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Olli Winberg a, Jiri Pyörälä a,c,d,*, Xiaowei Yu a, Harri Kaartinen a, Antero Kukko a,b, 
Markus Holopainen c, Johan Holmgren d, Matti Lehtomäki a, Juha Hyyppä a,b 
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A B S T R A C T   

We showed that a mobile handheld laser scanner (HHLS) provides useful features concerning the wood quality-influencing external structures of trees. When linked 
with wood properties measured at a sawmill utilizing state-of-the-art X-ray scanners, these data enable the training of various wood quality models for use in 
targeting and planning future wood procurement. A total of 457 Norway spruce sample trees (Picea abies (L.) H. Karst.) from 13 spruce-dominated stands in 
southeastern Finland were used in the study. All test sites were recorded with a ZEB Horizon HHLS, and the sample trees were tracked to a sawmill and subjected to X- 
rays. Two branch extraction techniques were applied to the HHLS point clouds: 1) a method developed in this study that was based on the density-based spatial 
clustering of applications with noise (DBSCAN) and 2) segmentation-based quantitative structure model (treeQSM). On average, the treeQSM method detected 46% 
more branches per tree than the DBSCAN did. However, compared with the X-rayed references, some of the branches detected by the treeQSM may either be false 
positives or so small in size that the X-rays are unable to detect them as knots, as the method overestimated the whorl count by 19% when compared with the X-rays. 
On the other hand, the DBSCAN method only detected larger branches and showed a − 11% bias in whorl count. Overall, the DBSCAN underestimated knot volumes 
within trees by 6%, while the treeQSM overestimated them by 25%. When we input the HHLS features into a Random Forest model, the knottiness variables 
measured at the sawmill were predicted with R2s of 0.47–0.64. The results were comparable with previous results derived with the static terrestrial laser scanners. 
The obtained stem branching data are relevant for predicting wood quality attributes but do not provide data that are directly comparable with the X-ray features. 
Future work should combine terrestrial point clouds with dense above-canopy point clouds to overcome the limitations related to vertical coverage.   

1. Introduction 

The global goals of the UN Agenda 2030 aim to balance the three 
dimensions of sustainable development: economic viability, environ-
mental conservation, and social equity. In addition, solutions are needed 
for the urgent challenge of shifting away from fossil-based production 
industries to bio-based, renewable ones. Stakeholders involved in the 
bio-based economy require precise and up-to-date information to con-
trol the use of renewable natural resources and related industrial pro-
cesses. Nordic countries are the world’s most extensively forested 
industrialized and temperate countries. Especially in Finland and Swe-
den, the forest sector accounts for a significant share of export revenues 
and acts as a major employer. The extent of Nordic forest resources is 
estimated at 5600 million cubic meters, and the annual increment is 
approximately 220 million cubic meters, of which 150 million cubic 
meters is harvested annually. We have over 300 billion (300×109) trees 

in our forests. In Finland and Sweden alone, we have ca. 1 million forest 
owners with 4 B€ gross stumpage earnings, several thousand harvesting 
companies, 1000+ transportation companies with long-distance trans-
portation costs close to 1B€, and more than 1000 industrial companies 
with approximately 50 B€ total direct turnover. Nordic forest companies 
are among the top forest and paper product companies in Europe. 

Next-generation forest inventories record not only basic tree attri-
butes, but also the forest state and product yields in high detail. These 
data act as the basis for decision-making regarding human interventions 
in forest ecosystems, ranging from landscape-scale management de-
cisions to harvest planning in forest stands and log-breakdown decisions 
at the individual-tree level. Great benefits would be obtained if the wood 
properties and timber quality of individual trees, i.e., their suitability for 
specific end uses, could be characterized prior to harvest. Such charac-
terization would enable the optimization of forest operations, wood 
procurement down to details of log breakdown, and raw material 
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distribution between appropriate processors. 
Wood quality is the result of past growth allocation between tree 

compartments, i.e., the stem and crown wood, foliage, and roots. 
Depending on the species-specific life strategy, environmental and cli-
matic conditions, and competition, trees optimize their capacities to 
photosynthesize and conduct water, along with providing structural 
support to the whole organism (Lachenbruch et al., 2011). The charac-
terization of wood qualities within tree stems can most effectively be 
achieved with X-rays, which allow the direct interpretation of wood 
density within logs. This is affected, e.g., by the moisture content, knot 
presence, internal defects (such as compression wood and decay), and 
ring width (Oja et al., 2003). The techniques are based on the absorption 
of X-rays: the denser the wood, the more X-rays it will absorb. The 
interpretation of the X-ray images is based on artificial intelligence 
making distinctions between lighter voxels versus denser voxels, to 
identify wood properties that are influential to log sorting, planning of 
timber production, and log value determination, e.g., log geometry, 
knots, and defects (Beaulieu and Dutilleul, 2019). State-of-the-art saw-
mills in Finland and Sweden deploy multi-directional digital radiogra-
phers that provide sparse data on the log interiors at high speed, while 
some specialized sawmills have begun using rotational X-rays that 
enable the computed tomography scanning of log interiors in high detail 
but on the expense of the measurement speed (e.g., (Wei et al., 2011; 
Lindgren, 1991)). However, wood properties in standing timber can 
only be assessed indirectly based on, e.g., increment cores, probe 
penetration techniques, or acoustic velocity measurements (Schimleck 
et al., 2019), but these are laborious, expensive for operational settings 
(e.g., Gao et al., 2017), and hard to link with sawmill measurements or 
to generalize over large areas. 

Previous studies have investigated numerous ways to utilize the 
airborne point cloud data for estimating wood quality and wood prop-
erties over larger areas (Pyörälä et al., 2019a; Blanchette et al., 2015; 
Luther et al., 2014; Hilker et al., 2013; Côté et al., 2021). One of the key 
bottlenecks of such approaches is the lack of ground-based observations 
of wood quality indicators, to support the prediction framework. 
Therefore, as a potential operational concept, we vision that a mobile 
laser scanner mounted on a harvester could facilitate the detailed point 
cloud-based reconstructions of the external structures of the harvested 
trees that were linkable with the wood properties measured in the 
sawmill. Accumulation of the database with fused laser scans and X-ray 
data would enable training various wood quality models to be used in 
targeting and planning future wood procurement or for real-time, 
quality-based bucking optimization in harvesters. 

Past work towards realizing this novel concept includes the following 
studies, which have mainly considered static terrestrial laser scanning 
(TLS): Pyörälä et al. (2018a) compared TLS with sawmill X-ray scanning 
data to find a link between these datasets for whorl locations and each 
whorl’s maximum branch and knot diameters. Pyörälä et al. (2019b) 
further compared measurements of log geometry (stem dimensions, 
volume, taper, and sweep) between TLS and sawmill data. Moderate 
correlations were found between the stem geometry variables and in-
ternal stem properties, i.e., whorl-to-whorl distances and mean sapwood 
density. Several previous studies also exist, showing that the stem curve, 
stem diameters, and 3D locations can be extracted from terrestrial and 
mobile point clouds. Liang et al. (2014) extracted the stem curves of a 
few dozen trees from TLS data at a cm-level compared to harvested 
measurements. Nguyen et al. (2021) developed TLS-based methods to 
detect tree surface defects, such as branch scars, branches, epicormics, 
and bark defects. Bauwens et al. (2017) used terrestrial photogrammetry 
for measuring and modeling stems and their irregularities. Hyyppä et al. 
(2020a) compared several mobile laser scanning (MLS) techniques, such 
as backpack laser scanners, a handheld Zeb-Horizon laser scanner, and 
an under-canopy unmanned aircraft vehicle (UAV) laser scanning sys-
tem. They found that the stem curve measurements had 
root-mean-squared errors (RMSEs) of 2–15% depending on the system 
and the measurement height of the standing tree. Additionally, several 

studies confirm the capability of TLS and MLS to extract stem diameters 
and stem locations in 3D (Hyyppä et al., 2020b, 2021; Balenović et al., 
2021; Chen et al., 2019; Cabo et al., 2018; Bauwens et al., 2016; Del 
Perugia et al., 2019; Bienert et al., 2018; Čerňava et al., 2019). More-
over, the branching structures of trees, such as whorl-to-whorl distances, 
branch angles, and diameters are also extractable from the static 
terrestrial point clouds (e.g., (Dassot et al., 2012; Lau et al., 2018; 
Pyörälä et al., 2018b; Bournez et al., 2017; Raumonen et al., 2013)). 

The static TLS thus provides highly detailed tree-specific information 
at roughly the same rate as manual field work provides data on sparser 
features, i.e., more information is gathered, but the time consumed re-
mains the same. However, the major promise made by laser-scanned 
data is the development of rapid and autonomous, mobile data acqui-
sition systems, such as those based on drones flying within the canopy, 
or harvesters (Hyyppä et al., 2020c, 2021; Wang et al., 2021; Bienert 
et al., 2021; Vandendaele et al., 2022). For example, a rotating mobile 
laser scanner is a feasible sensor to be implemented, e.g., in a handheld 
system, in an under-canopy drone, or in a harvester. The introduction of 
autonomous sensor systems to practical forestry will expand the amount 
of point cloud data available for the industry and for use in large-scale 
mapping. Prior work has presented various strategies for extracting 
and estimating crown dimensions and structure from mobile point 
clouds, along with whorl characteristics (Puliti et al., 2023; Hartley 
et al., 2022), branch volume (Qi et al., 2022), and tree defects (Morgan 
et al., 2022). Mobile point clouds typically exhibit more stochastic noise, 
lower point density, and poorer spatial precision than static point 
clouds, especially when working with global navigation satellite system 
(GNSS) shadows and when the length of the mobile device trajectory 
increases (Kaartinen et al., 2015). These are key challenges in the uti-
lization of mobile point clouds to measure the finer details of tree 
structure. Therefore, further method development studies are still 
required to process mobile point cloud data. 

In this article, we describe the results obtained from using a mobile, 
handheld laser scanner (HHLS) for automatically extracting branching 
structures of standing trees. We have correlated our results with indus-
trial sawmill data as a reference. The study’s main objective was to 
identify the feasibility of the HHLS point clouds to provide information 
of the branching properties of Norway spruce (Picea abies (L.) H. Karst.) 
that are relevant to industrial use. We inspected two algorithms to test 
the accuracy of the HHLS point clouds in representing the branching 
structures of Norway spruces, to proxy the industrial knottiness features 
at the individual-sawlog level, and to serve as input variables in 
empirical models that predict knottiness. 

In summary, the novel contribution of this paper includes:  

- Mobile terrestrial point clouds are used for extracting branching 
structure data of standing trees to derive wood quality features.  

- The study compares the automatically derived features and further 
modeled outputs with the sawmill-measured X-ray measurements 
towards the abovementioned goal. 

2. Materials 

2.1. Study site 

Our study was conducted in fall 2020 on thirteen test sites located in 
southeastern Finland in the South-Karelian region, see Fig. 1a (61◦03′ N 
28◦11′ E). All test sites were situated in even-aged managed boreal 
forests. Norway spruce was the dominant tree species on all test sites. 
The test sites were selected from the harvest program of the industrial 
partner (Stora Enso Oyj (SE), Helsinki, Finland), to represent the typical 
variation of conditions in mature Norway spruce stands available for 
clear-cutting in the studied area. Stand mean tree heights (H) were ca. 
20–25 m, and stocking densities ranged from 300 to 950 stems per 
hectare, with basal areas of 23–34 m2/ha. Forest types encompassed 
mesic (MT) and sub-mesic (OMT) mineral soils and corresponding peat 
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lands. Varying levels of species mixtures were present on the stands, 
mainly consisting of Scots pine (Pinus sylvestris L.), silver birch (Betula 
pendula Roth), and Eurasian aspen (Populus tremula L.). 

We placed two to five circular sample plots with 12-m radius each 
evenly around each stand, with the number of plots depending on the 
stand size (i.e., roughly one plot per hectare, but with a minimum of two 
and a maximum of five plots per stand). From each plot, 6–10 Norway 
spruces were selected around the plot center that represented the dis-
tribution of the Norway spruce diameters at breast height (DBH), i.e., at 
a height of 1.3 m from the ground), H, and the presence of crown classes 
or canopy layers (dominant, intermediate, and suppressed) within the 
stand. In total, 457 Norway spruce sample trees from 49 sample plots 
were selected. See Table 1 for a summary of the study site and sample 
tree attributes. 

Fig. 1b shows an example of a tree map. The sample trees were an-
notated with laminated paper sheets containing Tree-ID numbers for 
identifying the individual sample trees from point clouds and during 
harvests. 

2.2. The acquisition and pre-processing of the handheld laser-scanned 
data 

All test sites were recorded with a handheld ZEB Horizon (GeoSLAM, 
UK) scanner in October 2020. Each of the test sites was covered by 
walking in a four-leaf-clover-shaped pattern containing several loops, 
and the start and end points were the same to improve the accuracy of 
data collection to provide multiple possibilities for loop closure detec-
tion and subsequent drift elimination: these precautions can effectively 
eliminate the drift and off-set errors in the point clouds. Similar walking 
patterns were also used in Hyyppä et al. (2020a), see Fig. 4c in the 
reference. The walking speed was 2 km/h, the system was held upright 
in hand at the fixed height of 1.2 m above ground. Each handheld 
acquisition took approximately 20 min. 

After data collection, the raw data were pre-processed using the 
GeoSLAM Hub (version 6.0.0.) software. To this end, we utilized the 
default values of the processing parameters: Convergence threshold: 0, 
Window size: 0, Voxel density: 1, Rigidity: 0, Maximum range: 100 m, 
Closed Loop. After the pre-processing steps, the resulting point cloud 
data were exported into “.las”-format for further processing. The quality 
of the scans was checked, as reported by Hyyppä et al. (2022). 

Fig. 1. Overview of the materials used in this study. a) Locations of the studied stands in southeastern Finland. b) Acquisition of the handheld laser scanning (HHLS) 
data. c) Preview of an HHLS point cloud. d) Examples of tree maps at the stand level from the HHLS (red) and at the plot level (green). e) Sample tree group prior to 
felling. f) Logs from the sample trees at the sawmill, with identification numbers painted on log ends. g) Schematic illustration of the X-ray images used to detect knot 
whorls and to obtain log volume (as the volume of a truncated cone). (For interpretation of the references to color in this figure legend, the reader is referred to the 
Web version of this article.) 

Table 1 
Standwise forest inventory information of the study sites on the left: Stand age, mean diameter at breast height (DBH), and mean height (H) are reported only for 
Norway spruces. The characteristics of the sample trees in each stand on the right.  

Standwise forest inventory      Sample tree inventory 

Stand Area 
(ha) 

Forest 
type 

Basal area 
(m2/ha) 

Stems/ 
ha 

Spruce 
(%/volume) 

Stand 
age, a 

Mean DBH 
(cm) 

Mean H 
(m) 

Plots Sample 
trees 

Mean DBH 
(cm) 

Mean H 
(m) 

1 3.3 OMT 25.2 952 93.5 71 25.3 21.0 5 42 29.9 23.8 
2 1.8 MT 31.1 465 58.7 66 29.8 22.4 4 31 32.7 26.7 
3 0.6 MT 31 544 95.2 64 29.1 20.3 2 17 32.5 23.8 
4 2.8 MT 29.6 600 66.5 64 26.3 19.5 4 34 25.6 22.2 
5 3.4 MT 25.3 524 85.7 71 27.0 21.0 5 44 29.2 23.4 
6 1.8 MT 23.3 407 86.1 68 29.3 21.5 4 33 31.0 24.6 
7 2.5 OMT, 

Peat 
25.9 482 59.5 71 27.4 20.2 5 39 29.6 23.2 

8 2.3 MT 27.3 315 88.9 90 30.6 26.0 4 30 29.6 24.9 
9 5.3 MT 33.2 479 75.6 91 33.2 25.4 5 46 33.4 27.4 
10 0.9 OMT 32 506 87.1 85 29.0 22.6 2 18 27.2 23.0 
11 4.7 OMT 25.5 696 70.1 76 23.7 19.4 5 44 29.8 24.4 
12 1.6 MT,Peat 30.6 481 76.2 82 31.2 24.8 4 33 31.7 24.1 
13 3.8 MT 33.7 632 77.8 84 28.0 23.1 5 42 29.9 25.3  
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2.3. Sawmill data acquisition 

All test sites were harvested during the study and taken to SE’s 
Honkalahti sawmill in Joutseno, Finland, where the X-ray-based wood 
quality measurement was undertaken. The selected sample trees were 
tracked throughout the harvests and transportation to the sawmill. The 
harvests took place over the course of Oct.–Nov. 2020, and the saw-
milling was carried out in Nov.–Dec. 2020. 

The harvesting companies first clear-cut the stands around the 
sample tree groups. At the time of sample tree felling, the logs bucked 
from the sample trees were annotated with tree identification numbers 
(Tree-ID) using marking paint at both ends of the logs. The bucking 
followed the production matrix of the sawmill, and logs were cut to 
lengths ranging from 4.1 m to 5.7 m at 30-cm intervals. The minimum 
allowed top diameter was 12 cm. The minimum quality requirement was 
that each sawlog should stay in one piece after bucking, but the 
harvester operator ignored factors such as excessive sweep, crook, 
decay, ramicorn branches, and other flaws that would otherwise have 
justified downgrading logs to pulp wood. 

Paint-marked logs were kept separate from the rest of the logs, 
hauled to the sawmill, and stored in a designated pile. Due to delays in 
the harvesting operations from one stand, and some sample logs lost in 
the process, a total of 1244 logs from 450 (identified) trees eventually 
found their way to the sawmill in time for the scheduled sawmill mea-
surements. The total fresh volume of the batch was 2945 m3. 

At the sawmill, the logs were debarked and then X-rayed using a two- 
directional FUSION G3X digital radiographer (Finnos Oy, Lappeenranta, 
Finland) with 0.7-mm effective resolution. The feeding of the logs into 
the X-ray machine was videoed, and by reading the Tree-ID from each 
log on the video, the X-raying data were linked to respective sample 
trees. From the X-ray measurements, over 100 features were calculated 
for each log using the in-house algorithms from Finnos. We used five of 
these features in our analyses: knot volume (m3), knot index (knot vol-
ume relative to log volume), mean whorl volume (knot volume relative 
to the number of whorls in each log, m3), maximum whorl volume (m3), 
number of whorls, and mean whorl-to-whorl distance (m). 

3. Methods 

3.1. Overview of the methods 

We compared two approaches for detecting branches from the HHLS 
data. A method based on the density-based spatial clustering of appli-
cations with noise (DBSCAN) (Ester et al., 1996) was developed and 
compared to the segmentation-based quantitative structure model 
(treeQSM) (Raumonen and Åkerblom, 2019) that is widely used in the 
literature (e.g., Lau et al., 2018; Raumonen et al., 2013; Hackenberg 
et al., 2015). Both approaches assume point clouds of individual trees as 
an input. Individual-tree extraction from the point clouds of a larger 
forest area with possibly multiple trees can be achieved by implement-
ing different segmentation methods prior to tree modeling, such as those 
described in Hyyppä et al. (2020c) that were also used here. In short, the 
point clouds of individual trees were extracted as follows: a canopy 
height model was first generated and smoothed with a Gaussian filter 
and then individual trees were segmented by applying the watershed 
algorithm. Branch growing locations, diameters, and insertion angles 
were generated from the HHLS point clouds of the segmented, denoised 
trees with the two algorithms studied, and compared to log X-ray factory 
data that provided reference values for the internal wood quality. 

3.2. Denoising the point cloud data 

The pre-processed HHLS data had point densities of 1000–10000 
points/m3. These point cloud data still contain noise due to physical 
limitations and measurement errors of the measurement device, which 
complicate the analyses of detailed geometric features. Denoising was 

therefore the first step in processing the point clouds of individual trees. 
To reduce the noise and enhance the extraction of relevant features, a 
heuristic denoising based on the local point density was applied to the 
point cloud as part of the analysis. Fig. 2 illustrates the results of 
denoising a point cloud. The assumption is that noisy points are uni-
formly distributed in space and have smaller local point densities than 
points arising from actual hits of the measurement laser in various parts 
of the tree. The local point density for a point is defined as the number of 
points in a sphere of a fixed radius centered at the point. 

Having computed a local point density for each point with some fixed 
neighborhood radius, noisy points were filtered out by setting a 
threshold on the local point density values. By trial and error, a 7-cm 
radius was chosen for the spherical neighborhood, and the threshold 
value used for the local point density was the 20th percentile over all 
spherical neighborhoods for each point. Such denoising is computa-
tionally time efficient and takes only seconds to perform for a coarse 
point cloud of an individual tree with over one million points. In addi-
tion to removing noisy points, the denoising also removed foliage from 
the point clouds of trees, leaving mostly the woody parts for further 
analysis, as illustrated in Fig. 2. This foliage removal effect was desired, 
as it simplified analyzing the branching structure of the trees. 

3.3. Branch extraction with DBSCAN 

The DBSCAN-based branch detection method can be divided into the 
following five stages:  

1) Denoising (Figs. 2 and 3a)  
2) Segmentation and extraction of points belonging to the tree trunk 

(Fig. 3b)  
3) Removal of trunk points (Fig. 3c)  
4) Determining disconnected components of the remaining point cloud 

(Fig. 3d)  
5) Post-processing disconnected components to remove clusters not 

corresponding to individual branches (Fig. 3e)  
6) Estimating geometric features (growing location, diameter, and 

insertion angle) of each branch (Fig. 3f) 

After denoising the point cloud of an individual tree, the branch 
inventory of the tree begins by identifying and extracting its trunk. 
Points that were part of the trunk were detected with arc detection, 
random sample consensus (RANSAC) - based circle fitting, and local 
descriptors. First, a rough identification of trunk points was achieved by 
detecting circular arcs with RANSAC-based arc detection (Fig. 3b), as 
the trunk is assumed to produce such arcs in the laser scanning mea-
surement process (Hyyppä et al., 2020c). Secondly, a circle fitting pro-
cess was applied to the arc-shaped points to remove any arc-shaped 
clusters of points not belonging to the trunk and to extract the trunk in 
finer detail (Fig. 3 c). A parallel strategy for trunk detection included 
computing local descriptors for the denoised point cloud and then 
selecting points with nearly vertical growth as trunk point candidates. 
Local descriptors provide an invariant geometric characterization, in 
which the trunk geometry was typically characterized with high local 
flatness and a nearly vertical principal axis. As trunk detection is carried 
out as a combination of arc detection and local descriptors, it also works 
for curved trees. 

After the trunk points were identified from the denoised point cloud, 
we removed points that were not within a 1-m radius of the trunk 
(Figs. 2 and 3c). Then the trunk points were removed, and the analysis 
continued with the remaining point cloud. According to (Fig. 3c). By a 
heuristic assumption, different branches were connected to each other 
only by the trunk, meaning disconnected components in the remaining 
point cloud should correspond to individual branches, as described in 
Equations (Lachenbruch et al., 2011) and (Oja et al., 2003). The search 
for disconnected components from the remaining point cloud was per-
formed with the DBSCAN (Fig. 3d). 
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The estimates for branch insertion angle were thus achieved by 
selecting a 15-cm section of the branch near the trunk that was subjected 
to principal component analysis (PCA) (Fig. 3f). The eigenvector cor-
responding to the largest eigenvalue v1 was then taken as the principal 
growth direction of the branch (Equation 3). The dot product of the 
eigenvector and unit vector of the vertical axis (ez) gave the cosine of the 
branch insertion angle, i.e., we assumed the trunk normal as perfectly 
vertical (Equation 4). The branch diameter estimate was achieved by 
projecting the 15-cm branch section onto a plane orthogonal to the 
principal eigenvector. Then, a circle was fitted to the boundary of this 
two-dimensional set of points, the diameter of which was reported as the 
branch diameter (Equation 5, Fig. 3f). 

branches = disconnectedComponents(Tree\Trunk)DBSCAN [1]  

branches={Bi}
n
i=1 [2]  

[eigenvalues, eigenvectors] = PCA(Bi) [3]  

vertical branch angle = acos (v1 ⋅ ez) [4]  

branch diameter = circlefit(Pv(Bi) )RANSAC [5] 

Bi is the set of points belonging to an individual branch i, PCA is the 
principal component analysis, v1 is the first principal direction, ez is the 
vertical axis [0,0,1], and Pv(Bi) are the points from branch i projected 
orthogonally towards the principal direction v1. 

In practice, the problem of this approach is that neighboring 
branches may touch each other outside the trunk, meaning more than 
one branch may form a joint single cluster. Clusters showing signs of 
including more than one branch were post-processed or completely 
removed from the following branch angle and diameter estimation. The 
criteria used for filtering away poor clusters not containing individual 
branches included small linearity, a too small point count, and a too 
small diameter for the set of points, the points being too far away from 
the trunk, as well as an unreasonable estimate for branch growth angle 
and diameter. 

3.4. Branch extraction with treeQSM 

A cylinder-based reconstruction technique for TLS point clouds of 
individual trees was previously proposed by Raumonen et al. (Raumo-
nen et al., 2013; Raumonen and Åkerblom, 2019). The requirements for 
the point cloud data that treeQSM can take as inputs are listed in the 

official documentation of treeQSM (Raumonen and Åkerblom, 2019). 
HHLS point clouds do not satisfy all the assumptions needed to create 
the cover-based model for a tree. However, the segmentation and cover 
set creation methods of treeQSM can be used for determining the branch 
inventory of a tree. Here, the following functions from the treeQSM 
toolbox were used to extract the branching inventory from the denoised 
HHLS point clouds of individual trees: “sets.m”, “segments.m”, “correct 
\segments.m”, and "tree\sets.m". Parameters used for these methods are 
listed in Table A1 (in the Appendix) and discussed further in the 
treeQSM manual (Raumonen and Åkerblom, 2019). 

After extracting the individual branches with treeQSM segmentation 
methods, the branch diameter and insertion angle estimates were 
derived similarly, as described with the DBSCAN-based method. The 
segmentation of treeQSM is illustrated in Fig. 4. 

3.5. Statistical analysis 

First, we analyzed the differences between the DBSCAN and treeQSM 
methods in finding the branching locations along the tree stems and 
inspected the properties of the found branches using tree-specific 
descriptive statistics (mean, standard deviation, minimum, and 
maximum values) of branch heights, diameters, and insertion angles. 
The purpose of the comparison was to provide understanding on how 
the methods performed in reconstructing the branching of the trees and 
to enable analyzing the implications of these baseline differences to the 
calculations downstream. 

Second, we evaluated the performance of the applied algorithms in 
reproducing proxies for the knottiness variables measured in the sawmill 
with X-rays. Log-to-log direct comparisons of the point cloud-based 
branching data to the sawmill data were conducted by calculating 
proxies of the X-rayed features directly from the detected branches. 
Total knot volume within a log was calculated as the sum of the knot 
volumes estimated for each branch based on the branch diameter and 
stem radius: the knot was expected to resemble a cone extruding from 
stem pith to stem surface, linearly expanding, and revolving symmetri-
cally around the branch pith. Knot index was calculated as the ratio of 
total knot volume to the log volume. Mean whorl volume was calculated 
as the ratio of knot volume to whorl number. The number of whorls was 
defined based on hierarchical clustering of the branch heights, using a 
10-cm vertical window (i.e., groups of branches within a 10-cm vertical 
distance are considered to belong to a single whorl). Whorl distance was 
defined as the mean distance between each whorl and their two nearest 
neighbors. The evaluation considered the following statistics: bias (or 

Fig. 2. The preview of the denoising effects. Left: the original point cloud. Middle: the point cloud with points further than 1 m from the trunk removed. Right: the 
final denoised point cloud. 
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Fig. 3. The stages of the DBSCAN-based branch detection method. a) Point cloud denoising. b) Trunk detection. c) Trunk removal. d) Searching for disconnected 
components from the remaining point cloud. e) Post-processing and removal of erroneous clusters. f) Estimating geometric features of detected branches. 
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the mean difference), RMSE, both in absolute and relative terms, the 
coefficient of determination (R2), and sigma (or the standard error). 

Thirdly, for each log, we calculated the minimum, mean, maximum, 
and standard deviation of the branch diameters and insertion angles. 
These variables together with the above-listed proxies were then sub-
jected to an ensemble feature selection procedure consisting of regres-
sion trees and the Random Forest algorithm (RF) (Breiman, 2001), with 
2000 regression trees generated and two variables randomly permuted 
at each node, similarly to Pyörälä et al. (2019a). RF evaluated the pre-
diction accuracy against one-third of the sample tree data (out--
of-the-bag sample) in each regression tree. We used the analysis to 
identify the most important predictors of the X-rayed features based on 
their prevalence and averaged the effect across all regression trees. We 
assessed the final modeling accuracy within our data using the RF, based 

on the R2, p-value, and the residual standard error (RSE). 

4. Results 

4.1. Comparison of the branch detection methods 

Of the two tested approaches for determining the branch inventory of 
individual trees, treeQSM identified a larger number of branches than 
the DBSCAN. An example case illustrating individual branch detection is 
given in Fig. 5. On average, treeQSM found 37 branches more (+46%) 
per tree than the DBSCAN method. Fig. 6 illustrates that the number of 
detected branches was lower with DBSCAN both among the lowest 
branches and the highest branches, i.e., treeQSM performed better in 
branch identification throughout the length of the stem: The minimum 

Fig. 4. Visual illustration of the treeQSM segmentation outcome in two example stems. Boldfaced points in different colors correspond to individual branches. Trunk 
height colored in meters. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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and maximum heights of the detected branches averaged 0.40 m 
(17.6%) and 1.44 m (17.9%) lower and higher, respectively, with 
treeQSM compared with DBSCAN. 

On average, DBSCAN found larger branches with steeper insertion 
angles than treeQSM (Fig. 6): the tree-specific minimum and mean 
branch diameters found by treeQSM were, on average, 28% and 1.6% 
smaller, respectively, than with DBSCAN. treeQSM, thus, also detected 
smaller branches that were overlooked by DBSCAN. However, the tree- 
specific maximum branch diameters were 4.8% larger with treeQSM 
than with DBSCAN, while the variance around the mean of the tree- 
specific maximum branch diameters was slightly greater with DBSCAN 
than with treeQSM; 3.1 cm and 2.1 cm, respectively. The methods also 
differed between the estimated branch insertion angles, especially be-
tween the minimum values. On average, DBSCAN gave 8.8% higher 
tree-specific mean branch insertion angles. 

4.2. Results of the proxy-based approach 

Log volumes from the HHLS point clouds were overestimated with a 
bias of 0.024 m3 (10.2%) compared with the X-rayed values (Table 2). 
Most of the discrepancy was likely caused by bark removal and butt 
swelling at the sawmill prior to the X-raying, despite the obvious un-
derestimation of the relative stem diameters in the HHLS point clouds 
(Fig. 7). Stem occlusion in the top logs also affects the representation of 

the volume. DBH was estimated with high accuracy; a bias of − 0.37 cm 
(− 1.2%) compared with the field-measured values. 

The comparison of the target knot variable proxies from the point 
clouds to the values measured with X-rays revealed that both branch 
extraction methods mostly overestimated small values and under-
estimated large values (Fig. 7). The comparisons gave relatively high 
RMSEs above 50% and up to almost 90% for all the variables (Table 2), 
which highlights the large variation in the detected and modeled 
branches (compare Figs. 6 and 7). 

The total knot volume within logs and the ratio of knot volume to log 
volume (knot index) were estimated with − 6.7% and 25.3%, and − 27% 
and 4% relative biases with DBSCAN and treeQSM, respectively 
(Table 2). Fig. 8 illustrates how the knot volume and knot index are 
overestimated by treeQSM in the butt and middle logs, while both 
methods underestimate the features in the top logs. Both methods show 
slightly larger variation in the values compared with the X-rays, except 
for the knot indexes in the top logs. The mean whorl volumes were 
estimated with low biases, while the maximum whorl volumes were 
underestimated by both methods, with biases of − 45.9% for DBSCAN 
and − 36.6% for treeQSM (Table 2). The mean whorl volume was 
overestimated by both methods, especially in the butt logs, and under-
estimated in the top logs (Fig. 8). 

The treeQSM method overestimated the number of whorls compared 
with the X-rayed data (bias of 19.3%), most notably in the middle logs 
with 54% overestimation (Table 2). The DBSCAN method under-
estimated the whorl numbers with an overall bias of − 11.4% (Table 2). 
Both methods underestimated the number of whorls in the upper stem 
parts. The number of detected whorls was directly reflected on the 
estimated mean whorl distances, yielding an underestimation of 0.08 m 
(− 29.3% bias) with treeQSM and an overestimation of 0.02 m (6.1% 
bias) with the DBSCAN method (Table 2). The treeQSM method also 
gave smaller variation of the whorl distances compared with the X-rays 
and the DBSCAN (Fig. 8). 

Overall, the DBSCAN method obtained the most accurate proxies for 
the knottiness of the middle logs, i.e., gave nearly unbiased estimates for 
the number of whorls and the mean whorl volume, and as a result, the 
knot volume and knot index (Table 2, Fig. 8). 

4.3. Results of the model-based approach 

When we subjected the HHLS features to the RF models, they pre-
dicted the X-ray features with R2s of 0.47–0.54 using the treeQSM fea-
tures and 0.56–0.64 using the DBSCAN features, with relative RSEs of 
9.6–18.7% and 8.8–16.5%, respectively (Table 3). 

Following the regression tree-based selection procedure, the models 
used 4–11 features in the predictions. Of the treeQSM features, the direct 
proxy of the knot volume was the most important predictor for the X- 
rayed knot volume and the whorl features (Table 3). In addition, the 
treeQSM-derived knot index, mean branch diameter, and mean whorl 
volume were among the most important predictors of the other X-ray 
knot variables (Table 3). With the DBSCAN features, the mean whorl 
volume was the most important factor predicting knot volume and 
maximum whorl volume (Table 3). The maximum branch insertion 
angle was the most important predictor of the X-ray knot index, while 
the maximum branch diameter and mean whorl volume explained most 
of the variance in the mean whorl volumes (Table 3). The DBSCAN- 
derived knot index and knot volume best explained the X-ray whorl 
features (Table 3). 

Based on Fig. 9, modeling with either set of the HHLS features yiel-
ded quite similar predictions. The models underestimated the largest 
values and overestimated the smallest values, but the DBSCAN features 
gave slightly less errors at both ends, as can also be deduced from the 
slightly smaller RSEs in Table 3. 

Fig. 5. The illustration of branch detection with both methods, the DBSCAN 
clustering method (left) and treeQSM segmentation (right). 
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5. Discussion 

5.1. Overview 

In this study, we investigated the performance of two point cloud 
processing algorithms in the task of extracting individual branches from 
terrestrial point clouds of Norway spruces, obtained with a handheld 
laser scanner. We compared the two methods with each other, as well as 
with knot features measured in an industrial sawmill with X-rays to 
assess their feasibility in reproducing industrially relevant data on 
knottiness. The results showed that while the treeQSM method captured 
more branches and a wider range of branch properties, the sparser 
features recorded by the developed DBSCAN method more closely re-
flected the measurements made in the sawmill. However, neither 
method was capable of directly estimating the important knottiness 
features in the standing trees. Instead, the use of either of the feature 
spaces yielded promising results when used as predictors in the Random 
Forest -based modeling approach, supporting the idea that the tree 
structures recorded with under-canopy mobile point clouds produce 
useful data to build models for predicting wood quality in standing 
timber. 

The main motivation for this investigation was that the mobile point 
clouds have roughly 10 times the measurement speed in the field when 
compared to static point clouds, and they are also applicable to practical 
solutions such as harvester integration. These solutions will enable 
collecting databases that consist of point cloud-based information of tree 
characteristics, harvester data, and wood quality data from the sawmill. 
Based on our results, the collection of branching data with mobile laser 
scanners is justified for the purpose of building novel wood quality 
modeling frameworks. 

5.2. Data and method considerations 

The methods previously developed for static terrestrial point cloud 

data expect are highly accurate (ranging accuracy of a few millimeters) 
and dense point clouds, while the mobile point clouds are generally less 
accurate (ranging accuracy 2–3 cm) and sparser. In addition, mobile 
laser scanners usually have larger footprints, and the width of laser 
beams can be larger than the branch diameters. Despite these obvious 
differences, our results were comparable to our previous results with the 
static terrestrial point clouds and indicated the presence of similar 
limitations as those found, e.g., by Pyörälä et al., 2018b, 2018c: the 
accuracy and coverage of the point clouds drastically decrease above the 
live crown base height, due to the effects of occlusion, increasing point 
spacing, and footprint. However, the lower tree parts that are more 
thoroughly recorded, yield sufficient branching data to be used for 
empirical modeling of wood quality features. Our results indicated that 
the choice of point cloud processing algorithms (and their parameters) 
mostly affected the sensitivity and robustness of the branch detection 
criterion. 

The treeQSM toolkit makes several assumptions concerning the input 
point cloud data (Raumonen and Åkerblom, 2019). One issue is the poor 
visibility to higher parts of the trees above the live crown base. Also, the 
needles covering the branches affect the reconstruction of the branches. 
The methods extracting individual trees from the point clouds of larger 
forest areas with multiple trees do make errors. Regardless of these 
shortcomings in our data, the cover-based segmentation method in 
treeQSM still produced useful branch inventories. 

The DBSCAN method produced the segmentation of the point cloud 
into branches, but as the trunk extraction was not always complete, the 
search for disconnected components failed to produce individual 
branches in these parts of the stems. The treeQSM method detected more 
branches, but in comparison to the X-rayed references, many of the 
detected branches may either be false positives or so small in size that 
the X-rays do not detect them as knots. On the other hand, the DBSCAN 
method only detected larger branches but still underestimated the 
maximum whorl volumes. In the X-ray analysis, some of the smaller 
knots (e.g., the inter-nodal branches) may be bundled with the adjacent 

Fig. 6. Comparisons of the two algorithms used for branch extraction: tree-specific statistics of the heights, diameters, and insertion angles of the extracted branches. 
The comparison entails data from 2185 trees that were modeled with both methods. 
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larger whorls, thus decreasing the number of counted whorls and 
increasing their perceived volume. 

Both methods used the same denoised point clouds of individual 
trees. The denoising was essential to remove erroneous points from the 
point cloud and it also had the effect of removing varying amounts of 
foliage from the trees, which helps the geometric analysis of the woody 
parts. Although necessary, the denoising process may have a non- 
negligible result on the branch detection capability of both studied 
methods, as some parts of the branches may be lost because of the 
denoising. This is especially the case when the point density varies be-
tween trees and within a tree at different heights, which complicates the 
accurate classification of noisy points. In addition, the varying point 
densities of different point clouds of individual trees likely impacts the 
effectiveness of the denoising method, which was unnormalized with 
respect to the point density. However, the effect on comparability of the 
two methods with respect to each other should remain minimal, as the 
input point clouds went through identical denoising processes. 

5.3. Comparisons with previous research 

The accuracies of the HHLS point clouds were found to be a few 
percent in the estimation of the stem diameters and volume by Hyyppä 
et al. (2020a). However, the processing method underestimates the stem 
diameters at the lowest part of the first log and overestimates them close 
to the treetop (Hyyppä et al., 2020b). In our current study, the stem 
extraction was slightly more inaccurate, which was probably due to the 
more challenging conditions in the Norway spruce-dominated stands 
and the discrepancy between the over-bark and under-bark stem 
diameters. 

Previous studies on the extraction of the branching patterns from 
mobile point clouds are few. Puliti et al. (2023) estimated tree 
height-growth trajectories using UAV laser scanning data and deep 
learning techniques to detect individual branch whorls with an accuracy 
better than 10 cm for the estimation of the mean annual height incre-
ment. In our study, mean whorl-to-whorl distances within trees were 

Table 2 
The results of the direct comparisons of the stem and knot variables proxied from the HHLS point clouds with the X-rayed values.  

Feature Algorithm Log Bias Bias (%) RMSE RMSE (%) R2 sigma 

DBH (cm) RANSAC all − 3.650 − 1.20 % 1.765 5.78 % 0.89 0.0170 
Log volume (m3) RANSAC all 24.363 10.17 % 41.257 17.22 % 0.93 0.0280   

butt 32.900 11.10 % 41.690 14.06 % 0.97 0.0210   
middle 29.458 13.16 % 44.489 19.88 % 0.87 0.0290   
top 5.205 2.99 % 36.063 20.69 % 0.70 0.0300 

Knot volume (m3) DBSCAN all − 0.673 − 6.72 % 7.087 70.69 % 0.11 0.0060   
butt 0.746 8.04 % 6.265 67.55 % 0.22 0.0050   
middle − 0.341 − 3.34 % 6.123 60.02 % 0.24 0.0050   
top − 2.805 − 25.67 % 8.857 81.06 % 0.00 0.0060  

QSM all 2.539 25.32 % 8.618 85.96 % 0.10 0.0050   
butt 3.898 42.02 % 7.535 81.24 % 0.30 0.0040   
middle 5.071 49.71 % 8.806 86.31 % 0.21 0.0050   
top − 2.637 − 24.14 % 9.792 89.62 % 0.00 0.0060 

Max whorl volume (m3) DBSCAN all − 1.560 − 47.56 % 2.345 71.49 % 0.09 0.0020   
butt − 1.323 − 42.05 % 2.052 65.23 % 0.18 0.0020   
middle − 1.553 − 47.23 % 2.331 70.89 % 0.11 0.0020   
top − 1.862 − 53.59 % 2.677 77.07 % 0.03 0.0020  

QSM all − 1.264 − 38.53 % 2.178 66.39 % 0.07 0.0020   
butt − 0.938 − 29.81 % 1.835 58.35 % 0.18 0.0020   
middle − 1.176 − 35.77 % 2.065 62.79 % 0.10 0.0020   
top − 1.854 − 53.36 % 2.715 78.16 % 0.00 0.0020 

Mean whorl volume (m3) DBSCAN all 0.012 1.49 % 0.434 52.77 % 0.09 0.0000   
butt 0.195 27.11 % 0.419 58.05 % 0.11 0.0000   
middle − 0.064 − 7.45 % 0.411 47.69 % 0.18 0.0000   
top − 0.125 − 13.55 % 0.477 51.51 % 0.09 0.0000  

QSM all 0.001 0.17 % 0.453 55.04 % 0.05 0.0000   
butt 0.195 27.09 % 0.426 59.02 % 0.10 0.0000   
middle − 0.033 − 3.84 % 0.421 48.91 % 0.12 0.0000   
top − 0.240 − 25.96 % 0.524 56.60 % 0.05 0.0000 

Knot index DBSCAN all − 0.012 − 26.95 % 0.031 70.41 % 0.00 0.0230   
butt − 0.001 − 1.94 % 0.018 56.63 % 0.06 0.0110   
middle − 0.006 − 13.24 % 0.026 57.85 % 0.02 0.0190   
top − 0.033 − 52.54 % 0.046 73.72 % 0.00 0.0260  

QSM all 0.002 4.00 % 0.034 78.00 % 0.00 0.0220   
butt 0.009 29.78 % 0.021 67.75 % 0.09 0.0120   
middle 0.017 36.83 % 0.035 78.46 % 0.00 0.0180   
top − 0.028 − 44.94 % 0.047 75.29 % 0.00 0.0250 

Whorl distance (m) DBSCAN all 0.017 6.10 % 0.142 52.17 % 0.04 0.0880   
butt 0.008 3.30 % 0.116 45.06 % 0.07 0.0840   
middle 0.007 2.39 % 0.132 46.46 % 0.07 0.0870   
top 0.038 13.75 % 0.177 63.94 % 0.00 0.0900  

QSM all − 0.080 − 29.30 % 0.132 48.71 % 0.04 0.0930   
butt − 0.067 − 26.08 % 0.125 48.61 % 0.06 0.0930   
middle − 0.099 − 34.87 % 0.141 49.39 % 0.04 0.0910   
top − 0.073 − 26.35 % 0.132 47.63 % 0.02 0.0910 

Whorl count DBSCAN all − 1.384 − 11.37 % 5.235 42.99 % 0.08 3.7650   
butt − 2.347 − 18.39 % 5.325 41.73 % 0.13 3.8760   
middle 0.153 1.30 % 4.396 37.32 % 0.16 3.5300   
top − 1.970 − 16.70 % 5.961 50.53 % 0.01 3.4540  

QSM all 2.349 19.30 % 6.660 54.70 % 0.07 3.8450   
butt 1.111 8.71 % 4.992 39.12 % 0.16 3.9540   
middle 6.358 53.97 % 7.796 66.17 % 0.23 3.3400   
top − 0.862 − 7.31 % 7.233 61.32 % 0.00 3.6090  
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estimated with RMSEs of approximately 13–14 cm (49–52%). Hartley 
et al. (2022) inferred whorl locations based on the swelling pattern in 
the stems of Monterey pines (Pinus radiata D. Don) in New Zealand: they 
reported that the locations of the whorls were accurately estimated with 
this approach compared with the manual measurements, but the 
detection accuracy remained ca. 40%, slightly lower than what was 
found, e.g., with a TLS-based whorl extraction when compared with 
X-ray references by Pyörälä et al. (2018a). 

In our current work, we found a 43% RMSE in whorl counts within 
logs when using the DBSCAN method, which could translate into 
50–60% detection accuracy assuming a low number of false positives 
due to the negative bias. On the other hand, with the treeQSM method 
we found an overestimate of the whorl numbers in comparison to the X- 
ray. This higher inaccuracy (55% RMSE) may be due to the false posi-
tives, or detection of branches smaller than those measured by the X-rays 
(e.g., the small internodal branches characteristic for Norway spruce). 

The extraction of the branching information has been more thor-
oughly investigated with TLS point clouds (Dassot et al., 2012; Lau et al., 
2018; Pyörälä et al., 2018b; Bournez et al., 2017; Raumonen et al., 
2013). Several studies report underestimations of branching volumes, 

especially with smaller branches (Demol et al., 2022) and with the 
branches above the live crown base height (Pyörälä et al., 2018b). 
However, based on our current and previous results, the effects of such 
underestimations for the prediction of wood quality do not necessarily 
play any crucial role. Moreover, it is important to remember that the 
X-ray measurements used here do not represent the absolute truth 
concerning the explicit knottiness variables (e.g., the number and sizes 
of individual knots), rather than industrially relevant proxies of their 
impact on wood quality. 

Therefore, the model-based approach was included based on these 
previous findings, which show that direct comparisons between point 
clouds and X-raying data are not meaningful. In our study, the Random 
Forest approach yielded results of moderate accuracy. The branching 
observations made from terrestrial point clouds need to be considered as 
samples of wood quality indicators or as predictive features that are used 
to devise locally calibrated models that indirectly predict the desired 
branching features. Studies approaching a similar task have been carried 
out, e.g., by Cote et al. (Côté et al., 2012) and Lau et al. (2019). There are 
also several other modeling techniques developed to solve the task that 
relates the wood properties with external (e.g., forest management, 

Fig. 7. The results of the direct comparison of the stem and knottiness features proxied from the point clouds against the X-rayed values.  
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forest type, soil, climate, altitude, wind, and precipitation) and internal 
(e.g., stem taper, tree height, crown shape and dimensions, the height of 
the lowest dead branch, maximum branch diameter, and whorl-to-whorl 
distances) factors. These were reviewed by Drew et al. (2022). There is, 
however, a lack of sufficient transferability, accuracy, and spatial 
coverage of the wood quality models, limiting their usability in practical 
forestry. A sufficient framework for next-generation wood quality esti-
mation should entail unbiased models for the within-tree variability of 
wood quality, which was transferable to individual trees over large 
spatial extents. Novel remote and close-range sensing methods may offer 
a crucial steppingstone for this purpose (Pyörälä et al., 2019a; Van 
Leeuwen et al., 2011). 

5.4. Outlook to practical solutions 

In terms of cost efficiency and practical solutions to forestry, our 
results offer promise that mobile point clouds gathered from, e.g., 

scanners mounted on harvesters could offer ways to connect meaningful 
branching features measured in standing timber to industrial data 
sources. There are still problems to solve before the presented method 
for wood quality estimations of individual trees would be useful in 
operational forestry. Automated methods are needed for the traceability 
of individual tree stems to establish large X-ray datasets to be used as 
references. Fingerprint matching using images of log ends has been 
proposed for tracing individual logs from the harvest to the industry 
(Schraml et al., 2015), which potentially could be used to link X-ray 
reference data and terrestrial point clouds. Data acquisition with mobile 
systems performed prior to harvesting operations would provide infor-
mation useful for forest management planning but would further extend 
the traceability problem to also include matching tree positions 
measured by laser scanning with tree positions measured during the 
harvest, which could be solved using high-precision positioning systems 
on modern harvesters. Moreover, the development of faster algorithms 
for branch detection (e.g., based on deep learning) would enable 

Fig. 8. The variabilities of the X-rayed knot variables and those proxied from the point clouds with QSM and DBSCAN in the logs at different heights.  

Table 3 
The results of the Random Forest modeling approach for each studied variable: the coefficient of determination (R2), statistical significance (p) of the model based on 
the F-test, residual standard error in absolute values and relative to the observed mean (RSE), most important factors in the model based on their effect on mean 
squared error and root squared error (MIF1 and MIF2, respectively), and number of features in the final model (NoF).   

Response variable R2 p RSE RSE (%) MIF1 MIF2 NoF 

QSM Knot volume (m3) 0.54 <0.01 0.002 18.7 Knot volume Knot volume 6 
Max whorl volume (m3) 0.51 <0.01 0.001 16.7 Knot index Knot volume 7 
Knot index (%) 0.48 <0.01 0.005 11.8 Mean branch diameter Mean branch diameter 8 
Mean whorl volume (m3) 0.51 <0.01 0.088 10.6 Knot index Mean whorl volume 11 
Whorl count 0.52 <0.01 1.172 9.6 Knot volume Knot volume 6 
Whorl distance (m) 0.47 <0.01 0.03 11.2 Knot volume Knot volume 4 

DBSCAN Knot volume (m3) 0.64 <0.01 0.002 16.5 Mean whorl volume Mean whorl volume 7 
Max whorl volume (m3) 0.61 <0.01 0.001 15.6 Mean whorl volume Mean whorl volume 6 
Knot index (%) 0.61 <0.01 0.005 10 Max branch angle Max branch angle 11 
Mean whorl volume (m3) 0.59 <0.01 0.109 12.4 Max branch diameter Mean whorl volume 10 
Whorl count 0.56 <0.01 1.199 9.6 Knot index Knot volume 7 
Whorl distance (m) 0.61 <0.01 0.023 8.8 Knot index Knot volume 9  
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real-time estimations of optimal quality-bucking decisions during the 
harvests. An example of a potential real-time solution for point cloud 
classification was given by Kaijaluoto et al. (2022). The methods should 
be able to work also during poor weather conditions (snow/rain) and 
despite the disturbing debris generated by the harvesting process. 

6. Conclusions 

In conclusion, we demonstrated that mobile laser scanning data, 
accompanied by geometrical point cloud processing, and linked with 
within-stem wood properties measured at sawmills with X-ray scanners, 
can facilitate more extensive collection of wood-quality related data 
along the forest value chain. The main advantage of the technology used 
is that such laser scanners can be mounted on a harvester or an under- 
canopy flying drone, to enable the fast collection of point clouds of 
the standing timber. The under-canopy point clouds capture stem 
branching data that are relevant to predicting wood quality attributes 
used at sawmills, but do not provide data that would be directly com-
parable to the X-ray features. Possible outlooks for the future include 
accompanying the terrestrial point clouds with dense within- or above- 
canopy point clouds to overcome the limitations that are due to the 
perspective. Moreover, the traceability issue, i.e., the problems related 
to matching the logs at the sawmill to the corresponding data from the 
standing timber require further investigations. Once we can trace logs 
with sufficient precision, we will be able to collect vast amounts of 
reference data, which will pave the way for deep learning algorithms. 
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Appendix  

Table A1 
Parameters, and their values as set in the application of the treeQSM algorithm in this paper, with short explanations. 
Refer to the treeQSM manual (Raumonen and Åkerblom, 2019) for further details.  

Parameter name Value used Short explanation of the parameter 

PatchDiam 0.03–0.05 Determines the size of open sets covering the point cloud (m) 
BallRad 0.07 The radius of spherical patch used in cover generation (m) 
nmin 10 Minimum number of points in BallRad-balls 
OnlyTree 0 Is 0 if point cloud contains points not only from a single tree 
Tria 0 Is 0 if no triangulation is produced 
Dist 1 Is 1 if point-model distances are computed  
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Hyyppä, E., et al., 2022. Direct and automatic measurements of stem curve and volume 
using a high-resolution airborne laser scanning system. Science of Remote Sensing 5, 
100050. 

Kaartinen, H., et al., 2015. Accuracy of kinematic positioning using global satellite 
navigation systems under forest canopies. Forests 6 (9), 3218–3236. 

Kaijaluoto, R., et al., 2022. Semantic segmentation of point cloud data using raw laser 
scanner measurements and deep neural networks. ISPRS Open Journal of 
Photogrammetry and Remote Sensing 3, 100011. 

Lachenbruch, B., Moore, J.R., Evans, R., 2011. Radial variation in wood structure and 
function in woody plants, and hypotheses for its occurrence. In: Size-and Age- 
Related Changes in Tree Structure and Function. Springer, Dordrect, Germany, 
pp. 121–164. 

Lau, A., et al., 2018. Quantifying branch architecture of tropical trees using terrestrial 
LiDAR and 3D modelling. Trees (Berl.) 32 (5), 1219–1231. 

Lau, A., et al., 2019. Estimating architecture-based metabolic scaling exponents of 
tropical trees using terrestrial LiDAR and 3D modelling. For. Ecol. Manag. 439, 
132–145. 

Liang, X.L., et al., 2014. Automated stem curve measurement using terrestrial laser 
scanning. IEEE Trans. Geosci. Rem. Sens. 52 (3), 1739–1748. 

Lindgren, L., 1991. Medical CAT-scanning: X-ray absorption coefficients, CT-numbers 
and their relation to wood density. Wood Sci. Technol. 25 (5), 341–349. 

Luther, J.E., et al., 2014. Predicting wood quantity and quality attributes of balsam fir 
and black spruce using airborne laser scanner data. Forestry 87 (2), 313–326. 

Morgan, C.J., Powers, M., Strimbu, B.M., 2022. Estimating tree defects with point clouds 
developed from active and passive sensors. Rem. Sens. 14 (8), 1938. 

Nguyen, V.-T., Constant, T., Colin, F., 2021. An innovative and automated method for 
characterizing wood defects on trunk surfaces using high-density 3D terrestrial 
LiDAR data. Ann. For. Sci. 78 (2), 1–18. 

Oja, J., et al., 2003. Automatic grading of Scots pine (Pinus sylvestris L.) sawlogs using an 
industrial X-ray log scanner. Comput. Electron. Agric. 41 (1), 63–75. 

Puliti, S., et al., 2023. Tree height-growth trajectory estimation using uni-temporal UAV 
laser scanning data and deep learning. Forestry 96 (1), 37–48. 
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