecosystems, allometric models for estimating biomass have been developed 
but few biomass equations exist for small trees and shrubby vegetation. Allometric above-ground biomass (AGB) 
models are needed for small trees and shrubs in order to improve the quantification of biomass, particularly for 
savanna ecosystems, where small trees and shrubs comprise a significant portion of the biomass. In this study we 
have developed species-specific and multi-species allometric models for biomass estimation of small tree species 
and shrubs in the savanna ecosystem of Lake Mburo National Park in South Western Uganda. For our models we 
selected 27 small tree species (N = 403 individuals) and 12 shrub species (N = 177) common in savanna eco-
systems for destructive sampling. We developed species-specific and multi-species allometric AGB models to 
provide estimates of AGB using specific biometric variables recorded for the small trees (i.e. species, DBH, height 
and crown area), and shrubs (species, height and crown area). We found that crown area was the best single 
predictor of species-specific AGB for small trees and for species-specific and multi-species models for shrubs. 
Species-specific models had the best predictive capacity of AGB compared to multi-species biomass models for 
small trees and shrubs. Multiple-variable models had the best predictive capacity of AGB in both species-specific 
and multi-species modeling compared to single-variable models. Based on these findings we conclude that the 
evaluation of carbon stocks of tropical savanna ecosystems should use multi-variable species-specific models for 
AGB estimation at the individual level, and multi-species models for AGB at the ecosystem level.   

1. Introduction 

Quantification of carbon stored in terrestrial ecosystems is an 
important part of climate change research because these systems 
sequester carbon and influence the rate of carbon release (Ali and Yan, 
2017; Pan et al., 2011; Scurlock and Hall, 1998). Biomass is an impor-
tant variable in the measurement of carbon pools, and so knowledge 
about biomass contributes to our understanding of the magnitude and 
dynamics of carbon stocks. Biomass estimation in terrestrial ecosystems 
has primarily focused on forests because of their relatively high contri-
bution in regulating carbon. However, tropical savannas are being 
increasingly recognized as playing a significant role in carbon seques-
tration (Ali and Yan, 2017). Plants store most of the carbon in the ma-
jority of ecosystems so their biomass is a major factor for understanding 

and modeling carbon storage and dynamics. For example, in tropical 
forests 56% of carbon storage is in biomass (Pan et al., 2011). Therefore, 
plant biomass estimation is an important proxy for estimating carbon 
stocks. This is the rationale for using biomass (or carbon) estimates 
within the UN’s REDD+ initiative (Reducing Emissions from Defores-
tation and Forest Degradation ‘plus’ conservation of forests, enhance-
ment of forest carbon stocks and sustainable management of forests; 
(www.redd.unfccc.int). 

Plant biomass can be effectively estimated using ‘destructive’ sam-
pling methods (Cabrera et al., 2018; Chave et al., 2005) whereby plants 
are harvested and their Diameter at Breast Height (DBH), total height, 
wood specific gravity and crown area are subsequently related to the 
plant’s mass (Abich et al., 2021; Chave et al., 2014; Conti et al., 2013). 
To quantify biomass there is need for allometric modeling approaches. 
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For instance, generic allometric models (e.g. the Pan African AGB 
models; Brown et al. 1997, Chave et al. 2014), and site-specific biomass 
equations for single and mixed species (Abich et al., 2022; Altanzagas 
et al., 2019) have been developed for estimating above-ground biomass 
(AGB) from vegetation measurements such as DBH, height and crown 
area. These site-specific biomass models are important because 
size–biomass relationships can show regional differences as plants alter 
allocation patterns in response to soils, climate and disturbance 
(Northup et al., 2005). Allometric AGB models may be developed using a 
single variable (often DBH) or as an additive function of several vari-
ables. (e.g. as height, wood density etc.). These additive models that 
include additional predictors usually improve the accuracy of species 
biomass predictions (Abich et al., 2021; Ganamé et al., 2021). 

One issue for AGB carbon stock measurements is that they are 
commonly restricted to allometric models for large trees (DBH ≥ 5 cm) 
(Chave et al., 2005; Clough et al., 2018; Henry et al., 2011; Mugasha 
et al., 2013), whereas models for small trees (< 5 cm DBH) and shrubs 
that may comprise a large component of some biomes (e.g. tropical 
savanna) are scarce or unavailable (Ali et al., 2015; Conti et al., 2013; 
Zeng et al., 2010). Estimating the AGB of small trees and shrubs by 
applying general biomass allometric models developed for large trees 
tends to over- or under-estimate the plant biomass (Litton and Boone 
Kauffman, 2008), with the direction and degree of estimation error 
related to site-specific factors. Thus, to improve the accuracy of AGB and 
carbon stock estimation, locally developed AGB models should be used, 
when available because site-specific allometric models provide more 
accurate estimates of AGB when compared to Pan Africa allometric AGB 
models (Aneseyee et al., 2021; Ganamé et al., 2021). The same im-
provements in accuracy can be expected of species-specific AGB models 
compared to multi-species models when estimating biomass (Ketterings 
et al., 2001). 

With an increasing global focus on the importance of natural systems 
to sequester carbon, it is critical to generate AGB models that accurately 
reflect the plant species and biomes under consideration. In the tropics, 
multi-species allometric models are often a practical option for esti-
mating AGB because of the coexistence of many different species in these 
ecosystems. Due to the paucity of allometric models for small trees and 
shrubs in these tropical systems, studies often ignore their biomass 
estimation (and hence underestimating the total ecosystem carbon) or 
apply inappropriate models developed for larger trees. Selecting models 
for the estimation of AGB is a key problem that we sought to address by 
comparing different model selection processes. Therefore, we set out to 
develop and compare several allometric models for the estimation of 
AGB of small trees and shrubs in a tropical savanna ecosystem in Africa. 
These equations may provide an important step in carbon accounting 
studies for payment for REDD+ credits, for REDD+ participating 
countries such as Uganda. 

2. Materials and methods 

2.1. Study area 

This study was conducted in Lake Mburo National Park (hereafter 
‘Mburo’) and adjacent ranchlands in Kiruhura District, South-Western 
Uganda. Mburo is approximately 260 km2 in area, located at 0◦ 40′

0′′ S and 30◦ 56′ 0′′ E. Adjacent ranchlands are privately owned and 
managed for livestock production. The climate of the region falls within 
the Ankole Southern climate zone, situated at an elevation of ~1200 m 
with mean annual precipitation of ~800 mm and mean annual tem-
perature of 22 ◦C temperature (Blösch, 2002). The vegetation is of 
savanna ecosystem classified as grassland, open woodland and dense 
woodland but currently modified by woody encroachment of Acacia 
hockii (Blösch, 2002; Rannestad et al., 2006). The most abundant woody 
species are Acacia hockii, Acacia gerradii, Rhus natalensis, Grewia tricho-
carpa, Scutia myrtina, Dichrostachys cinerea and Maytenus heterophylla 
(Blösch, 2002; Moe et al., 2009). 

2.2. Species selection 

The most common woody species present in the Mburo area were 
selected (Nyamukuru et al., 2019). Twenty-seven small tree species (≤ 5 
cm, DBH) and 12 shrub species were selected. Fourteen to 16 individuals 
per species were destructively sampled from four paired sites of 1060 m2 

on either side of the border in ranchlands across Mburo (Appendices 1 
and 2; Fig. 1). We cut down individual small trees and shrubs to ground 
level, and divided into stem, branches and leaves for each individual. 
Shrubs having fruits, were weighted separately for fruits. For very small 
individuals, we considered stem and branches to be one part (see Nya-
mukuru et al. 2019 for detailed sampling design). In order to incorporate 
the different plant size ranges, some individuals outside the sites but 
within the study area were sampled. 

2.3. Biomass measurements 

In total, we sampled 403 small tree and 177 shrub individuals. Before 
the destructive procedure, we recorded the following biometric vari-
ables for small trees: the species, DBH (cm), total tree height (m), and 
their maximum crown diameters and their perpendicular diameters (m) 
to quantify the crown area. For shrubs we recorded the species, crown 
area and height (m). The crown area was quantified by measuring the 
maximum crown diameter and its perpendicular diameter following 
Conti et al. (2013). 

We weighed stems, branches and leaves of each individual small tree 
and shrub in the field to determine the fresh weight. After weighing, we 
collected a sub sample of stem wood, branches, leaves and fruits of each 
individual per species. Each sample was immediately weighed and later 
oven dried at 80 ◦C until a constant weight was obtained to determine 
the dry to fresh weight ratio. The dry weight was obtained for each 
section as a product of mean dry to fresh ratio and the fresh weight of the 
respective plant section. Total dry weight was the sum of stem, branches 
and leaves and fruits for some individuals. The mean dry to fresh weight 
ratio was computed for stem, branches, leaves and fruits for each 
sampled individual plant. 

2.4. Statistical analysis 

Linear regression is an important tool for AGB modeling (Gao et al., 
2018). We derived multi-species AGB regression models that related 
AGB to biometric variables for small trees (Appendices 1 and 2). In 
addition, species-specific AGB models were derived using 
log-transformed response and explanatory variables. Log transformed 
variables in AGB regressions are commonly used (e.g. Altanzagas et al. 
2019, Conti et al. 2013, Overman et al. 1994, Packard et al. 2011) 
because it helps reduce the influence of heteroscedasticity (Baskerville, 
1972). 

We utilised two different model selection processes in developing the 
allometric equations for both the multi-species and species-specific 
models. The first approach being a single explanatory variable AGB 
equation based on the best fitted univariate model: using either DBH, 
height or crown area as the explanatory variable related to AGB. The 
second was a multiple-variables equation that allowed the inclusion of 
any combination of explanatory variables. For these we selected highest- 
ranked multi-species and species-specific models based on the Akaike 
Information Criteria (AIC) to minimize issues associated with over-
fitting. While acknowledging that other model formulations may also 
sometimes have substantial support from the data, we present the 
highest-ranked models based on AIC because these are the most likely 
models to best explain the relationships between the explanatory vari-
ables and AGB (Burnham and Anderson, 2004). For each model we also 
calculated the predictive mean squared error from model residuals, 
adjusted coefficient of determination (R2) and a correction factor of all 
tested models. We computed the correction factor following (Parresol, 
1999) to correct for bias in biomass estimation due to natural log 
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transformation. We validated the best AGB models using leave-one-out 
cross validation methods described by Paul et al. (2018). From this we 
calculated two validation metrics: (1) the percentage bias, to tests how 
much the model over or under estimates AGB on average (ideally this 
lies between − 20% and +20%), and (2) we computed the p-values of the 
residual errors using a t-test to see if the prediction error of the model on 
the original data significantly differed from the prediction error of the 
leave-one-out data (where the p-value should ideally be >0.05). 

3. Results 

Measurements of biometric characteristics varied among the studied 
species (Table 1). Small trees with the highest DBH (range 0.80–4.90 
cm) included Acacia gerrardii, Pappea capensis and Maytenus senegalensis 

among others. The tallest species in the study area were Euclea racemose, 
Olea africana and Ziziphus mucronata, with the average height of these 
species ranging between 1.01 and 4.76 m. For shrubs, the tallest species 
(total height) included Lantana camara, Erythrococca bongensis and 
Rytigynia beniensis and their average height ranged between 0.90 and 
3.06 m. Dichrostachys cinarea, Acacia gerrardii and Ziziphus mucronata 
had the largest crown area (35.39 m2). For shrubs, Lantana camara, 
Erythrococca bongensis and Ocimum gratissimum had the highest total 
AGB and also had the largest crown area (22.23 m2). 

Among the tree species considered, Rhus natalensis, Euclea racemosa 
and Acacia gerrardii had the highest total above-ground biomass. The 
average AGB ranged between 0.01 and 18 kg. For shrubs, Erythrococca 
bongensis, Lantana camara and Ocimum gratissimum had the highest total 
above-ground biomass and their average AGB ranged between 0.02 and 
1.64 kg (Table 1). 

3.1. Species-specific above-ground biomass regression models 

Among the single-variable models developed for small trees, DBH 
was the best predictor of AGB for seven species (Table 2). The best fit 
corresponded to Maytenus senegalensis (R2 = 0.92) and Acacia sieberiana 
(R2 = 0.90). Height was the best predictor of AGB for ten species with 
the best fit corresponding to Rhus natalensis (R2 = 0.93), Grewia bicolor 
and Tarenna graveolens (R2 = 0.90) whereas crown area best predicted 
AGB for ten species with the best fit corresponding to Teclea nobilis (R2 =

0.96) and Dichrostachys cinarea (R2 = 0.92). For shrubs, among the 
single-variable models, crown area was the best predictor variable for 
AGB for all species except Rytigynia beniensis whose best predictor was 
height (Table 2). The best fit corresponded to Solanum dasyphyllum (R2 

= 0.89) and Ocimum gratissimum (R2 = 0.80). Crown area was the best 
single variable predictor in our above-ground biomass regression models 

Fig. 1. Location of study sites in Lake Mburo National Park and adjacent ranchlands in Uganda.  

Table 1 
Summary of biometric variables (CA = crown area; DBH = diameter at breast 
height; H = plant height) and aboveground biomass (AGB) for small trees and 
shrubs. These are summarised based on the mean, minimum, maximum and 
standard deviation (STD) for all individuals sampled (N). The DBH of shrubs was 
not measured.  

Plants CA (m2) DBH (cm) H (m) Observed AGB (kg) 

Shrubs (n¼177)     
Mean 2.68  1.35 0.2 
Min 0.13  0.26 0 
Max 22.23  3.06 1.64 
SD (±) 3.49  0.64 0.27 
Small trees (n¼403)     
Mean 7.29 2.5 2.21 1.11 
Min 0.09 0.5 0.25 0.01 
Max 43.33 4.9 5.87 18 
SD (±) 7.07 1.05 1.03 1.69  
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Table 2 
Species-specific aboveground biomass regression models for shrubs and trees in the savannah ecosystem of Lake Mburo National Park, Uganda. AGBp = predicted 
above-ground biomass (kg), Ln = natural logarithm, DBH = diameter at breast height (cm), Height = total plant height (m) and CA = crown area (m2). Model de-
scriptions include R2 = coefficient of determination (adjusted for the number of independent variables), PMSE = predictive mean squared error, CF = correction factor, 
AIC = Akaike information criterion, RTT = residual t-test, and %Bias = Percentage bias. The residual t-test should be p >0.05, and the percentage bias between − 20% 
and +20%. All regressions for small trees were statistically significant at p<0.001, with the exception of Carissa edulis and Grewia similis where the significance level 
was p<0.05. Regressions for shrubs were also statistically significant at p<0.001 except for Achyranthes aspera whose single variable model was p<0.05. On one 
occasion where the adjusted R2 was <0, it is reported as 0.  

Species Model Fixed parameters R2 PMSE CF AIC RTT %Bias 

Small trees         
Acacia gerrardii Single variables ln(AGBp) = − 2.2214 + 1.0335 х ln(CA) 0.71 0.58 1.40 40.49     

ln(AGBp) = − 3.1881 + 2.9365 х ln(DBH) 0.85 0.31 1.20 31.15 0.98 0.44   
ln(AGBp) = − 1.9921 + 2.8232 х ln(Height) 0.82 0.36 1.23 33.38    

Multiple 
variables 

ln(AGBp) = − 2.8654 + 1.7142 х ln(DBH) + 1.4659 х ln(Height) 0.92 0.14 1.09 21.59 0.63 − 14.17 

Acacia hockii Single variables ln(AGBp) = − 3.0575 + 1.2713 х ln(CA) 0.83 0.15 1.09 20.41 0.50 − 14.52   
ln(AGBp) = − 2.0339 + 1.7103 х ln(DBH) 0.75 0.22 1.14 26.14     
ln(AGBp) = − 2.8030 + 3.0050 х ln(Height) 0.82 0.16 1.09 20.72    

Multiple 
variables 

ln(AGBp) = − 3.2006 + 0.7129 х ln(CA) + 1.6588 х ln(Height) 0.92 0.06 1.04 9.43 0.56 − 7.52 

Acacia polyacantha Single variables ln(AGBp) = − 3.9881 + 1.4391 х ln(CA) 0.82 0.13 1.08 18.04 0.50 − 23.43   
ln(AGBp) = − 2.7767 + 1.9966 х ln(DBH) 0.82 0.14 1.08 18.77     
ln(AGBp) = − 1.8673 + 2.2009 х ln(Height) 0.82 0.14 1.08 18.66    

Multiple 
variables 

ln(AGBp) = − 2.9436 + 0.3879 х ln(CA) + 0.8945 х ln(DBH) + 0.8975 х ln 
(Height) 

0.92 0.05 1.04 8.25 0.40 − 15.22 

Acacia sieberiana Single variables ln(AGBp) = − 3.4055 + 1.4953 х ln(CA) 0.88 0.20 1.12 24.63     
ln(AGBp) = − 2.1510 + 2.3101 х ln(DBH) 0.90 0.16 1.10 20.95     
ln(AGBp) = − 2.6317 + 3.1409 х ln(Height) 0.91 0.15 1.09 19.95 0.33 − 21.78  

Multiple 
variables 

ln(AGBp) = − 2.4946 + 1.6980 х ln(Height) + 1.1725 х ln(DBH) 0.95 0.08 1.05 11.97 0.45 − 8.41 

Allophylus africanus Single variables ln(AGBp) = − 2.6665 + 1.1109 х ln(CA) 0.82 0.20 1.12 24.23 0.72 10.41   
ln(AGBp) = − 2.3635 + 1.9535 х ln(DBH) 0.67 0.36 1.23 33.33     
ln(AGBp) = − 3.0090 + 2.5972 х ln(Height) 0.64 0.40 1.26 34.64    

Multiple 
variables 

ln(AGBp) = − 3.1581 + 0.6208 х ln(CA) + 1.1263 х ln(Height) + 0.4901 х ln 
(DBH) 

0.91 0.08 1.06 15.57 0.94 2.01 

Boscia salicifolia Single variables ln(AGBp) = − 2.16553 + 1.07764 х ln(CA) 0.89 0.22 1.13 27.13 1.00 0.12   
ln(AGBp) = − 3.3197 + 2.3231 х ln(DBH) 0.84 0.31 1.19 32.52     
ln(AGBp) = − 2.4958 + 3.3348 х ln(Height) 0.83 0.34 1.21 34.14    

Multiple 
variables 

ln(AGBp) = − 2.7574 + 0.4674 х ln(CA) + 1.2444 х ln(Height) + 0.7515 х ln 
(DBH) 

0.97 0.05 1.03 7.18 0.94 1.16 

Carissa edulis Single variables ln(AGBp) = − 2.1718 + 0.6642 х ln(CA) 0.43 0.26 1.16 28.36     
ln(AGBp) = − 2.2284 + 1.2892 х ln(DBH) 0.33 0.30 1.19 30.71     
ln(AGBp) = − 2.3994 + 2.0873 х ln(Height) 0.47 0.24 1.15 27.28 0.81 − 10.27  

Multiple 
variables 

ln(AGBp) = − 2.7616 + 1.6232 х ln(Height) + 0.8205 х ln(DBH) 0.57 0.18 1.12 24.8 0.93 − 3.00 

Combretum molle Single variables ln(AGBp) = − 2.3671 + 1.2101 х ln(CA) 0.71 0.39 1.25 34.55     
ln(AGBp) = − 2.4772 + 1.8731х ln(DBH) 0.66 0.46 1.30 36.84     
ln(AGBp) = − 2.7829 + 3.0142 х ln(Height) 0.73 0.37 1.24 33.57 0.74 − 9.5  

Multiple 
variables 

ln(AGBp) = − 2.9597 + 1.5506 х ln(Height) + 0.6914 х ln(DBH) + 0.4298 х 
ln(CA) 

0.87 0.15 1.11 24.03 0.98 0.65 

Commiphora africana Single variables ln(AGBp) = − 2.7961 + 1.3180 х ln(CA) 0.77 0.30 0.19 30.52     
ln(AGBp) = − 3.7810 + 2.9542 х ln(DBH) 0.87 0.17 1.10 22.17 0.81 − 5.09   
ln(AGBp) = − 3.4323 + 3.7462 х ln(Height) 0.85 0.20 1.12 24.12    

Multiple 
variables 

ln(AGBp) = − 3.7650 + 1.6906 х ln(DBH) + 1.8049 х ln(Height) 0.90 0.12 1.08 18.48 0.62 − 11.74 

Dichrostachys cinarea Single variables ln(AGBp) = − 3.6737 + 1.4333 х ln(CA) 0.92 0.17 1.11 22.27 0.72 6.32   
ln(AGBp) = − 2.9624 + 2.8348 х ln(DBH) 0.81 0.43 1.28 35.75     
ln(AGBp) = − 2.2417 + 2.6701 х ln(Height) 0.72 0.64 1.28 41.87    

Multiple 
variables 

ln(AGBp) = − 3.4583 + 0.9031 х ln(CA) + 0.6856 х ln(DBH) + 0.5847 х ln 
(Height) 

0.93 0.13 1.09 22.02 0.67 7.81 

Erythrina abyssinica Single variables ln(AGBp) = − 2.7119 + 1.1027 х ln(CA) 0.69 0.40 1.26 34.82     
ln(AGBp) = − 3.1154 + 1.9523 х ln(DBH) 0.64 0.46 1.30 36.9     
ln(AGBp) = − 3.2398 + 3.1972 х ln(Height) 0.70 0.38 1.25 34.1 0.91 7.06  

Multiple 
variables 

ln(AGBp) = − 3.1936 + 1.9365 х ln(Height) + 0.6413 х ln(CA) 0.83 0.20 1.14 26.72 0.86 7.51 

Euclea racemosa Single variables ln(AGBp) = − 1.9772 + 1.1887 х ln(CA) 0.71 0.34 1.22 32.47     
ln(AGBp) = − 1.5497 + 2.2146 х ln(DBH) 0.82 0.21 1.13 25.02 0.57 − 5.27   
ln(AGBp) = − 3.1467 + 2.9422 х ln(Height) 0.68 0.38 1.24 34.03    

Multiple 
variables 

ln(AGBp) = − 2.7036 + 1.5545 х ln(DBH) + 1.4318 х ln(Height) 0.91 0.09 1.06 14.89 0.72 − 3.53 

Flueggea virosa Single variables ln(AGBp) = − 3.1283 + 1.2319 х ln(CA) 0.76 0.29 1.18 29.83     
ln(AGBp) = − 3.1557 + 2.6229 х ln(DBH) 0.87 0.16 1.10 20.93 0.75 7.83   
ln(AGBp) = − 3.4042 + 2.6128 х ln(Height) 0.62 0.46 1.30 36.89    

Multiple 
variables 

ln(AGBp) = − 3.5242 + 2.0644 х ln(DBH) + 0.9188 х ln(Height) 0.90 0.11 1.07 17.00 0.98 0.54 

Grewia bicolor Single variables ln(AGBp) = − 3.3778 + 1.5682 х ln(CA) 0.85 0.46 1.31 34.88     
ln(AGBp) = − 3.055 + 2.907 х ln(DBH) 0.74 0.79 1.59 42.45   

(continued on next page) 
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Table 2 (continued ) 

Species Model Fixed parameters R2 PMSE CF AIC RTT %Bias   

ln(AGBp) = − 2.9581 + 3.2151 х ln(Height) 0.90 0.30 1.19 28.8 0.49 − 23.4  
Multiple 
variables 

ln(AGBp) = − 3.1904 +2.2279 х ln(Height) + 0.5371 х ln(CA) 0.91 0.25 1.17 28.3 0.80 − 3.98 

Grewia similis Single variables ln(AGBp) = − 2.5507 + 0.8702 х ln(CA) 0.47 0.70 1.50 43.32 0.58 − 24.08   
ln(AGBp) = − 1.7579 + 1.4255 х ln(DBH) 0.15 1.14 1.93 50.49     
ln(AGBp) = − 1.5468 + 0.8465 х ln(Height) 0.12 1.18 1.97 51.02    

Multiple 
variables 

ln(AGBp) = − 2.6234 + 0.7904 х ln(CA) + 0.3119 х ln(Height) 0.45 0.68 1.52 44.68 0.59 − 23.05 

Maytenus heterophylla Single variables ln(AGBp) = − 2.8866 + 1.4040 х ln(CA) 0.57 0.89 1.68 44.13     
ln(AGBp) = − 3.8390 + 3.5694 х ln(DBH) 0.82 0.38 1.25 32.08 0.46 − 18.52   
ln(AGBp) = − 1.3188 + 1.4315 х ln(Height) 0.42 1.21 2.03 48.40    

Multiple 
variables 

ln(AGBp) = − 3.9777 + 2.8666 х ln(DBH) + 0.4482 х ln(CA) 0.84 0.31 1.22 31.34 0.42 − 16.17 

Maytenus senegalensis Single variables ln(AGBp) = − 2.4288 + 1.3241 х ln(CA) 0.80 0.40 1.26 34.66     
ln(AGBp) = − 3.1518 + 2.6598 х ln(DBH) 0.92 0.15 1.09 20.10 0.97 − 0.74   
ln(AGBp) = − 2.3215 + 2.8429 х ln(Height) 0.55 0.87 1.65 46.52    

Multiple 
variables 

ln(AGBp) = − 3.2372 + 2.2524 х ln(DBH) + 0.8234 х ln(Height) 0.95 0.09 1.06 14.84 0.86 3.30 

Ochna hackarsii Single variables ln(AGBp) = − 2.3692 + 1.2549 х ln(CA) 0.76 0.56 1.39 37.73     
ln(AGBp) = − 2.9321 + 2.6845 х ln(DBH) 0.74 0.63 1.44 39.15     
ln(AGBp) = − 3.0674 + 2.8307 х ln(Height) 0.88 0.29 1.19 28.57 0.44 29.91  

Multiple 
variables 

ln(AGBp) = − 3.0838 + 1.4891 х ln(Height) + 0.9241 х ln(DBH) + 0.3319 х 
ln(CA) 

0.91 0.17 1.13 25.01 0.36 33.46 

Olea africana Single variables ln(AGBp) = − 2.2000 + 1.0739 х ln(CA) 0.77 0.41 1.26 35.07     
ln(AGBp) = − 2.5860 + 2.5921 х ln(DBH) 0.67 0.59 1.40 40.62     
ln(AGBp) = − 4.0843 + 3.7681 х ln(Height) 0.86 0.24 1.15 27.38 0.57 − 22.47  

Multiple 
variables 

ln(AGBp) = − 3.9549 + 2.9604 х ln(Height) + 0.7960 х ln(DBH) 0.88 0.02 1.13 26.13 0.61 − 15.23 

Pappea capensis Single variables ln(AGBp) = − 1.5312 + 1.0185 х ln(CA) 0.82 0.38 1.24 33.91 0.70 − 10.78   
ln(AGBp) = − 3.3689 + 3.0500 х ln(DBH) 0.78 0.45 1.30 36.67     
ln(AGBp) = − 3.1875 + 3.2733 х ln(Height) 0.73 0.57 1.39 40.17    

Multiple 
variables 

ln(AGBp) = − 2.5404 + 0.6119 х ln(CA) +1.5049 х ln(DBH) 0.88 0.24 1.16 28.98 0.97 − 0.81 

Rhus natalensis Single variables ln(AGBp) = − 2.4975 + 1.4279 х ln(CA) 0.88 0.44 1.29 36.35     
ln(AGBp) = − 2.8730 + 2.6001 х ln(DBH) 0.74 0.97 1.75 48.05     
ln(AGBp) = − 2.9342 + 3.1174 х ln(Height) 0.93 0.28 1.18 29.49 0.67 16.44  

Multiple 
variables 

ln(AGBp) = − 2.8735 + 1.9183 х ln(Height) + 0.6406 х ln(CA) 0.97 0.11 1.07 17.77 0.62 17.42 

Scutia myrtina Single variables ln(AGBp) = − 2.0700 + 0.7934 х ln(CA) 0.64 0.32 1.20 31.33     
ln(AGBp) = − 1.9793 + 1.4321 х ln(DBH) 0.44 0.49 1.33 37.94     
ln(AGBp) = − 2.4456 + 2.1073 х ln(Height) 0.69 0.27 1.17 28.91 0.59 − 21.06  

Multiple 
variables 

ln(AGBp) = − 2.7884 + 1.3596 х ln(Height) + 0.5951 х ln(DBH) + 0.2980 х 
ln(CA) 

0.88 0.09 1.06 16.06 1.00 − 0.01 

Tarenna graveolens Single variables ln(AGBp) = − 1.1209 + 0.9283 х ln(CA) 0.55 0.88 1.67 43.95     
ln(AGBp) = − 2.3941 + 2.4634 х ln(DBH) 0.80 0.39 1.26 32.61     
ln(AGBp) = − 3.3859 + 3.1955 х ln(Height) 0.90 0.20 1.12 22.91 0.47 − 26.47  

Multiple 
variables 

ln(AGBp) = − 3.2156 + 2.2653 х ln(Height) + 0.8806 х ln(DBH) 0.92 0.14 1.09 20.01 0.72 − 5.29 

Teclea nobilis Single variables ln(AGBp) = − 2.80297 + 1.40435 х ln(CA) 0.96 0.12 1.07 17.05 0.91 2.46   
ln(AGBp) = − 3.3955 + 3.2678 х ln(DBH) 0.79 0.68 1.48 42.79     
ln(AGBp) = − 2.6074 + 2.9307 х ln(Height) 0.90 0.33 1.21 32.02    

Multiple 
variables 

ln(AGBp) = − 2.8091 + 1.0074 х ln(CA) + 0.9291 х ln(Height) 0.97 0.08 1.05 11.79 0.78 − 4.55 

Ximenia americana Single variables ln(AGBp) = − 2.5661 + 1.1361 х ln(CA) 0.89 0.12 1.07 16.83 0.86 3.80   
ln(AGBp) = − 2.7457 + 1.9725 х ln(DBH) 0.78 0.25 1.16 27.97     
ln(AGBp) = − 2.9345 + 3.5710 х ln(Height) 0.78 0.25 1.15 27.63    

Multiple 
variables 

ln(AGBp) = − 2.8742 + 0.7754 х ln(CA) + 1.5271 х ln(Height) 0.95 0.05 1.03 6.47 0.80 3.97 

Zanthoxylum 
chalybeum 

Single variables ln(AGBp) = − 2.3141 + 1.2178 х ln(CA) 0.88 0.20 1.12 25.47 0.77 − 4.68   

ln(AGBp) = − 2.6759 + 2.5379 х ln(DBH) 0.87 0.23 1.14 27.65     
ln(AGBp) = − 2.9470 + 3.4416 х ln(Height) 0.73 0.46 1.30 39.03    

Multiple 
variables 

ln(AGBp) = − 2.7838 + 0.7083 х ln(CA) + 0.8178 х ln(Height) + 0.7873 х ln 
(DBH) 

0.96 0.06 1.04 10.09 0.85 3.27 

Ziziphus mucronata Single variables ln(AGBp) = − 4.2420 + 1.8207 х ln(CA) 0.74 0.32 1.20 31.48     
ln(AGBp) = − 2.4011 + 2.5292 х ln(DBH) 0.87 0.17 1.10 21.84 0.64 − 6.47   
ln(AGBp) = − 2.254 + 2.422 х ln(Height) 0.82 0.23 1.14 26.36    

Multiple 
variables 

ln(AGBp) = − 2.5196 + 1.5581 х ln(DBH) + 1.1371 х ln(Height) 0.92 0.10 1.06 15.32 0.51 − 8.84 

Shrubs         
Achyranthes aspera Single variables ln(AGBp) = − 3.2214 + 0.3794 х ln(CA) 0.20 0.48 1.32 37.56 1.00 0.69   

ln(AGBp) = − 3.1741 + 0.6137 х ln(Height) 0.00 0.62 1.43 41.36   
Asparagus racemosus Single variables ln(AGBp) = − 3.6477 + 0.8103 х ln(CA) 0.52 0.14 1.09 19.34 1.00 − 1.74   

ln(AGBp) = − 3.5880 + 0.6168 х ln(Height) 0.01 0.30 1.19 30.28    
Multiple 
variables 

ln(AGBp) = − 3.6667 + 0.7835 х ln(CA) + 0.2001 х ln(Height) 0.49 0.14 1.09 21.07 0.99 − 2.11 

(continued on next page) 
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for species-specific regression models of small trees and shrubs. All 
single-variable models for both small trees and shrubs were significant 
(Table 2). 

Considering multiple-variables models developed for small trees, 
models with the best predictive capacity were those developed for Boscia 
salicifolia (R2 = 0.97), Rhus natalensis (R2 = 0.97), Teclea nobilis (R2 =

0.97) and Zanthoxylum chalybeum (R2 = 0.96; Table 2). These multiple- 
variables models had a combination of CA, height and DBH or CA and 
height. For shrubs, species for which our models had the best predictive 
capacity combined CA and height and the best fit corresponded to So-
lanum dasyphyllum (R2 = 0.91), Ocimum basilicum (R2 = 0.91) and 
Erythrococca bongensis (R2 = 0.83; Table 2). 

The validation t-tests for the AGB models were non-significant, 
showing that the prediction error did not differ between the original 

data and the cross-validated model predictions. The percentage biases 
were between − 20% and +20% except for Grewia bicolor, Olea africana, 
Scutia myrtina, Tarenna graveolens, Ochna hackarsii and Grewia similis. 
These species had either their single or multiple-variables models above 
the threshold of the percentage bias, but the residual t-test was within 
the range (Tables 2 and 3). 

3.2. Multi-species above-ground biomass regression models 

As observed in species-specific models, crown area was the variable 
that best predicted AGB for all species. The second best fit for small trees 
was DBH (Fig. 2a) and height for shrubs (Fig. 3b). A multiple-variable 
model which included crown area and height provided the best fit for 
the multiple-species model of shrub AGB (R2 = 0.77, p < 0.001) and 

Table 2 (continued ) 

Species Model Fixed parameters R2 PMSE CF AIC RTT %Bias 

Capparis fascicularis Single variables ln(AGBp) = − 1.8740 + 0.4942 х ln(CA) 0.55 0.10 1.06 14.68 0.99 0.44   
ln(AGBp) = − 2.0576 + 1.1993 х ln(Height) 0.50 0.11 1.07 16.08    

Multiple 
variables 

ln(AGBp) = − 2.1023 + 0.3380 х ln(CA) + 0.7569 х ln(Height) 0.69 0.07 1.04 9.72 0.96 1.64 

Erythrococca bongensis Single variables ln(AGBp) = − 1.9424 + 0.7097 х ln(CA) 0.70 0.20 1.12 24.40 0.89 − 3.97   
ln(AGBp) = − 2.9961 + 2.3460 х ln(Height) 0.31 0.45 1.30 36.71    

Multiple 
variables 

ln(AGBp) = − 3.03777 + 0.61384 х ln(CA) + 1.48990 х ln(Height) 0.83 0.10 1.07 16.76 0.91 − 2.59 

Hoslundia opposita Single variables ln(AGBp) = − 3.2061 + 0.6346 х ln(CA) 0.68 0.12 1.07 16.23 0.98 − 5.16   
ln(AGBp) = − 3.1822 + 1.8113 х ln(Height) 0.52 0.18 1.11 21.75    

Multiple 
variables 

ln(AGBp) = − 3.20845 + 0.46816 х ln(CA) + 0.76245 х ln(Height) 0.71 0.10 1.07 15.65 0.99 − 1.96 

Lantana camara Single variables ln(AGBp) = − 2.5813 + 0.9314 х ln(CA) 0.71 0.19 1.12 23.72 0.68 − 12.11   
ln(AGBp) = − 2.5383 + 2.6146 х ln(Height) 0.48 0.34 1.22 32.42    

Multiple 
variables 

ln(AGBp) = − 2.58923 + 0.91943 х ln(CA) + 0.04786 х ln(Height) 0.68 0.19 1.13 25.72 0.67 − 12.7 

Ocimum basilicum Single variables ln(AGBp) = − 3.1941 + 1.3302 х ln(CA) 0.82 0.13 1.07 17.38 1.00 − 0.21   
ln(AGBp) = − 1.9657 + 3.2390 х ln(Height) 0.35 0.44 1.29 36.42    

Multiple 
variables 

ln(AGBp) = − 2.1732 + 1.1458 х ln(CA) + 1.6855 х ln(Height) 0.91 0.06 1.04 7.70 0.99 2.96 

Ocimum gratissimum Single variables ln(AGBp) = − 2.7011 + 0.9951 х ln(CA) 0.80 0.20 1.12 22.92 0.90 6.12   
ln(AGBp) = − 2.6050 + 2.3003 х ln(Height) 0.66 0.34 1.22 30.51    

Multiple 
variables 

ln(AGBp) = − 2.7087 + 0.8808 х ln(CA) + 0.3243 х ln(Height) 0.79 0.19 1.13 24.7 0.92 4.68 

Rytigynia beniensis Single variables ln(AGBp) = − 1.9490 + 0.4093 х ln(CA) 0.08 0.65 1.45 42.03     
ln(AGBp) = − 2.7919 + 2.7919 х ln(Height) 0.61 0.27 1.17 28.91 0.96 3.08 

Sida acuta Single variables ln(AGBp) = − 3.1996 + 1.4304 х ln(CA) 0.80 0.21 1.13 25.49 0.98 3.72   
ln(AGBp) = − 2.9625 + 2.2249 х ln(Height) 0.51 0.52 1.35 38.76    

Multiple 
variables 

ln(AGBp) = − 3.1304 + 1.2260 х ln(CA) + 0.5361 х ln(Height) 0.80 0.20 1.13 26.25 0.97 6.89 

Solanum dasyphyllum Single variables ln(AGBp) = − 2.9984 + 1.4336 х ln(CA) 0.89 0.34 1.22 30.45 0.26 − 132.6   
ln(AGBp) = − 1.7822 + 2.3989 х ln(Height) 0.66 1.07 1.86 46.64 0.69 − 45.61  

Multiple 
variables 

ln(AGBp) = − 2.6875 + 0.7359 х ln(Height) + 1.1442 х ln(CA) 0.91 0.24 1.17 27.95 0.28 − 91.21 

Solanum incanum Single variables ln(AGBp) = − 2.5612 + 0.9454 х ln(CA) 0.46 0.39 1.25 34.34 0.90 − 15.95   
ln(AGBp) = − 2.9135 + 1.4548 х ln(Height) 0.32 0.49 1.33 37.95    

Multiple 
variables 

ln(AGBp) = − 3.0219 + 0.9093 х ln(CA) + 1.3774 х ln(Height) 0.80 0.13 1.09 20.32 0.93 6.86  

Table 3 
Multispecies aboveground biomass (AGB) regression models for shrubs in the savannah ecosystem of Lake Mburo National Park, Uganda. AGBp predicted aboveground 
biomass (kg), Ln natural logarithm, DBH = diameter at breast height (cm), Height = total plant height (m), CA= crown area (m2). Model descriptive statistics include 
R2 = coefficient of determination, PMSE = predictive mean squared error, CF = correction factor, AIC = Akaike information criterion, RTT = residual t-test, %Bias =
Percentage bias. The residual t-test should be p >0.05 and the percentage bias between − 20% and +20%.  

Model Fixed parameters R2 PMSE CF AIC RTT %Bias 
Shrubs        

Single variables ln(AGBp) = − 2.90239 + 1.07110 х ln(CA) 0.66 0.62 1.37 424.14 0.64 − 14.58  
ln(AGBp) = − 2.82253 + 2.07100 х ln(Height) 0.62 0.71 1.43 446.99   

Multiple variables ln(AGBp) = − 2.95013 + 0.68960 х ln(CA) + 1.16005 х ln(Height) 0.77 0.42 1.24 355.66 0.86 − 4.45 
Trees        
Single variables ln(AGBp) = − 2.73481 + 2.41305 х ln(DBH) 0.70 0.60 1.35 944.83 0.37 6.03  

ln(AGBp) = − 2.50339 + 2.51572 х ln(Height) 0.69 0.62 1.37 960.09    
ln(AGBp) = − 2.40728 + 1.09105 х ln(CA) 0.70 0.60 1.35 944.37 0.93 0.55  
ln(AGBp) = − 2.98593 + 1.46973 х ln(DBH) + 1.48219 х ln(Height) 0.83 0.33 1.18 708.60 0.33 4.87 

Multiple variables ln(AGBp) = − 2.99755 + 0.41631 х ln(CA) + 1.01003 х ln(DBH) + 1.13642 х ln(Height) 0.87 0.25 1.14 600.29 0.28 5.17  
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these were the only variables included in the multiple-variables model 
for shrubs (Table 3; Fig. 4b). All multiple-variables models were sig-
nificant except for a perennial shrubby herb Achyranthes aspera (R2 =

0.13, p = 0.1726) in species-specific models (Table 2). For small trees, 
the best fit of multi-species model includes a model with crown area, 
DBH and height (R2 = 0.87, p < 0.001) (Table 3; Fig. 4a). Table 3 shows 
the multi-species models for all species of small trees and shrubs. 

4. Discussion 

Our species-specific models outperformed multi-species biomass 
models when estimating AGB. This has also been supported in literature 
(see Abich et al. 2021, 2022, Henry et al. 2011, Pati et al. 2022). Con-
trary to our results, Fayolle et al. (2013) found that species-specific 
models were not better than multi-species models in estimating AGB 
in lowland tropical forests of South-eastern Cameroon. Multi-species 
models still performed well in estimating AGB and are recommended 
in situations when species-specific allometric models are lacking for 
tropical savanna species. We find that multi-species models, such as the 
ones we have used here, can be useful when estimating AGB for small 
trees and shrubs in tropical systems. This has also been the case in young 
reforestations where species-specific and multi-species models provided 
accurate estimates of AGB (Menéndez-Miguélez et al., 2022). 

The performance of multiple-variables models was generally better 

than single-variable models in both species-specific and multi-species 
models, although single-variable models still have a good predicative 
ability. Our results are in agreement with those of Conti et al. (2013) for 
shrub biomass estimation in the semiarid Chaco forest who found that 
multiple-variables models performed better than single variable and 
crown models. However, the authors pointed out that using models with 
fewer variables are preferred since many variables are laborious and 
require a lot of attention to validate each variable. Our study found that 
multiple-variables models that combined three (CA, DBH and height) or 
two (CA and height) variables had the best predictive capacity of AGB of 
small trees and shrubs in species-specific models. However, Pati et al. 
(2022) found that multiple-variables models that combined diameter 
and height in species-specific models had a better prediction capacity of 
AGB in tropical dry deciduous forests. Also Feyisa et al. (2018) found 
that models which combined DBH and height had the best prediction of 
AGB for selected woody species in East African rangelands. 

The fitted species-specific models developed for small trees and 
shrubs using single-variables show considerable variation among spe-
cies. For trees, AGB was best predicted using single-variables of height or 
DBH whereas crown area more accurately predicted AGB of shrubs. This 
variation likely results from species-specific variations of biometric 
characteristics of the trees and shrubs in the study area. Despite this 
general pattern, we highlight that in six tree species (Acacia hockii, A. 
polyacantha, A. sieberiana, Carissa edulis, Combretum molle, Erythrina 

Fig. 2. Relationship of small trees between the above-ground biomass (kg) and diameter at breast height (DBH, cm), height (m) and crown area (m2) in the savannah 
ecosystem of Lake Mburo National Park, Uganda. Different symbols represent the different small tree species. 

A. Nyamukuru et al.                                                                                                                                                                                                                           



Trees, Forests and People 11 (2023) 100377

8

abyssinia) there was little difference between the model fit of single- 
variable models using crown area and height (i.e. AIC was often <1 
between these models). Thus for some species, there is flexibility in 
which measure can be used in single-variable modeling for AGB, 
whereas, for other species, our models indicate a specific variable that 
best maximizes AGB estimation accuracy (Table 2). Typically, DBH is 

the best predictor variable for estimating biomass in large trees (Abich 
et al., 2022), because its predictive capacity is enhanced by the role of 
the main tree stem in determining AGB (Mukuralinda et al., 2021). Thus, 
the relative contribution of a tree’s main stem to its total volume will 
determine the predictive importance of DBH versus crown area; here 
small trees with a high stem-to-crown ratio will be more heavily 

Fig. 3. Relationship of shrubs between the above-ground biomass (kg), height (m) and crown area (m2) in the savannah ecosystem of Lake Mburo National Park, 
Uganda. Different symbols represent the different shrub species. 

Fig. 4. Multiple-variables model for predicting above-ground biomass for shrubs and trees in the savannah ecosystem of Lake Mburo National Park, Uganda, the 
models consider all species together, (a) small trees and (b) shrubs. Each dot corresponds to an individual weighted small tree ln(AGBp) = − 2.99755 + 0.41631 х ln 
(CA) + 1.01003 х ln(DBH) + 1.13642 х ln(Height) and shrub ln(AGBp) = − 2.95013 + 0.68960 х ln(CA) + 1.16005 х ln(Height). 
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influenced by DBH in determining the total AGB. It is also worth 
considering how factors such as DBH and crown area are likely to show 
regional variation, and how these will tend to influence the 
site-specificity of AGB measurements (Aneseyee et al., 2021; Dutcă 
et al., 2018). 

The findings of this study show that crown area and total height 
multiple-variables perform well in multi-species models for estimating 
AGB for shrubs. This is in agreement with the multiple-variable model 
reported for Acacia woodland (Aneseyee et al., 2021) and shrubs in 
semiarid Chaco forests in South America (although this model also 
included wood specific gravity; Conti et al. 2013), and the recommen-
dation to include architectural plant variables such as height and crown 
area as additive predictors in models for estimating aboveground 
biomass for dryland woody species (Bayen et al., 2020). Our AGB models 
that include these variables appear to provide accurate estimates of 
biomass, and hence carbon, in the tropical savanna ecosystem at Mburo. 

The multi-species model that best predicted AGB in small trees 
included DBH and height. The finding of DBH and height as the best 
predictor of AGB for small trees in this study is also supported by Ali 
et al. (2015). Similarly, DBH and height have been reported as good 
predictors of AGB for large trees (Chave et al., 2005; Mugasha et al., 
2013). A study by Ganamé et al. (2021) that developed allometric 
models for West African savanna ecosystems reported that 
species-specific and mixed-species allometric models provided accurate 
estimates of AGB using DBH and height as predictive variable. In the 
same study, the authors found that site-specific allometric models for 
mixed-species and the pantropical allometric model provided similar 
estimates of AGB. 

The fitted multi-species, multiple-variables models for estimating 
AGB for shrubs showed that crown area and height largely explain the 
variations in AGB of shrubs (Table 3). Crown area was identified as the 
best predictor of AGB for shrubs in both multi-species and species- 
specific models, a finding that has also been reported by other re-
searchers (Conti et al., 2013; Northup et al., 2005; Zeng et al., 2010) who 
noted a relationship between size and biomass of shrubs. From a prac-
tical perspective, crown area for shrubs is relatively quick and easy to 
measure in the field compared to other biometric variables, adding to its 
value for the estimation of AGB. 

5. Conclusion 

This study has developed species-specific and multi-species biomass 
regression models for providing accurate estimates of AGB of small trees 
and shrubs of common species in an African savanna. Although accurate 
estimates of AGB are provided by species-specific AGB models, where 
these are not available, multi-species biomass models could generate 
accurate estimations of AGB in similar savanna ecosystems in Uganda 
and Africa based on the high predictive capacity demonstrated by cross 
validation. Crown area is the variable that best predicts above-ground 
biomass in multi-species models. We recommend these AGB models be 
subsequently used to estimate AGB of small trees and shrubs in savanna 
ecosystems of Uganda and other parts of Africa until regional-specific 
AGB models have been developed. 
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