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Abstract

Currently, there are more than 350,000 chemicals in use, while
their ecological effects are not fully understood. In this review,
we focus on pesticides, pharmaceuticals, and personal care
products and discuss their potential impact on aquatic biodi-
versity and ecosystem functions. We critically reflect on stra-
tegies to reduce their environmental release and mitigate
potential effects. Various mitigation strategies are available to
reduce contaminant concentrations in surface waters, but their
efficiency varies under the current procedures. Intervening at
the start of chemicals’ life cycles or reducing their diversity and
production amounts holds promise for reducing surface water
exposure. This approach could facilitate appropriate environ-
mental risk assessments for each authorized chemical.
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Introduction

Chemicals, the term is here interpreted in its widest
sense, are central to most if not all human activities on
our planet to increase the efficiency in businesses,
support human and animal health, and enhance the

overall experience during spare time activities [sensu 1].
This wide use of chemicals is reflected by an estimated
100,000 chemicals being in commerce in the European
Union (EU) [2], of which, according to the European
Chemical Agency (ECHA), more than 25,000 chemicals
are currently registered under the REACH framework
(produced or imported equal to or above 1 ton per year)
[3]. Roughly 240 and 80 million tons out of a total pro-
duction volume of 300 million tons are considered as
hazardous to human health and the environment,
respectively [4]. Globally, over 350,000 chemicals have
been registered for production and use [1], while for the
majority of these chemicals and their transformation
products, information of their ecotoxicological potential
is lacking or incomplete [2]. The number of chemicals
in combination with their production volume, of which
approximately 25% are known to be hazardous to the
environment, and the massive lack of information
regarding their potential environmental impact illus-
trate the field of tension in which the current way of life
contrasts a sustainable use of natural resources with
consequences for biodiversity and ecosystem functions
[5]. Ultimately, our current life or economic activity has
initiated and accelerated the “chemization” of natural
environments [5—7] and by doing so also threatened
biodiversity and its associated functions through pollu-
tion [8—10].

With the aim to “reduce pollution from all sources to
levels that are not harmful to biodiversity and ecosystem
functions,” the post-2020 Global Biodiversity Frame-
work addresses exactly this challenge with special
attention to nutrients, pesticides, and plastic waste
[11]. Being an ambitious goal, it is also holistic in nature.
In the present contribution, however, we focus on
aquatic ecosystems motivated by their concave location
in the landscape collecting chemicals used in their
catchments [12]. Moreover, we address a subset of
chemicals some of which are also specifically addressed
by this target (that is agrochemicals represented by
pesticides) as well as pharmaceuticals — both of which
have intended biological effects. This focus is further
motivated by the fact that more than 400 agrochemicals
(e.g., pesticides) are approved for use in the EU [13],
and more than 3000 active pharmaceutical ingredients
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are currently regulated in the EU [14]. This selection of
chemicals additionally allows us to address point and
diffuse (nonpoint) sources of pollution, which are
discussed against the current state of knowledge
regarding their effects. We also highlight some measures
proposed in the literature to mitigate their impacts.

Pesticides in the aquatic environment — framing the
problem

Pesticides are applied to agricultural fields to protect
crops from pests such as insects, fungi, and weeds
(Figure 1). As an early example, dichlorodiphenyltri-
chloroethane, also known under the abbreviation DDT,
is an organochlorine insecticide that was first used to
control vector-borne diseases in the second half of World
War Il and was later used in agriculture, with a

Figure 1

substantial historical footprint: DD T attracted attention
in the 1960s as its agricultural use was correlated to
environmental impacts exemplified by eggshell thinning
and ultimately declines in bird populations [15]. This
organochlorine insecticide was subsequently banned in
1972 for agricultural use in the USA and in the 2000s
worldwide, due to its high persistence, bioaccumulative
properties, and endocrine activity [16]. Obviously, this is
an example of just one pesticide, while several hundred
pesticides are applied today with high total application
amounts reaching or partly exceeding 60 kg ha 'a year
[17]. However, today’s pesticide problems may no
longer be as graspable as they were for DDT [18], which
was traceable through the food chain, persistent in
nature, and thus analytically quantifiable over long time
periods in various environmental compartments (e.g.,
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Schematic overview showing potential entry paths of chemicals into surface water bodies, where they pose risks for biodiversity and ecosystem functions.
The scheme depicts the worst-case situation without management applications, which could reduce the influx of chemicals into surface water bodies. The
delineated chemicals include pesticides (fungicides, herbicides, and insecticides) originating from agricultural fields (right side), pharmaceuticals and
personal care products (PPCPs) from domestic households, hospitals, pharmaceutical formulation facilities, as well as wastewater treatment plants, and
antibiotics and growth promoters from livestock production (left side). The breadth of the arrows indicates the amount of chemicals that enter surface

waters. Created with BioRender.com.
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biota or sediments). Today’s pesticide problems could
rather be characterized as more complex, intertwined,
ephemeral but still spatially expansive.

A meta-analysis from 2013 covering regions in Germany,
France, and Australia pointed to negative impacts of
pesticides on aquatic invertebrate biodiversity in agri-
cultural streams (Figure 1) [19]. The authors also
documented that the effect size, or the magnitude of
change in biodiversity, is positively correlated with the
toxic units of pesticides measured during the study
duration at the sampling sites. Toxic units refer to
measured pesticide concentrations being normalized by
their ecotoxicological potential taking advantage of
median effect concentrations determined during (non)
standardized laboratory-based dose—response assays
[20]. In other words, the impact on biodiversity
increased with increased pesticide concentration, more
specifically with the ecotoxicological potential of the
locally measured pesticide mixture. Losses in macro-
invertebrate species being considered sensitive to
pesticide contamination have also yielded a positive
correlation with the ecosystem function organic matter
decomposition in streams, suggesting an indirect link
between loss in macroinvertebrate biodiversity and
ecosystem-level function that may propagate along the
food web [10]. These effects were partly recorded at
pesticide concentrations being considered as environ-
mentally protective (e.g., below regulatory threshold
levels [RTLs]) calling for further attention. This call is
further substantiated by a global meta-analysis of
approximately 11,000 measured insecticide concentra-
tions in surface waters and sediments: Stehle and Schulz
[9] report that in more than 50% of the cases, the RTL is
exceeded. Similarly, comprehensive evaluations high-
lighted that surface waters throughout FEurope
(n > 8000) are to an even increasing extent exposed to
pesticides at concentrations potentially affecting
important species groups (e.g., invertebrates and plants)
[21,22]. In the light of reported effects on biodiversity
and ecosystem functions at concentrations below the
RTL, these studies jointly point toward the significance
of pesticides for the disruption of ecosystem integrity of
agricultural streams.

Pesticides in the aquatic environment — potential
solutions

Reducing pesticide application might be viewed — also
according to the post-2020 Global Biodiversity Frame-
work — as a significant measure to limit effects on
regional biodiversity and ecosystem functions. However,
a recent study by Schulz et al. [18] suggests that a
reduction in the applied amount of pesticides does not
necessarily result in a lower ecotoxicological potential of
the total pesticide cocktail being applied to agricultural
fields. Reducing the application of one group of in-
secticides usually leads to a replacement by another
group of insecticides ensuring plant protection. This
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procedure may shift risks from one taxon to another
taxon. In their publication, Schulz et al. [18] highlight
that a reduction in organophosphate and carbamate ap-
plications reduced the total applied toxicity for fish,
mammals, and birds. At the same time, these classes of
insecticides have been replaced mainly by pyrethroids
and neonicotinoids, resulting in a substantial increase in
the total applied toxicity for aquatic invertebrates as
well as pollinators, though lower pesticide amounts are
applied. Similarly, in Europe, the recent ban of most
neonicotinoids has or will shift agricultural producers
toward other pesticides, most of which will be pyre-
throids [23]. This strategy may, as shown in France, shift
the ecotoxicological burden from pollinators to aquatic
invertebrates and fish [23]. These insights challenge the
belief that a reduction in the amounts of pesticide
application will indeed lead to a reduction in their ef-
fects in the environment as the protection of crops still
needs to be achieved with the use of more efficient
pesticides. While such a strategy might reduce the po-
tential risk for some taxa, this is to the expense of
others, calling for a holistic framework.

During and following pesticide application, spray drift
and surface runoff are processes carrying pesticides from
agricultural fields into adjacent water bodies. Spray drift
is, among others, a function of wind speed carrying
pesticides during spraying in the direction of the stream
[24], which is partly mitigated by regulations prohibit-
ing spraying when a certain wind speed is exceeded as
well as the use of proper spraying equipment [25].
Moreover, shrubs and trees in the riparian vegetation can
buffer the entry of pesticides through spray drift func-
tioning as a barrier [26]. Similarly, riparian vegetation
could retain runoff, and thus, the pesticides get carried
with the runoff into the local stream (Figure 2) [27,28].
However, the effectiveness of such measures is signifi-
cantly reduced by erosion rills functioning as preferen-
tial low pathways directly guiding runoff into surface
water bodies [29—31]. Consequently, the release of
pesticides from agricultural fields to adjacent water
bodies through spray drift and runoff may be mitigated
only to a certain extent, which greatly depends on a
proper landscape management (drainage might reduce
mitigation measures [32,33]) including the optimization
of the riparian vegetation to retain pesticides during
spraying and runoff events (Figure 2) [34]. Furthermore,
fieldwork with heavy machinery, such as tractors or
harvesters, should only be carried out perpendicular to
the slope of the field to create track groves that inter-
cept runoff water and prevent it from flowing over the
edge of the field. However, the uncertainty regarding
the short- and long-term efficiency of these measures
calls for a significant reduction of pesticide application
(both in amounts and toxicity equivalents) as also sug-
gested by the European Green Deal [35]. Although
these nonpoint sources of pollution remain a widespread
contaminant pathway, the influence of point sources of
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Figure 2
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Schematic overview of potential management applications to reduce the influx of chemicals into surface water bodies. These management applications
include vegetated buffer strips, shrubs, and trees in the riparian vegetation that act as spray drift barriers and buffer the entry of pesticides; vegetated
systems like natural or constructed wetlands that function as retention basins for pesticides, pharmaceuticals, and personal care products (PPCPs), due
to a directed influx of chemicals into vegetated systems via drainage ditches (agriculture) or sewage channels (wastewater treatment plants); reducing the
demand for animal protein, depicted as smaller livestock production, to minimize the amount of applied antibiotics and growth promoters that are ulti-
mately transported into surface waters via animals’ excretions; advanced treatment techniques applied during wastewater treatment, such as ozone
oxidation (depicted as ozone molecule) and the use of granular activated carbon filters, to reduce the loads of PPCPs. The width of the arrows indicates
the amount of chemicals that enter surface waters. Ultimately, these management applications should contribute to safeguarding aquatic biodiversity and

ecosystem functioning. Created with BioRender.com.

pesticides also requires attention. For instance, confined
animal feeding operations, stormwater runoff, and
wastewater treatment effluents are known point sources
substantially contributing to the transfer of pesticides
into aquatic systems, particularly in urbanized
areas [36].

Once pesticides have entered the surface water body,
vegetated systems such as natural or constructed wet-
lands could further mitigate potential negative impacts
(Figure 2). Indeed, the suitability of these systems to
reduce the concentration of hydrophobic insecticides
was demonstrated with removal efficiencies partly above
90% [reviewed in 37]. The reduction is driven by

adsorption to sediments and macrophytes [38] or the
trapping of the suspended particles carrying the in-
secticides [39]. In addition to these processes, photol-
ysis, hydrolysis, and microbial degradation were
suggested as main drivers for the reduction of pesticide
concentrations in vegetated systems [40]. Also, for less
hydrophilic pesticides, such as fungicides, vegetated
systems lead to partly high retention (up to 100%)
depending on physicochemical properties of the pesti-
cide and system inherent characteristics [41]. In a case
study within a vine-growing area in Germany, for
example, vegetated treatment systems reduced the
peak concentration of fungicides reflected by a lower
ecotoxicological potential for fish, invertebrates, and
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algae. The efficiency to reduce this ecotoxicological
potential is mainly explained by plant density and size-
related properties of the systems [42]. Hence, these
vegetated treatment systems can indeed play a signifi-
cant role in the mitigation of pesticide effects within
agricultural streams if relevant factors are considered.
Using natural vegetation cover and its retention poten-
tial advantageously, this strategy will require reassessing
some currently applied management strategies such as
regular dredging or scraping of surface ditches, which
may severely reduce aforementioned benefits for
containment degradation [43]. However, aquatic plants
in vegetated treatment systems may only initially act as
a sink for contaminants becoming a source once stable
compounds desorb [44] or, when taken up into the
plant, being consumed by detritivores [45].

Pharmaceuticals and personal care products in the
aquatic environment — is there a risk?

The attention toward pharmaceuticals and personal care
products (PPCPs) as aquatic contaminants of emerging
concern has been growing over the last 20 plus years due
to their extensive application for human and veterinary
disease prophylaxis and treatment [6,46,47], growth
promotion [48], and the prevention of bacteria-induced
crop damage [49]. PPCPs cover a wide range of chemical
classes including pharmaceuticals, such as antibiotics,
anti-inflammatory drugs, painkillers, B-blockers, anti-
epileptics, as well as personal care product ingredients,
such as antimicrobials, synthetic musks, insect re-
pellents, and sunscreen UV filters (as reviewed in Ref.
[50]). In the last years, two main reasons caused the
observed increase of PPCPs’ global use and consump-
tion: on the one hand, the worldwide increase in PPCP
use by humans. In addition, the amplified level of
prosperity coupled with easy-to-access medicines
contributed to an increased use of PPCPs. On the other
hand, the raising demand for animal proteins intensifies
livestock and crop production that requires a signifi-
cantly higher use of growth promoters and antibiotics
[51,52]. Despite their widespread global use, PPCPs
were largely underrepresented in large-scale monitoring
programs until the 2010s. Until then, only usual sus-
pects such as diclofenac and carbamazepine were
monitored. This is reflected in a meta-analysis by
Wolfram et al. [22] on the occurrence of organic chem-
icals in surface waters throughout Europe, where only
~0.5% of measurements (35,000 out of 8.3 mil) were
related to PPCPs indicating a blind spot in our under-
standing of surface water contamination.

Because of their incomplete metabolization and degra-
dation, substantial amounts of many PPCPs used by
humans and for livestock are frequently detected in
effluents of wastewater treatment plants, livestock
production facilities, and hospitals (Figure 1) [53,54] in
the range of ng L' to pug ™! [55]. These concentra-
tions are unlikely to cause acute effects in aquatic
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organisms (e.g., Refs. [56—58]). However, the contin-
uous exposure (partially over the entire life cycle) of
aquatic organisms inhabiting exposed stream reaches
may induce chronic effects, such as changes in behavior,
growth, and reproduction [59,60]. Accordingly, a meta-
analysis at the scale of the USA [55] pointed to a
medium to high risk of several PPCPs based on risk
quotients (RQs). The RQs were calculated as the ratios
of measured or predicted environmental concentrations
and the predicted no-effect concentration, which is the
concentration at which no adverse effect on aquatic or-
ganisms is expected, whereas the latter concentrations
only included chronic toxicity values for fish. It is
important to note that Deo [55] only considered a
fraction (n = 93) of the total number of PPCPs used for
human and livestock (>3000) [14]; therefore, the risk of
PPCPs in the aquatic environment is not fully reflected.
Accordingly, the answer to the question of how impor-
tant PPCPs are for the biodiversity decline in aquatic
ecosystems remains speculative [61], despite being
listed as one of the biggest emerging threats for fresh-
water biodiversity [62].

In addition, antibiotic-resistant bacteria can overcome
the inhibitory action of one or more antibiotics. Such
resistances consequently diminish the success of in-
fectious disease treatment, resulting in both important
economic and societal consequences [63]. Wastewater
treatment plants have been identified as one of the most
important entry paths for antibiotic resistance from
humans to freshwater environments [64] since the
sewage entering the wastewater treatment plants com-
bines the excreta and residues produced in the served
area. Consequently, several studies (e.g., Refs. [65—67])
point to an increased tolerance of microbial commu-
nities downstream of wastewater treatment plants.
Briefly, shifts in the community composition to more
tolerant species, when comparing downstream to up-
stream communities, may ultimately lead to shifts in
ecosystem performance once tipping points are excee-
ded (e.g., Refs. [68—70]). From the precautionary
principle point of view, society should already act now to
reduce the influx of PPCPs to streams and rivers,
thereby safeguarding the integrity of such ecosystems.

Pharmaceuticals and personal care products in the
aquatic environment — potential options to
counteract

A reduction of PPCP surface water concentrations
seems to be a sensible measure to reduce the potential
for biodiversity effects and the development of PPCP
resistance over the long term. To achieve this goal, we
see several leverage points that will help to manage and
control PPCP occurrence in the environment. The first
opportunity for minimizing PPCP contamination and
environmental risks is at the consumer level, with
respect to (i) fewer prescriptions; (i) reduced disposal
of unwanted or leftover PPCPs through the sink, toilet,
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or garbage; and (iii) reduced meat consumption, which
reduces the application of pharmaceuticals and growth
promoters in livestock (Figure 2).

Antibiotics, for example, are a group of pharmaceuticals
that are an indispensable and central pillar in medicine
since their discovery in the late 1920s [71]; however,
antibiotic resistance is a major and increasing global
concern. Given that antibiotics can be considered a
finite resource and only few new antibiotics are devel-
oped nowadays, existing antibiotics must be used more
responsibly to guarantee their medical benefit over the
long term. One of the WHQO’s cornerstones in the
strategy for the containment of antimicrobial resistance
from 2001 is to address unnecessary and incorrect use of
antibiotics to maximally slow down the spread of anti-
biotic resistance [72]. In this context, Sweden could be
seen as a role model on the European scale, given the
early action in the mid-1990s to initiate long-term and
structured measures on both the local and national level.
Within the Swedish healthcare system, data for contin-
uous resistance surveillance are being generated by
relatively frequent sampling of infected patients and the
culturing of obtained samples. Furthermore, treatment
recommendations for common infections in outpatient
care are in place that resulted in a sustained decrease in
antibiotic consumption. These measures helped in
keeping the level of antimicrobial resistance among the
lowest within Europe [73].

Regarding the disposal of unwanted or leftover PPCPs,
Wieczorkiewics et al. [74] showed that a substantial
share of PPCP users disposed their medication in the
household garbage (59% of respondents) or flushed
them down the toilet and sink (31%). Strikingly, the
majority of users (>80%) never received information
about proper disposal. Therefore, public education on
proper PPCP disposal is urgently needed. Furthermore,
the increasing global demand for animal protein is
predicted to significantly affect the antibiotic use in
livestock up to ~106 kt (67% increase compared to
2010 51), of which a share will ultimately end up in
surface waters due to the use of manure as fertilizer.
"This poses a risk for a decline in freshwater biodiversity
in general, as well as the development of antimicrobial
resistance in particular (Figure 1) [75]. Consequently,
reducing global demand for animal protein, such as
through lower meat intake or personal consideration of
vegetarian or vegan diets, would contribute to mitigating
environmental risks associated with livestock produc-
tion and farming (Figure 2).

Another way of controlling PPCPs at their source is
addressing the waste produced by pharmaceutical in-
dustries and hospitals. Studies showed consistently
higher levels of some PPCPs in effluents of pharma-
ceutical formulation facilities and hospitals than those in
urban effluents with which those effluents were mixed,

indicating that pharmaceutical formulation facilities and
hospitals are one of the main sources of particular
PPCPs (Figure 1) [53,76]. Small-scale, onsite facilities
that enable a pretreatment of hospital wastewater
before being discharged into the municipal wastewater
system would help to reduce levels of certain PPCPs
and counteract antimicrobial resistances. In addition,
pharmaceutical industries could receive (financial) in-
centives to manufacture green pharmaceuticals [77],
which are more prone to degradation after consumption
and are safer for the environment [78].

Furthermore, advanced treatment techniques applied
during wastewater treatment, such as oxidation with
ozone and the application of granular activated carbon
(GAC), showed promising results (Figure 2). Ozonation
has shown a high potential for the oxidation of PPCPs in
wastewater [79,80], with doses of 5—15 mg ozone Lt
leading to a complete disappearance of most of the
assessed PPCPs. However, ozonation may only result in
partial oxidation of PPCPs, resulting in biologically still
active oxidation products. Nevertheless, studies on
ethinylestradiol and carbamazepine [81,82] reported that
partial oxidation was sufficient to significantly reduce the
toxicological potential of the PPCPs. In a similar manner,
the application of GAC showed up to 99% reductions in
PCPP loadings in wastewater treated in a plant equipped
with a full-scale GAC treatment facility [83].

Finally, as for pesticides, the application of constructed
wetlands showed great potential for the removal of
human and veterinary PPCPs from wastewater effluents
(Figure 2). Constructed wetlands reduce the load of
PPCPs mostly through biodegradation (aerobic and
anaerobic), often in direct conjunction with further
processes such as (ad)sorption to soil particles, direct
plant uptake, and photodegradation [84,85]. Using
these processes, up to 93% and 98% of the most widely
studied human and veterinary PPCPs were reported to
be removed [84,86,87]. However, the effective removal
of PPCPs in constructed wetlands requires an inte-
grated design that ensures biodegradation by using
substrate material with high adsorption capacity, abun-
dance of organic matter, and a high surface area, which
enhances the removal of PPCPs and ensures a good
functioning and efficiency of the constructed wetlands.

Concluding remarks

This overview suggests that some measures are already
available to reduce the loss of pesticides and PPCPs
from different land uses to adjacent water bodies
(Figure 2), with their efficiency being variable. How-
ever, a reduction in the application of pesticides without
considering their ecotoxicological potential may be
misleading. Achieving the goal as postulated in the post-
2020 Global Biodiversity Framework might require
rethinking and likely rebuilding of the current agricul-
tural landscape and revising practices. For instance,
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enlarging buffer strips, that is areas not being sprayed by
pesticides, around rivers and streams could further limit
pesticide fluxes through spray drift and runoff [34]. It
might be an option to use this area for organic farming or
other purposes such as the development of a network of
natural habitats. The latter could serve also as refugia for
species in the landscape and, in particular, for organisms
that can suppress pest species due to predation [88].
Such biological pest control measures could be supple-
mented by a more heterogencous culturing of crops
(Figure 2) with crop rotation, creating a more resilient
agricultural production in case of insect pest outbreaks
[89]. Synergistic effects could also be leveraged via the
careful combination of aforementioned approaches.
Drainage water management in the agricultural land-
scape has become more important in recent decades due
to the seasonal oversupply or undersupply of water [90],
an issue that will be further exacerbated due to climate
change. Thus, establishing sufficient retention areas for
drainage or runoff water would both improve water
availability during arid times and provide degradation
opportunities for pesticides as well as veterinary phar-
maceuticals. In the case of human PPCPs, a combina-
tion of approaches seems suited to combat associated
implications for biodiversity, ecosystem functions, and
human health. It is self-evident that a reduction in
prescription and use of pharmaceuticals in combination
with a more sustainable, or at least wider known, waste
collection scheme could reduce concentrations in and
thus exposure of receiving water bodies. Decentralized
pretreatments (e.g., ozonation) of wastewater might
further reduce the release from hot spots such as hos-
pitals, while the wide diversity of chemicals used in
households might be ideally treated by means of end-of-
pipe technologies, which treat wastewater before being
released to the environment. Although being relatively
well-framed challenges, addressing them in a reliable
and scientifically sound manner remains a multi-level
attempt balancing environmental, societal, and eco-
nomic interests, requiring, for sure, thinking outside of
current boxes backed by scientific support and appro-
priate resources. Against the background of the entire
arsenal of chemicals employed for various purposes,
which has clearly outpaced our ability to predict or es-
timate environmental risks, an innovative strategy is
required that allows us to reduce the diversity and
amount of applied chemicals [2,91].
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