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Significance

Understanding the mechanisms 
structuring soil bacterial diversity 
is central to predicting how 
organisms and communities 
respond to biotic/abiotic 
disturbances. Metabolic theory 
has provided a framework to 
explain patterns of physiology 
and diversity in ecological 
communities. We established 
a quantitative model to 
incorporate pH into metabolic 
theory to capture some of the 
unexplained variation in bacterial 
diversity across scales. We 
combined laboratory 
experiments at the level of a 
single species with meta-analysis 
at the level of community at 
continental and global scales to 
build predictive models of 
species and community diversity. 
The conceptual framework firstly 
incorporated pH into metabolic 
theory to advance accuracy in 
model predictions of bacterial 
diversity. Our study allows for 
further incorporation of multiple 
factors into MTE-based models.

Author contributions: L.L., Y.J., X.-X.Z., and B.S. designed 
research; L.L. and Y.J. analyzed data; and L.L., Y.J., F.D.-A., 
T.W.C., P.L., M.B., J.Z., Q.X., X.-X.Z., and B.S. wrote the 
paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2023 the Author(s). Published by PNAS.  
This article is distributed under Creative Commons 
Attribution-NonCommercial-NoDerivatives License 4.0 
(CC BY-NC-ND).
1L.L. and Y.J. contributed equally to this work.
2To whom correspondence may be addressed. 
Email: yjjiang@issas.ac.cn, X.X.Zhang1@massey.ac.nz, or 
bsun@issas.ac.cn.

This article contains supporting information online at 
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas. 
2207832120/-/DCSupplemental.

Published January 10, 2023.

ECOLOGY

Integrating pH into the metabolic theory of ecology to predict 
bacterial diversity in soil
Lu Luana,1 , Yuji Jianga,b,1,2 , Francisco Dini-Andreotec,d , Thomas W. Crowthere, Pengfa Lif, Mohammad Bahramg,h , Jie Zhenga, Qinsong Xui , 
Xue-Xian Zhangb,2 , and Bo Suna,2

Edited by James Brown, The University of New Mexico, Morro Bay, CA; received May 10, 2022; accepted December 12, 2022

Microorganisms play essential roles in soil ecosystem functioning and maintenance, but 
methods are currently lacking for quantitative assessments of the mechanisms underly-
ing microbial diversity patterns observed across disparate systems and scales. Here we 
established a quantitative model to incorporate pH into metabolic theory to capture 
and explain some of the unexplained variation in the relationship between temperature 
and soil bacterial diversity. We then tested and validated our newly developed models 
across multiple scales of ecological organization. At the species level, we modeled the 
diversification rate of the model bacterium Pseudomonas fluorescens evolving under 
laboratory media gradients varying in temperature and pH. At the community level, 
we modeled patterns of bacterial communities in paddy soils across a continental scale, 
which included natural gradients of pH and temperature. Last, we further extended our 
model at a global scale by integrating a meta-analysis comprising 870 soils collected 
worldwide from a wide range of ecosystems. Our results were robust in consistently 
predicting the distributional patterns of bacterial diversity across soil temperature and 
pH gradients—with model variation explaining from 7 to 66% of the variation in 
bacterial diversity, depending on the scale and system complexity. Together, our study 
represents a nexus point for the integration of soil bacterial diversity and quantitative 
models with the potential to be used at distinct spatiotemporal scales. By mechanisti-
cally representing pH into metabolic theory, our study enhances our capacity to explain 
and predict the patterns of bacterial diversity and functioning under current or future 
climate change scenarios.

bacterial diversity | temperature | pH | metabolic theory of ecology

Microbial communities are diverse and play essential roles in carbon storage and nutrient 
cycling across divergent terrestrial ecosystems (1–3). Understanding the processes and mech-
anisms underlying biogeographical patterns of microbial diversity is a fundamental and 
long-standing goal in ecology. Ecologists have long noted the latitudinal gradient in 
aboveground biodiversity, with many more species being found in warm, tropical regions—a 
pattern generally related to the greater stability, multifunctionality, and productivity (4, 5). 
For aboveground organismal communities, this pattern appears to hold at all levels of evolu-
tionary differentiation and community organization, such as phylogenetic branches in animals 
and plants (5). However, soil bacterial communities seem to display considerable deviations 
from this pattern (1, 2, 6), indicating that potentially different eco-evolutionary processes 
and mechanisms operate on structuring and maintaining belowground (soil) bacterial diver-
sity. Disentangling the main mechanisms determining the biogeographical patterns of bacterial 
diversity has still remained a considerable challenge. Previous efforts have used either quali-
tative and graphical frameworks (7, 8), or simple analytical treatments that incorporate only 
a few coexisting species (8, 9) or whole-system models focused on emergent patterns rather 
than on underlying mechanisms (10).

The metabolic theory of ecology (MTE) provides a unique conceptual synthesis to 
develop quantitative models aiming at explaining and potentially predicting patterns of 
microbial diversity across temperature gradients (11–15). This is centered on the notion 
that temperature affects diversity via influences on species’ metabolic rates (i.e., growth 
and mutation rates) (5, 12). The metabolism provides a tangible link between the biology, 
ecology, and evolutionary trajectories of species, populations, and communities (12, 13). 
The MTE predicts that the metabolism of species, the growth of populations, and the 
number of species in a local community increase exponentially with the environmental 
temperature (12). However, empirical and theoretical evaluations of MTE have produced 
variable and seemingly contradictory results in explaining species diversity across divergent 
systems (14–17). In fact, previous studies have examined the theoretical foundation and 
empirical validity of MTE in predicting microbial diversity. For instance, by providing 
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evidence that the fitted slope values (i.e., the inverse number of 
activation energy, −Ea) of negative diversity-temperature relation-
ships in natural ecosystems are lower than expected by the model 
prediction (14–16). This has been suggested to occur because most 
models fail to account for soil properties and their importance in 
structuring microbial diversity (16). Therefore, the development 
of MTE models applicable to microbes should benefit from taking 
into account those variables that mostly contribute to species 
divergence across communities.

Soil pH has long been recognized as a major determinant of bac-
terial diversity across diverse soils worldwide (6, 17, 18). It has been 
shown that bacterial diversity reaches a maximum at neutral pH and 
gradually decreases below and above neutral conditions in soils (1, 
2, 6, 17). This general hump-shaped pattern illustrates the impor-
tance of pH on the abundance, distribution, and diversity of soil 
bacterial communities (1, 6). It is plausible to assume that the com-
bination of soil pH with temperature fundamentally (and signifi-
cantly) drives soil bacterial diversity through their effects on bacterial 
metabolism. Survival and growth rates under acidic or alkaline con-
ditions require distinct adaptations and changes in metabolic 

processes and rates, as well as require evolutionary adaptations (19). 
These include the structural changes in cell biology, transport of 
molecules, and energy transfer adaptations that collectively deter-
mine species growth and reproduction. Multiple lines of evidence 
suggest the activity and structure of various membrane proteins 
depend heavily on environmental pH, with direct implications on 
bacterial metabolic rates (19, 20). Given the importance of soil pH 
broadly affecting bacterial metabolism, it is likely to be a key factor 
explaining some of the unexplained variation in bacterial diversity 
across soils. Here, we developed a mathematical model to test 
whether the incorporation of pH could improve our capacity to 
explain the variation in bacterial diversity at different spatial scales 
in soil (Fig. 1).

Initial Model Development

As single-cell organisms, the metabolic rate of bacteria is often 
mostly determined by the rate of substrate exchange across cellular 
membranes, which is known to be mediated by diverse mem-
brane-bound transporter proteins (21). We assumed that under 
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Fig.  1. Conceptual framework of taxa diversification. (A) At the single species level, the ancestor strain displays a mutation probability (αt, 
nucleotide·mutations−1 generations−1) per unit of time, based on the cell proliferation rate. The progressive accumulation of nucleotide mutations Un (U, mutant 
nucleotide) leads to the emergence of new phylotypes/species. (B) At the community level (disregarding species movement, that is, dispersal), different species 
accumulate mutation at variable paces due to divergences in cell metabolism, growth rate, etc., collectively leading to the emergence of distinct community types. 
(C) High temperatures (within a reasonable range) will accelerate the microbial cell metabolism and directly increase the mutation rate (upper left-hand red). 
The environmental pH will exert an influence on the activity of carrier proteins on the microbial cell membrane with implications for survival, reproduction, and 
growth, thus affecting the mutation rate (upper right-hand blue). The conceptual framework integrates three models aiming at fitting the relationships between 
diversity and temperature (Model I), diversity and environmental pH (Model II), and diversity, temperature, and pH (Model III).
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nutrient-unlimited conditions, the metabolic rate (μ) of a bacterial 
species would depend on the effective amount of transporter pro-
teins, Ee (μg cell−1) (SI Appendix, Theoretical model). This was 
modeled as follows:

 [1]� =

n
∑

i=1

ki
[

Eti
]

= k ⋅ Ee ,

where μ represents the metabolic rate and k represents the chem-
ical reaction rate constant that is dimensionless, the value of which 
is related to the structure of the bacterial cell membrane trans-
porter proteins, temperature, and nutrients, regardless of the num-
ber of cells and the concentration of nutrients.

Allen (2006) integrated the metabolic rate of species with 
genetic divergence through population genetics and neutral the-
ory (22). We performed modifications to the Allen’s model to 
explore potential relationships between species metabolic rates 
and bacterial community diversity (Fig. 1 A and B). For a com-
plete description of the model, see SI Appendix, Theoretical model. 
In brief, the metabolic rate affects the speciation rate (v, species 
individual−1 s−1) by changing the generation time (g, generations 
s−1) and the mutation rate (α, mutations·nucleotide−1 s−1) of bac-
teria (23). MTE has an intrinsic assumption that the speciation 
rate should have a positive effect on species richness (12, 22). We 
assumed here the baseline expectation that species richness should 
increase proportionally with speciation rate. This expectation is 
supported when considering together the results of Allen 
et al. (13) and Allen et al. (22). As such, we can deduce that 
species richness (H) and the speciation rate (v) are driven by the 
metabolic rate (μ),

 [2]H ∝ v ∝ �.

We further devised three models that take into account environ-
mental gradients in temperature and soil pH based on these con-
ceptual frameworks.

Model I: Modeling Variation in Temperature

The chemical reaction rate constant (k) is assumed to increase 
exponentially with temperature within the optimum temperature 
range of the population (22, 23). We, therefore, modeled k using 
the Boltzmann–Arrhenius equation (24),

 [3]k = b0 ⋅ e
−E�
KT ,

where b0 is the normalized parameter independent of temperature 
that is only related to species traits, Eα is the average activation 
energy of the respiratory complex (≈0.65 eV; 1 eV = 1.602 × 10−19 
J), K is the Boltzmann constant (8.62 × 10−5 eV K−1), and T is the 
absolute temperature (K). By integrating the Eqs. 2 and 3 into 
the Eq. 1, we can deduce

 [4]lnH ∝ ln�= ln
(

k ⋅Ee

)

= ln
(

b0 ⋅Ee

)

−
E�

KT
=B0−

E�

KT
.

Eq. 4 shows that the logarithm of microbial diversity has a negative 
linear relationship with the derivative of absolute temperature 
(1/KT), and its slope (−Eα) ranges between −0.6 and −0.7, and 
the intercept is B0.

Model II: Modeling Variation in pH

Changes in environmental pH are assumed to affect the structure 
and function of bacterial proteins at the cell membrane (Ee) (25), 
thereby causing changes in the metabolic rate (μ) (19, 20). 
According to Henderson-Hasselbalch formula (26):

 [5]

𝜇= k ⋅Ee =

⎧

⎪

⎨

⎪

⎩

k ⋅C (Eall )×
1

(1+10(pKa−pH ))

k ⋅C (Eall )×
1

(1+10(pH−pKb))

=

⎧

⎪

⎨

⎪

⎩

B1×
1

(1+10(pKa−pH ))
pH< optimal pH

B1×
1

(1+10(pH−pKb))
pH> optimal pH,

where B1 is a normalized parameter related to the number of cell 
carriers, carrier characteristics, and temperature, Eall is the number 
of transporter proteins on the cell membrane at a maximum met-
abolic rate, and Ka and Kb indicate the acid hydrolysis constant 
and the alkali hydrolysis constant, respectively, when the metabolic 
rate is at half of its maximum (μmax/2). The Ka and Kb vary depend-
ing on specific species traits. By integrating the Eqs. 2 and 5 into 
Eq. 1, we can model

 [6]
lnH ∝ ln𝜇 =

{

B1− ln(1+10(pKa−pH )) pH<optimal pH

B1− ln(1+10(pH−pKb)) pH>optimal pH .

Eq. 6 shows that the logarithm of bacterial diversity and pH can 
be displayed as a hump-shaped function. The optimum pH 
(pHopt) indicates the pH at which diversity is highest. The pKa 
and pKb indicate the acid and alkali pH, respectively, when the 
diversity (lnH) is at half of its maximum (lnHmax/2) (Fig. 1C). 
Note that the model does not account for proton motive 
force (PMF)-related energetic requirements. These are known to 
be associated with the maintenance of intracellular pH homeo-
stasis and chemiosmotic gradients across the cell membrane 
(SI Appendix, Theoretical model).

Model III: Integrating Variation in Temperature 
and pH

Chemical reaction rate constants, including pKa and pKb, are 
dimensionless and are dynamically influenced by temperature. As 
such, there is a clear interaction between changes in temperature 
and pH. This interaction was modeled as follows:

 [7]pka = − lnKa =
E�

KT
− lnb1,

 [8]pkb = − lnKb =
E�

KT
− lnb2,

where b1 and b2 are the normalized parameters and Eβ and Eγ are 
the average activation energy for the acid and alkali hydrolysis rate 
constants, respectively. And

 [9]B2 = ln
[

b0 ⋅ C
(

Eall
)]

,
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where B2 is a normalized parameter. By integrating Eqs. 3, 5, 7, 
8, 9, and 2 into Eq. 1, the result is

 [10]

lnH = ln𝜇

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

B2−
E𝛼
KT

− ln

�

1+10

�� E𝛽
KT

−lnb1

�

−pH
��

pH< optimal pH

B2−
E𝛼
KT

− ln

�

1+10

�

pH−

�

E𝛾
KT

−lnb2

���

pH> optimal pH.

Eq. 10 describes the relationship between the logarithm of bacte-
rial diversity and the reciprocal of absolute temperature and pH. 
Temperature affects the relationship between pH and diversity by 
changing the pKa/pKb, thus establishing a modeling dependence 
between temperature and pH (Fig. 1C).

Based on the above derivation, our models further make the 
following key predictions:
(1) For Model I, the logarithm of ‘diversity’ (lnH) is inversely 
related to the reciprocal of temperature (1/KT) based on Eq. 4. 
The slope and the intercept are determined by −Eα and B, respec-
tively, and B is related to the intrinsic characteristics of bacterial 
species.

(2) For Model II, the relationships between bacterial diversity 
and pH can be displayed as a hump-shaped function. The opti-
mum pH determines the pH at which diversity is highest. The 
pKa and pKb indicate the acid and alkali pH, respectively, when 
the diversity (lnH) is at half of its maximum (lnHmax/2)).

(3) For Model III, temperature and pH interactively influence 
the patterns of bacterial diversity, as indicated in Eq. 10. 
Specifically, pH affects the slope of the relationship between lnH 
and 1/KT, and temperature affects the opening direction and scale 
of the hump-shaped function of lnH and pH (SI Appendix, 
Fig. S2). Importantly, in the model temperature affects the rela-
tionship between pH and diversity by changing the pKa/pKb (Eqs. 
7 and 8), thus establishing a modeling dependence between tem-
perature and pH.

We tested three predictions of models at three different levels 
to explore whether metabolic models incorporating pH could 
more accurately predict bacterial diversity patterns. We initially 
performed a laboratory experiment based on the rapid evolution 
of morphotypes of the model bacterium Pseudomonas fluorescens 
SBW25. This experiment was performed to generate data to test 
our model at the single species level. P. fluorescens SBW25 has 
been broadly used to study the bacterial diversification and 
evolution (27). This bacterium is capable of growing in a wide 
range of temperatures (5 °C to 35 °C) and pH (4.5 to 9.5). 
When subjected to growth under heterogeneous static condi-
tions, SBW25 rapidly diversifies from the ancestral smooth 
(SM) morphotype. This process of short-term diversification 
results in the coexistence of the ancestral smooth (SM) mor-
photype, with two other morphotypes, i.e., the wrinkly spreader 
(WS) and the fuzzy spreader (FS) morphotypes. The underlying 
genetic mutations associated with these morphotypes have been 
previously well characterized (28, 29). We then extended our 
analyses to community-level diversity in soil at continental and 
global scales (SI Appendix, Fig. S3). Community-level analyses 
were performed using two large datasets of soil bacterial com-
munities. First, we collected and analyzed patterns of bacterial 

diversity across 45 soil samples from a paddy soil system dis-
playing a natural gradient of pH and temperature in East Asia 
(18). Then, to evaluate our model performance at a global scale, 
we conducted a meta-analysis using a well-curated dataset com-
prising 870 soil samples collected worldwide across divergent 
ecosystems (1).

Results

Model Performance at the Species Level. P. fluorescens SBW25 
had the maximum growth rate and metabolic rate at 28 °C and pH 
7 (SI Appendix, Figs. S4−S6 and S8). Model I (Eq. 4) was used to 
assess the relationship of diversity (in this case, diversification) with 
variation in temperature (Fig. 2A and SI Appendix, Fig. S7 and 
Tables S2−S4). The results indicated that the logarithmic diversity 
index had a strong Boltzmann exponential relationship with the 
reciprocal of temperature (1/KT) ranging from 5  °C to 28  °C  
(P < 0.01). The fit (R2) of Model I for diversity was 82%, with 
a slope value (−Ea) of −0.62. When pH ranged from 4.5 to 9.5, 
Model II (Eq. 6) indicated that the logarithmic diversity followed 
a hump-shaped function with pH, where pH of 4.5 and pH of 9.5 
were the corresponding pKa and pKb parameters, and pH of 7 was 
the optimum pH (R2 = 85%, P < 0.01, Fig. 2B and SI Appendix, 
Fig. S9 and Tables S2−S3 and S5).

Next, the relationship between diversity and the combined 
variation of temperature (ranging from 5 °C to 28 °C) and pH 
(ranging from 5 to 9) was examined using a two-way ANOVA 
(SI Appendix, Figs. S10 and S11). The results showed that the 
interactive term of temperature and pH significantly explained 
the diversity of P. fluorescens (R2= 0.04, P = 0.001, SI Appendix, 
Table S1). Using Model III (Eq. 10) to integrate both temperature 
and pH, the R2 of the variation in diversity was 79% (P < 0.001, 
Fig. 2C). The Boltzmann slope (−Ea) of the temperature-diversity 
relationship was −0.60, and the pH-diversity relationship consist-
ently followed a hump-shaped function, in which pH of 7 was 
the optimum pH.

We found the metabolic rate to be significantly correlated with 
the growth rate (R2

5−28 °C = 0.89, P < 0.001; R2
5−35 °C = 0.84,  

P < 0.001, Fig. 3A and SI Appendix, Fig. S12A) within two ranges 
of temperature (5 °C to 28 °C and 5 °C to 35 °C). This was also 
significant for pH values ranging from 5 to 9 (R2

diversity= 0.82,  
P < 0.001, Fig. 3B). The metabolic rate was also significantly cor-
related with diversity (R2

5−28 °C = 0.74, P < 0.001; R2
5−35 °C = 0.76, 

P < 0.001, Fig. 3C and SI Appendix, Fig. S12B) within two tem-
perature ranges (5 °C to 28 °C and 5 °C to 35 °C) and with pH 
values ranging from 5 to 9 (R2

diversity = 0.84, P < 0.001, Fig. 3D). 
We also found the spontaneous mutation rate to significantly 
increase at high temperatures within the optimum temperature 
range. Worth mentioning, no significant relationship was found 
for pH (Fig. 3 E and F). The membrane protein content reached 
the maximum at neutral pH and gradually decreased when devi-
ating from pH 7 (Fig. 3G). Additionally, the membrane protein 
content of P. fluorescens SBW25 was significantly correlated with 
the metabolic rate when pH values ranged from 5 to 9 (R2= 0.82, 
P < 0.001, Fig. 3H).

Model Performance at the Community Level across Continental 
and Global Scales. The analysis based on two-way ANOVA 
revealed both temperature and soil pH to exert both independent 
and interactive effects on bacterial diversity across continental 
and global scales (R2 = 0.01 to 0.35, P < 0.05, SI Appendix, Table 
S1). The microbial community showed the maximum metabolic 
rate at 28 °C and pH 7 at three typical paddy soils (SI Appendix,  
Fig. S13). The fit (R2) of Model I for bacterial diversity in paddy D
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soils and the global soil dataset were 57% and 39%, with slopes 
(−Ea) of 0.16 and −0.19, respectively (P < 0.05, Fig. 2 D–G). 
Likewise, the R2 of Model II for bacterial diversity in paddy soils 
and the global soil dataset was 29% and 20%, respectively (P 
< 0.001, Fig. 2 E–H). At the continental scale (i.e., paddy soil 
data), pH of 3.6 was the corresponding pKa parameter, and pH 
of 7.5 was the optimum pH. At the global scale (i.e., global soil 
dataset), pH of 2.2 and 10.0 were the corresponding pKa and 
pKb parameters, and pH of 7.2 was the optimum pH. The R2 of 
Model III for bacterial diversity in paddy soils and the global soil 
dataset was 30% and 43%, respectively (P < 0.001, Fig. 2 F–I).

We further evaluated the applicability of these models at the 
level of different phyla/classes within communities and across 
various ecosystems (i.e., continental and global scales). Specifically, 
the results of Model I showed that the diversity-temperature rela-
tionship followed a non-universal trend, ranging from being neg-
ative to positive, or not displaying a significant relationship 
(Fig. 4A). The optimum average annual air temperature ranged 
from 16.1 °C to 28 °C, and the R2 and slope (−Ea) of Model I 
ranged from 3 to 53% and −0.44 to 0.27, respectively (SI Appendix, 
Tables S2−S4). Model II predicted the soil pH-diversity relation-
ship with R2 ranging from 7 to 45%, the optimum soil pH from 
6.10 to 9.35, the pKa from 1.08 to 4.43, and the pKb from 8.86 
to 11.70 (Fig. 4B and SI Appendix, Tables S2, S3 and S5). When 
compared to Models I and II, Model III showed greater explan-
atory power and higher R2 values for the relationships between 
bacterial diversity, temperature, and pH within and across eco-
systems (P < 0.05, Fig. 5 A and B), as well as the occurrence of 13 

dominant bacterial phyla (P < 0.05, Fig. 5  C and D). The R2 of 
Model III ranged from 7 to 66%, the Boltzmann slope (−Ea) from 
−0.03 to −0.45, the optimum pH from 6.10 to 9.35, the pKa from 
1.08 to 4.43, and the pKb from 8.86 to 11.70. Three different 
commonly used statistical models, that is, one linear model, one 
quadratic polynomial model, and one piecewise relationship 
model, were also used to estimate the relationships between tem-
perature, pH, and bacterial diversity (SI Appendix, Tables S4 and 
S5). The results showed that Model I (|AIC| avg = 211, R2

avg = 0.22) 
and Model II (|AIC| avg = 212, R2

avg = 0.24) both had the lower 
Akaike information criterion (AIC) and higher R2(SI Appendix, 
Tables S4 and S5). These comparative analyses validate the best 
fit and higher accuracy of our models compared to previously 
developed ones.

Discussion

Our study provides the advances in quantitative models aiming 
at exploring the influence of temperature and pH—and their 
interactive effects—structuring patterns of bacterial diversity in 
soils across distinct systems and scales (Fig. 1). The explicit con-
sideration of temperature and pH ranges into the models was 
based on their known effects on bacterial cell metabolism (5, 6). 
These models were empirically tested across distinct scales of bio-
logical organization, ranging from single species at the level of 
individual bacterium strain to soil bacterial communities within 
an ecosystem gradient and across global ecosystems. Advancing 
research on the development of quantitative models able to explain 
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bacterial diversity across spatial scales is still a challenge. For exam-
ple, Okie et al. (2015) proposed a model primarily based on envi-
ronmental filtering associated with metabolic theory (11). In line 
with this study, our models provide a new synthesis that further 
integrates diversification rate and pH across scales with principles 
of the MTE. Despite the fundamental importance of temperature 
and pH in structuring bacterial diversity in soils has long been 
recognized (1, 2), relatively less attention has been given to inte-
grating these variables into predictive models of biodiversity. A 

mechanistic understanding of how these factors jointly structure 
patterns of soil diversity can enhance our ability to prospectively 
predict dynamic changes in bacterial communities and the impacts 
on their functioning across distinct spatial scales and systems. The 
outcome results of the models confirmed our hypothesis that the 
growth rate and diversity of P. fluorescens were highly correlated 
and displayed similarly a high dependence on temperature and 
pH (Fig. 3). Interestingly, corroborating our single species level 
experiment, these relationships were also ubiquitous across 
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communities both at the continental and global scales. Together, 
our models provide a new framework that successfully and more 
accurately integrates the theoretical predictions of cell metabolism 
as the foundation of all life processes with patterns of 
biodiversity.

As predicted by Model I, we observed the logarithmic of the 
diversity index at the species level to have a strong Boltzmann 
exponential relationship with the reciprocal of temperature (1/KT) 
ranging from 5 °C to 28 °C (P < 0.01), with a slope value (−Ea) 
of −0.62 (Fig. 2A). Higher temperatures within this range tend to 
accelerate metabolic rates and biochemical processes and thereby 
should promote bacterial diversity. Particularly for microbes, this 
would increase ‘effective’ evolutionary time, given their general 
shorter generation times, faster mutation rates, and faster selection 
(12, 30). Considering higher temperature would impose a phys-
iological constraint on organisms (12, 31), our model assumed 
that both growth and mutation rates increased exponentially with 
temperature over a biologically realistic range of temperature. 
However, the Boltzmann relationship between temperature and 
species life processes involved in growth rates and diversity disap-
peared once the temperature exceeded 28 °C (Fig. 2A). 
Furthermore, the enhanced spontaneous mutation rate of P. flu-
orescens SBW25 was observed at high temperature (Fig. 3E). 
Although the MTE holds that spontaneous mutation rate is inde-
pendent of temperature, numerous studies have shown that high 
temperature can frequently facilitate spontaneous mutation rates 
of various bacterial species (22, 32, 33). This occurs possibly due 
to the trade-off between genetic conservatism and variability of 
bacteria once exposed to stringent habitat selection (34). 
Consequently, speciation rate would be expected to augment the 
temperature dependence of diversity (i.e., activation energy) com-
pared to the temperature dependence of metabolic rate (and gen-
eration time) alone. As such, the speciation rate strengthens the 
relationship between the logarithm of species diversity and the 
inverse of absolute temperature, as indicated by the steeper slope. 
However, our results showed that the slope values (e.g., the inverse 

number of activation energy, −Ea) of negative diversity-tempera-
ture relationships in natural ecosystems are lower or even opposite 
when compared to the model’s expectation at the community level 
at both continental and global scales, which does not follow the 
Model I predictions. This result can be explained by distinct 
non-mutually exclusive points. That is, the variable diversity is not 
proportional to the speciation rate, and the effective activation 
energy for metabolic rate (or speciation rate) (here parametrized 
as 0.65 eV) may likely differ across distinct microbial taxa. This 
also may be due to other abiotic factors—in particular pH and 
salinity—known to explain the variation in microbial community 
in soils (35, 36), potentially weakening the temperature-diversity 
relationship at the community level (SI Appendix, Fig. S2). For 
instance, temperature and pH exhibited counteractive effects in 
the paddy soil samples (R2 = 0.63, P < 0.001, SI Appendix,  
Fig. S14), with higher bacterial diversity detected in colder samples 
being found at closer-to-optimal pH values, which led to a positive 
diversity (lnH)-temperature (1/KT) relationship.

By using Model II, we found the diversity of P. fluorescens SBW25 
to follow a hump-shaped function over a wide range of pH values 
(Fig. 2B). This is consistent with previous research (37, 38), and our 
results also suggested that the membrane protein activity, the bacte-
rial growth rate, and the bacterial metabolic rate are all expected to 
display a hump-shaped function relationship with pH (Fig. 3 G and 
H and SI Appendix, Figs. S4 and S5). Thus, the consistent relation-
ship across ontogeny to ecological processes likely implies a certain 
unified mechanism of metabolic processes. The metabolism of indi-
vidual living cells is largely dependent on extracellular pH, and this 
occurs because distinct ranges of pH will impact the functional per-
formance of a variety of proteins in the cell membrane (25). It is 
worth mentioning that the pH-metabolic model is supported by the 
significant correlation between metabolic rates and the number of 
cell membrane proteins. However, the observed correlation could 
possibly reflect the increased energy cell expended at non-neutral 
pH to maintain homeostasis. As such, caution is warranted in inter-
preting this model, as it is primarily based on correlation and does 
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not aim at providing an integrative mechanistic metabolic under-
standing. Importantly, pH also affects the PMF, which is involved 
in the maintenance of cellular homeostasis and provides energy 
requirements for essential bacterial metabolism processes (39). The 
PMF and cell membrane carrier proteins synergistically affect the 
bacterial metabolic processes when pH changes. However, the diverse 
and non-uniform PMF responses to pH variation hinder the incor-
poration of this variable into our metabolic model. As for the com-
munity-level comparison, although the R2 of Model II (both at the 
continental and global scales) was much lower than that at the single 
species level under controlled conditions, the model still strongly 
predicted the relationship between pH and soil bacterial diversity. 
There were no differences between Model I and Model II for all 
diversity indexes in terms of R2 (Fig. 5 A and B), and our results do 
not support an absolute dominance of temperature (15) or pH6 in 
structuring bacterial diversity. In fact, our results suggest that their 
relative importance may vary across ecosystem types or at the detailed 
level of distinct bacterial phyla. The observed optimal pH range for 
ecosystem types and bacterial phyla ranged widely from 6.10 to 9.35 
(Fig. 4B). In addition, soil pH also dynamically affects other soil 
parameters, e.g., nutrient cycling dynamics, organic carbon trans-
formation, soil moisture regimes, and salinity (1, 3). And, worth 
mentioning, at a lower phylogenetic resolution, different microbial 
taxa are also expected to have distinct pH optimum values.

The combined influence of temperature and pH on the patterns 
of soil bacterial diversity was more accurately predicted by Model 
III, with R2 ranging from 7 to 66%, for the patterns of community 
diversity at the continental and global scales. The two predictor 
variables improved the accuracy of the model prediction of bac-
terial diversity patterns (Fig. 5). High temperature (in this case, 
within the operational temperature range) and optimum pH were 
found to directly and indirectly result in high bacterial diversity 
in soils. First, as predicted by our modeling approach, higher 
temperatures and optimal pH promote higher metabolic rates, 
growth rates, and shorter population growth cycles (12). These 
biological rates set the pace of population dynamics and underlie 
nearly all biochemical activities at multiple levels of organismal 
organization (12, 40, 41). Second, it is important to acknowledge 
that other factors might also affect these observed biodiversity 
patterns. For example, the growth rate can—to some extent—
enhance colonization by favoring dispersal, which would augment 
richness at optimal pH and warmer temperatures. Besides, optimal 
pH ranges can be associated with higher speciation rates due to 
there being a wide variety of environments or a greater number 
of niches or stable enzymes at this pH. Last, both pH and tem-
perature modulate multiple parameters in soils (e.g., resource 
availability, organic carbon types, soil moisture regimes, and salin-
ity), all of which exert an effect on bacterial diversity.

It is worth discussing that the R2 values of all three models at the 
community level were lower than that obtained at the population 
level under laboratory conditions. The low R2 value is likely a reflec-
tion of the complex interplay of ecological processes and mechanisms 
operating in structuring bacterial communities from populations to 
communities and from local to global scales. The different abiotic 
variables have distinct levels of stringency in imposing species selec-
tion. In line with that, pH has been suggested to be a more stringent 
filter in soil bacterial taxa (6, 17, 18), whereas selection imposed by 
variation in temperature tends to be weaker. This corroborates the 
fact that microbial thermal sensitivity is lower than that of macro-or-
ganisms and the fact that microbes can persist under harsh—albeit 
non-stringent—environmental conditions under low metabolic 
states, dormant, via spore formation (15, 35). It can also be reasoned 
non-deterministic factors—in this case, random dispersal—can par-
tially counterbalance local selection and be a more important factor 

in structuring communities at broader scales. This nicely aligns with 
a recent consensus in ecology stating that most of the factors explain-
ing variation in community dissimilarities tend to be scale-dependent 
(42). For example, while pH was a strong predictor of community 
assembly processes at a local scale in salt marsh soil bacterial com-
munities, variation in the content and concentration of organic 
carbon better explained the assembly processes when the model was 
applied at a regional scale (43). Collectively, it is thus expected a 
steady decrease in the model fit as communities become progressively 
more diverse and models attempt to cover broader scales of biological 
organization (15, 16, 35).

In conclusion, the novel quantitative models devised here enable 
reliable quantitative prediction of bacterial diversity in soil, by adding 
another parameter (i.e., pH) to the current MTE, which solely focuses 
on the influences of temperature. While it is generally accepted that 
temperature and pH are two of the most important environmental 
factors that determine bacterial diversity in soil, their relative impor-
tance remains controversial and their potential interactions have rarely 
been addressed (15–18). We show that the new models fit well the 
experimental evolution data with a single bacterial and can also explain 
the microbial community data from previous field studies at regional 
and global scales. However, given the diversity of soil environments, 
other environmental factors such as soil moisture, salinity, and 
resource availability may play dominant roles under certain condi-
tions, it is thus important to further develop the models, allowing the 
integration of multiple environmental factors. To the best of our 
knowledge, this study is the first to explicitly incorporate pH into 
existing metabolism theory, highlighting the capacity to improve our 
mechanistic understanding of microbial biodiversity biogeography. 
Improving this mechanistic understanding of the variation in micro-
bial communities across broad environmental gradients will be essen-
tial in our efforts to model and forecast the variation in microbial 
biodiversity under current and future climate scenarios.

Materials and Methods

Bacterial Strain and Growth Conditions. The bacterium P. fluorescens SBW25 
was well-suited for our study, as population-level evolution was detected at the 
phenotypic level by visual differences in colony morphology after 3 d of culture 
in a spatially heterogeneous environment (27). Three dominant morphs named 
smooth (ancestral), WS, and FS were observed. The genetic bases of these diver-
sification trajectories at the population level have been well-established. For 
instance, the WS and FS morphotypes arise through gene mutations that cause 
the constitutive over-production of cellulose and lipopolysaccharide polymers, 
respectively (28, 29). SBW25 was routinely cultivated in King’s medium B (KB) 
at 28 °C. Growth properties were determined in KB medium under either orbital 
shaking (180 rpm) or static conditions. Acidity and alkalinity were maintained 
with the addition of morpholineethanesulfonic acid (pH at 4.5, 5, and 6) (44) and 
the N-[Tris(hydroxymethyl) methyl]-3-aminopropanesulfonic acid (pH at 8, 9, and 
9.5), respectively (45). Morpholinepropanesulfonic acid was used to maintain pH 
7. The maximum growth rate of each culture in each temperature and pH was 
calculated as the average value of eight cultures.

Fluctuation Test. Bacterial mutation rates were estimated using the standard 
method of fluctuation test with slight modification (46). Each temperature and pH 
treatment involved ten replicate microcosms each inoculated with ~500 bacterial 
cells. These treatments were cultured up to an absorbance (OD600) of 1.0. Mutants 
were identified using serial dilution and plating of aliquots onto KB Petri dishes 
supplemented with 15 mg mL−1 of gentamicin. The Ma-Sandri-Sarkar Maximum 
Likelihood Estimator method was used to calculate the mutation rate from the 
average and median frequency of the gentamycin-resistant colonies.

Static Culture Test. To quantify bacterial diversification, the ancestral strain 
was inoculated into 6 mL KB microcosms and grown under static conditions as 
previously described (27, 32). Diversity was regularly measured by daily sampling 
over a period of 7 to 25 d, depending on the growth and diversification rate D
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at different temperature (5 °C, 10 °C, 15 °C, 20 °C, 25 °C, 28 °C, 30 °C, 32 °C, 
and 35 °C) and pH (4.5, 5, 6, 7, 8, 9, and 9.5) environments. The three distinct 
morphotypes (SM, WS, and FS) were identified in KB plates, and more than 100 
colonies were counted for each treatment. The effects of temperature were tested 
at the optimum pH 7, whereas the effects of pH were examined at the optimum 
growth temperature of 28 °C. To test the combined effects of temperature and pH, 
diversity data were also obtained from seven temperatures (5 °C, 10 °C, 15 °C, 
20 °C, 25 °C, 28 °C, and 30 °C) across three pH (5, 7, and 9).

Membrane Protein Extraction. SBW25 cells at logarithmic phase (OD600 = 0.6)  
at five pH gradients (pH = 5, 6, 7, 8, and 9, eight repetitions) were centrifuged 
at 4 °C at 10,000 g for 5 min, and cell pellets were resuspended in 0.1 M phos-
phate buffer (pH 7) and washed twice. Subsequently, membrane proteins were 
extracted using a Bacteria Membrane Protein Extraction Kit (Bestbio, Shanghai, 
China) according to the manufacturer’s instruction. Finally, an approximately 
50 μL suspension was obtained, and the protein content was determined using 
a BCA Protein Assay Reagent Kit (BestBio, Shanghai, China). Plate counting was 
used to determine the number of bacteria in each culture. The membrane pro-
tein content of a single cell was determined based on the ratio of the total 
amount of extracted cell membrane proteins and the number of cells counted 
on the plate.

Metabolism Rate. SBW25 cells at logarithmic phase (OD600 = 0.6) were diluted 
into fresh KB media (w/w 1:5) and amended with 100 μg mL−1 of resazurin 
solution. We set up a gradient of temperature treatments (5 °C, 10 °C, 15 °C, 
20 °C, 25 °C, 28 °C, 30 °C, 32 °C, and 35 °C) under optimal pH 7 and a gradient 
of pH treatments (4.5, 5, 6, 7, 8, 9, and 9.5) under optimal temperature of 28 °C. 
In parallel, cell-free experiments were set up as controls. The experiments were 
incubated in the dark on a shaker at 180 rpm. Measurements were made every 
30 min and lasted 4 h. The cultured bacterial suspensions were centrifuged at 
10,000 rpm for 4 min, and the supernatant was collected. In the existence of an 
active bacterial culture, the dehydrogenase enzyme activity changes resazurin 
to the reduced compound resorufin, and thus the color turns from blue to pink. 
Fluorescence was measured in a microplate reader at the excitation wavelength 
of 560 nm and emission wavelength of 590 nm. The metabolic rate (OD590 h−1) 
was determined by the slope of the reduced resazurin line, which was measured 
by recording the colorimetric shift at OD590.

Three typical paddy soils (i.e., black soil, red soil, and fluvo-aquic soil) were 
selected to examine the metabolic rates of microbial communities. For each soil 
sample, the 10−1 soil suspension was obtained by mixing 10 g of fresh soil in 
100 mL of sterile distilled water using a blender (5 min). The obtained solution 
was diluted into fresh media (w/w 1:5) amended with 100 μg mL−1 of resazurin 
solution. Sterile soil suspensions amended with 100 μg mL−1 of resazurin solution 
were used as controls. The metabolic rates of soil bacterial communities at different 
temperatures and pH settings were determined by fluorescence as described above.
Soil sampling and data collection. The paddy soil dataset is derived from previ-
ously published data (18, 35). Briefly, a total of 45 soil samples were collected in 
a paddy ecosystem along the north–south transect across East Asia. The latitude 
of the sampling area ranged from 15.90°N to 44.31°N, the average annual air 
temperature from 2 °C to 27.5 °C, and the average annual precipitation from 550 
mm to 2345 mm. The soil sampling was performed as previously described (18). 
The Global Positioning System coordinates recorded at each sampling site were 
imported into the NOAA website to calculate the average annual air temperature. 
Soil bacterial community was analyzed using high-throughput sequencing as 
previously described (35). Alpha-diversity values (Richness and Chao1) of bacteria 
communities were calculated after rarifying all samples to the same sequencing 
depth.
Acquisition of global scale metadata and public datasets. All meta-analysis 
data were obtained from The Earth Microbiome Project (EMP, http://www.earthmi-
crobiome.org). Sample processing, sequencing, and core amplicon data analysis 
were performed by the Earth Microbiome Project (www.earthmicrobiome.org), 
and all amplicon sequence data and metadata have been made public through 
the EMP data portal (qiita.microbio.me/emp) (1). Briefly, we got 870 soil samples 
in total, in average annual air temperature from −16.8 °C to 26.9 °C, soil pH from 
3.3 to 10.4, and a rough gradient of latitude from −78.19°N to 71.30°N. Climate 
data including monthly temperature and precipitation were obtained from the 
WorldClim database (http://www.worldclim.org).

Diversification at the population level. Here, we counted the number of 
observed colony morphotypes (Sobs) and applied a diversification index based 
on the number of estimated morphotypes (Sest). The calculation method of Sest 
refers to the calculation method of Chao1 richness in ecological communities (47). 
The calculation formula for the number of estimated morphotypes is as follows:

Sest = Sobs +
n1
(

n1 − 1
)

2
(

n2 + 1
) ,

where Sest is the number of estimated morphs, Sobs is the number of observed 
morphs, n1 is the number of morphs with only one morphotype, and n2 is the 
number of morphs with only two morphotypes.

Here, the diversification index is calculated based on morphological variation. 
Although P. fluorescens colonies evolved in a spatially heterogeneous environ-
ment and populations displayed substantial morphotype diversity [smooth type, 
WS, and FS] after 7 to 25 d (32), we cannot classify these morphs as new species. 
As such, we refer to these metrics as ‘number of morphs’ and ‘estimated number 
of morphs’. In addition, we further subdivided each morphotype into three types: 
large (diameter > 2 mm), medium (1 mm < diameter < 2 mm), and small 
(diameter < 1 mm) to increase morphological variation sensitivity.
Statistical analyses. Pearson correlations were used to test the linear dependence 
between two variables. The significance of Pearson correlations was inferred using 
the Student’s t-distribution. The coefficient of determination (R2) and the AIC were 
used to assess the goodness of fit of the model, and the R2 was calculated as follows:

R2 = 1 −
SSres
SStot

,

where SSres is the sum of squares of residuals and SStot is the total sum of squares. 
Since the residuals can be considered as the variance of the model errors, the term 
SSres/SStot represents the unexplained proportion, and thus R2 is the proportion 
of the explained variance of the model.

The AIC was calculated as follows:
AIC = − 2 × ln(L) + 2n ,

where L is the likelihood function which is the probability of the data given a 
model and n is the number of parameters. Model selection was based on AIC, 
followed by explained variance (R2), and parameter significance (P-values). If the 
differences in AIC values between two models are <2, the models are considered 
competitive (15). Lower AIC values indicate better model fits.
Fittings of models. One of the major predictions of Model I is the relationship 
between the logarithm of bacterial diversity and the reciprocal of absolute temper-
ature. We tested this prediction by using estimated and observed bacterial species 
diversity and annual average air temperatures. We employed the ordinary least 
squares estimation of linear regression to determine the parameters. The Model I is,

ln(H) = B0 −
E�
KT

,

where H is species’ diversity, K is Boltzmann’s constant, T is absolute temperature 
in Kelvin, B0 is the intercept, and −Eα (activation energy) is the slope of this linear 
model. Two statistical models, a quadratic polynomial model (48) and a piecewise 
relationship model (49), were also used for estimating the relationships between 
temperature and bacterial diversity.

One of the major predictions of Model II is the logarithm of bacterial diversity 
and pH can be displayed as a hump-shaped function. The optimum pH indicates 
the pH at which diversity is highest. The pKa and pKb indicate the acid and alkali 
pH, respectively, when the diversity (lnH) is at half of its maximum (lnHmax/2)). 
pKa and pKb are free parameters, with values ranging from 0 to 14. We tested 
this hypothesis using estimated and observed bacterial species diversity and pH. 
We employed the ordinary least squares estimation of nonlinear regression to 
determine the parameters. The Model II is,

lnH =

⎧

⎪

⎨

⎪

⎩

B1− ln(1+10(pKa−pH)) pH< optimal pH,

B1− ln(1+10(pH−pKb )) pH> optimal pH.
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where B1 is the normalized parameter. Three statistical models, a liner mode, a 
quadratic polynomial model (48), and a piecewise relationship model (49), were 
also used for estimating the relationships between pH and bacterial diversity.

One of the major predictions of Model III is the relationship between the log-
arithm of bacterial diversity and the reciprocal of absolute temperature and pH. 
The temperature affects the relationship between pH and diversity by changing 
pKa/pKb, thus establishing a modeling dependence between temperature and 
pH. We employed the ordinary least squares estimation of nonlinear multiple 
regression to determine the parameters. The Model III is,

lnH= ln𝜇

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

B2−
E𝛼
KT

− ln

�

1+10

��

E𝛽
KT

−lnb1

�

−pH

��

pH< optimal pH

B2−
E𝛼
KT

− ln

�

1+10

�

pH−

�

E𝛾
KT

−lnb2

���

pH> optimal pH.

where B2, b1, and b2 are the normalized parameter independent of temperature 
and pH. b1 and b2 are free parameters, and the value results of equations (Eβ/KT−
ln b1) and (Eγ/KT−ln b2) range from 0 to 14.

Data, Materials, and Software Availability. The sequence (genomic) data 
of the bacterial 16S rRNA gene generated in this study have been deposited 
in the Sequence Read Archive (SRA) at the National Center for Biotechnology 
Information (NCBI) with the accession number PRJNA607877 (50). All other data 
used in this study have been deposited in figshare (https://doi.org/10.6084/
m9.figshare.20485986) (51).
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