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A B S T R A C T   

Two cold-tolerant microalgae, Chlorella vulgaris and Scenedesmus sp., were grown at 22 and 5 ◦C. At the lower 
temperature, the microalgae showed substantial biochemical and morphological changes. The soluble sugar 
profile in response to low-temperature cultivation was very different in the two strains. C. vulgaris increased both 
the sucrose and raffinose family oligosaccharides (RFOs) content at 5 ◦C while Scenedesmus sp. drastically 
reduced the sucrose content. Both strains increased the total fatty acid methyl ester (FAME) content when grown 
at 5 ◦C. However, the FAME profiles were very different: C. vulgaris mainly increased C18:1 and less so C18:3, 
while Scenedesmus sp. decreased C18:1 but greatly increased C18:3. The morphology of C. vulgaris changed 
slightly at the lower temperature, while Scenedesmus sp. showed substantial changes in the size and shape. Low 
temperature triggered the synthesis of unsaturated fatty acids that are essential for human nutrition.   

1. Introduction 

Microalgae are microorganisms that are very abundant in many 
ecosystems (Abdelaziz et al., 2013). In recent years, microalgae have 
received attention due to their potential applications in a wide range of 
industries, such as food and feed, biopharmaceuticals, nutraceuticals, 
and renewable energy sources. Biofuels, animal feeds, bioactive me-
dicinal products, food ingredients, cosmetics, and health supplements 
are some of the applications where microalgae are considered a sus-
tainable, economical, and renewable source (Khan et al., 2018; Silva 
et al., 2020. These fast-growing, unicellular organisms have the capacity 
to fix atmospheric carbon dioxide (CO2) via photosynthesis, producing 
high-value biomass such as lipids, pigments, polysaccharides, bioactive 
compounds, biopolyesters, and bio-hydrogen (Koller et al., 2014; Silva 
et al., 2020). 

Microalgae are not only good for products that can be produced after 
harvesting, they also have great ecological benefits during cultivation. 
Their ability to fix atmospheric CO2 sustainably is of great significance 
to sustain Earth's ecosystem, to reduce greenhouse gases in the atmo-
sphere, and to limit global warming (Kurano et al., 1995; Velea et al., 
2009). Microalgae could also be used to fix CO2 directly from industrial 
exhaust gases such as flue gas, which is a CO2-rich source compared with 
atmospheric CO2 and, therefore, better for microalgal cultivation and 
the environment (Wang et al., 2008). Their ability to remove nutrients 

from wastewater is another useful ecological benefit and has attracted 
the interest of the scientific community. Minimal care during cultivation 
and the ability to grow in harsh conditions make microalgae suitable for 
growth in wastewater and, as a result, they can remove mainly nitrogen 
and phosphorous from wastewater. Wastewater treatment with micro-
algae makes the process more environmentally sustainable and 
economical (Mata et al., 2010). 

In a study dealing with microalgal cultivation for the production of 
bioenergy, Chlorella vulgaris was identified as the most promising of the 
10 species tested (Cancela et al., 2019). In a recent work, a C. vulgaris 
strain obtained by ultraviolet (UV) mutagenesis could accumulate up to 
50 % of its biomass as carbohydrates under photoautotrophic culture 
conditions (Cheng et al., 2022). 

Sucrose is a known sugar in microalgae and can accumulate in 
response to salt, desiccation, osmotic, heat, or cold stress (Salerno and 
Pontis, 1989; Sanz Smachetti et al., 2020). Another sugar that accu-
mulates in response to cold shock in C. vulgaris, and that is usually not 
considered to be present in algae, is raffinose (Salerno and Pontis, 1989). 
Raffinose is a trisaccharide with a α-1, 6-galactosyl extension to sucrose, 
meaning it is composed of galactose, glucose, and fructose, and it is part 
of the raffinose family of oligosaccharides (RFOs) that are all α-galac-
tosyl derivatives of sucrose. These sugars are usually found in higher 
plants, in which they are suggested to have numerous important func-
tions. Signal transduction, carbon transport and storage, messenger RNA 
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(mRNA) export, and membrane trafficking are some of the important 
cellular functions of which RFOs are considered to be a part (Sengupta 
et al., 2015). In seeds, RFOs are stored and synthesised to protect the 
seed from desiccation, extending longevity and providing the seed with 
energy during germination (Downie et al., 2003). Moreover, raffinose 
accumulation in higher plants helps protect plants from oxidative 
damage triggered by salinity, methyl viologen treatment, or chilling 
(Nishizawa et al., 2008). A possible use for raffinose is in the functional 
food industry because it is a prebiotic that is beneficial to iron 
bioavailability, the function of the brush border membrane, and the gut 
microflora (Pacifici et al., 2017). 

In a previous study, researchers showed that the content of poly-
unsaturated fatty acids in Scenedesmus sp. increased with a decrease in 
temperature (Li et al., 2011). By changing the temperature from 20 to 
10 ◦C, the polyunsaturated linolenic acid (C18:3) content increased 
dramatically. On the contrary, the long chain polyunsaturated fatty acid 
C22:3 was no longer present when the temperature increased from 10 to 
20 ◦C (Li et al., 2011). The green alga Acutodesmus obliquus grown at 20, 
30, and 35 ◦C had the highest polyunsaturated fatty acid content at the 
lowest temperature tested (Helamieh et al., 2021). Algal species respond 
to temperature changes in different ways – for example, two marine 
dinoflagellates belonging to the genus Symbiodinium showed an increase 
in fatty ethyl methyl esters (FAMEs) and docosahexaenoic acid (DHA) 
content when the temperature decreased from 27 to 22 and 17 ◦C 
(Tsirigoti et al., 2020). Another marine microalga, Dunaliella tertiolecta, 
showed an increase in C18:3 in a strain grown at a lower temperature 
compared with another strain grown at a higher temperature (Kim et al., 
2014). In several different algal species, lowering the cultivation tem-
perature induces an increase in polyunsaturated fatty acids that allows 
the algal cell to maintain membrane fluidity at lower temperatures 
(Sharma et al., 2012). In a previous study, other northern Sweden 
microalgae were screened for FAME production at 25 ◦C, showing that 
C16:0 and C18:3 were the dominant FAMEs (Nzayisenga et al., 2020). 

The aim of this study was to highlight the potential biotechnological 
use of two cold-tolerant algae grown at a low temperature. The study 
hypothesis is that low temperature affects a) soluble sugar accumulation 
and b) the quality and quantity of fatty acids. 

2. Materials and methods 

2.1. Microalgae cultivation 

Two cold-tolerant microalgal strains, C. vulgaris strain 13-1 and 
Scenedesmus sp. strain B2-2, isolated in Umeå, Sweden – with ability to 
efficiently remove nutrients in wastewater during cold-stress – were 
selected for this study (Ferro et al., 2018a, 2018b). The two microalgae 
were pre-cultivated in sterile 500-mL borosilicate glass bottles con-
taining 400 mL of autoclaved Bold's Basal Medium (BBM; Bischoff and 
Bold, 1963) at pH 6.7. The bottles were inoculated with 6–8 loops (loop 
volume 5 μL) of algae grown on agar plates. Once inoculated, the bottles 
were bubbled with approximately 0.4 L air min− 1 L− 1 culture medium 
and placed on an orbital shaker at 105 rpm in a climate cabinet (A1000, 
Conviron, Winnipeg, Canada) at 22 ◦C with a 16-h:8-h light:dark cycle. 
The cultures were supplied with artificial light at a photosynthetically 
active radiation (PAR) of approximately 40–45 μmol m− 2 s− 1 measured 
at the middle height of the bottle. Pre-cultivation lasted for 8 and 5 days 
for the batches grown at 22 and 5 ◦C, respectively. 

After pre-cultivation, sterile 1-L borosilicate glass bottles received 
0.9 L of autoclaved BBM medium (pH 6.7) and were inoculated with 0.1 
L of the pre-cultivated algae. The cultivation conditions were as 
described above except that the cultures were bubbled with approxi-
mately 0.7 L air min− 1 L− 1 culture medium. Each strain was cultivated in 
triplicate. 

To monitor the growth phase, the optical density (OD) was measured 
at 750 nm, in an Epoch 2 microplate reader (BioTek, Winooski, VT, USA) 
every day during growth at 22 ◦C and every other or third day during 

growth at 5 ◦C. For algae grown at 22 ◦C, the start OD750 was 0.054 for 
C. vulgaris 13-1 and 0.045 for Scenedesmus sp. B2-2. For algae grown at 
5 ◦C, the start OD750 was 0.070 for C. vulgaris 13-1 and 0.027 for Sce-
nedesmus sp. B2-2. After 14 days of growth at 22 ◦C, the algae were 
harvested because both strains had reached the stationary phase. After 
36 days of growth at 5 ◦C, C. vulgaris 13-1 had reached the stationary 
phase and was harvested. Scenedesmus sp. B2-2 was harvested after 46 
days of growth at 5 ◦C, in the late exponential phase. Harvesting was 
done by centrifugation at 4000g. The supernatant was discarded, and 
then the pellets were quickly placed in liquid nitrogen and freeze-dried 
for approximately 48 h or until they reached a constant weight. The 
pellets were then stored in the dark under a dry atmosphere. 

2.2. Morphological study 

The morphology of the two strains cultivated at different tempera-
ture was studied by light microscopy using a Leica DMi1inverted mi-
croscope (Leica Microsystems, Wetzlar, Germany). Photographs of the 
two strains were taken at 400× total magnification. For C. vulgaris, 100 
cells were measured for each cultivation temperature. 

2.3. Biomass preparation for analysis 

Freeze-dried algal biomass – three biological replicates for each 
strain – was transferred to 2-mL screw-cap plastic tubes containing ten 1- 
mm metal beads, and bead-milled for 3 × 30 s at 20 Hz with 1 min 
cooling between cycles (Bead Mill MAX, VWR, USA). Then, the beads 
were removed, and the milled biomass was stored in a dry, dark place 
until analysis. 

2.4. Biochemical analyses 

2.4.1. Soluble sugar analysis 
Five-to-six milligrams of freeze-dried milled algal biomass was put in 

1.5-mL screw-cap tubes. The sugars were extracted twice with 250 μL of 
80 % ethanol and once with 250 μL of 50 % ethanol, at 90 ◦C for 30 min. 
The samples were vortexed before heating and once again after 15 min 
of heating. Then, the samples were put on ice to cool down and centri-
fuged at 13,000 rpm for 5 min (Universal 320, Hettich, Tuttlingen, 
Germany). The supernatants from all three extractions, containing the 
extracted sugars, were put in new 1.5-mL screw-cap tubes and stored at 
− 20 ◦C until further analysis. 

The soluble sugar analysis protocol originates from Stitt et al. (1989). 
Before the enzymatic assay, the samples were diluted 50:50 with 80 % 
ethanol. A determination mix was prepared; it contained 15.5 mL of 100 
mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (HEPES)/ 
KOH pH 7.0 (including 3 mM MgCl2), 480 μL of 45 mM nicotinamide 
adenine dinucleotide phosphate (NADP), 480 μL of 100 mM adenosine 
triphosphate (ATP), and 80 μL of glucose-6-phosphate dehydrogenase 
(Merck KGaA, Darmstadt, Germany). Next, 160 μL of the determination 
mix was put in each well of a 96-well plate and 50 μL of the samples or 
glucose standard (0, 0.25, 0.5, and 1 mM in triplicate) was added. The 
glucose standards were used to construct a standard curve to calculate 
hexose units in the sugar extracts. The absorbance of dihy-
dronicotinamide adenine dinucleotide phosphate (NADPH) was read at 
340 nm with an Epoch 2 spectrophotometer and the Gen 5™ ver. 1.10 
software (BioTek). Once the absorbance had stabilised (about 5 min), 3 
μL of hexokinase (Merck KGaA) was added to all wells to detect glucose. 
The absorbance was measured until stabilisation (14 min) and then 2 μL 
of phosphoglucose isomerase (Merck KGaA) was added to detect fruc-
tose. After 7 min, the reaction had stabilised and 3 μL of invertase 
(Merck KGaA) was added to detect sucrose (the reaction had stabilised 
after ca. 1 h). As a final step, 2 μL of α-galactosidase (NEOGEN/Mega-
zyme, Bray, Ireland) was added to detect raffinose and other RFOs; the 
reaction had stabilised after 50 min. 
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2.4.2. Lipid analysis 
The lipids were extracted with a single-step method, developed by 

Axelsson and Gentili (2014) based on the method described by Folch 
et al. (1957). Twenty milligrams of freeze-dried biomass was mixed with 
9 mL of 2:1 chloroform:methanol (v/v) and 2.4 mL of 0.73 % sodium 
chloride to achieve a ratio of 2:1:0.8 (v/v/v) chloroform:methanol: 
water. The mixture was vortexed and centrifuged for 2 min at 400g 
(Sorvall ST16R, Thermo Scientific, Waltham, MA, USA) to separate the 
phases; the lower hydrophobic lipid phase was transferred to a new glass 
tube. Two more extractions were performed by adding 2 mL of chloro-
form to the remaining sample; the lower phases were transferred to the 
same new glass tube. The solutions were vacuum dried in a multi- 
evaporator (Syncore® Polyvap, Büchi Labortechnik AB, Flawil, 
Switzerland) overnight at 45 ◦C, 275 mbar, and 180 rpm. 

For esterification of the total lipids, 1 mL of toluene and 2 mL of 1 % 
sulfuric acid in dry methanol were added to the tubes, vortexed, and 
fluxed with N2 before incubation for 2 h at 80 ◦C. N2 was added to create 
an anaerobic environment during the esterification reaction to prevent 
the lipids from oxidising or carbonating. After incubation, 5 mL of 5 % 
NaCl solution was added and the FAMEs were extracted twice with 5 mL 
of hexane by vortexing, centrifuging (2 min, 400g), and transferring the 
upper hexane layer to a new tube (Lage and Gentili, 2018). Then, 3 mL of 
2 % potassium bicarbonate solution was added to wash the hexane 
samples and a small amount of anhydrous sodium sulfate was added to 
remove any remaining water in the hexane layer. The hexane layer was 
transferred to a new glass tube and 50 μL of a methanol solution con-
taining 10 μg μL− 1 methyl pentadecanoic acid (C15:0) was added to each 
tube as an internal standard. The samples were vacuum dried in a multi- 
evaporator overnight at 45 ◦C, 275 mbar, and 180 rpm (as described 
above), and then at 55 ◦C, 100 mbar, and 180 rpm for 100 min to remove 
any remaining toluene residue. The dried FAME extracts were re- 
dissolved in 400 μL of heptane, transferred to gas chromatography 
(GC) vials, and used for GC analysis. 

To determine the FAME profile, the samples were injected with a 
TriPlus RSH autosampler (Thermo Fisher Scientific, Hägersten, Sweden) 
into a gas chromatograph (TRACE 1310, Thermo Fisher Scientific) 
equipped with a flame ionisation detector and a 30 m FAMEWAX col-
umn (Restek Corporation, Bellefonte, PA, USA) with a film thickness of 
0.25 μm and an internal diameter of 0.32 mm (Lage & Gentili, 2018). 
The added internal standard, methyl pentadecanoic acid (C15:0), was 
used to quantify the FAMEs, and an external FAMEs standard mixture 
was used to identify the FAMEs by retention time. The external FAME 
standard was a mixture of methyl tetradecanoate (C14:0), methyl hex-
adecanoate (C16:0), methyl palmitoleate (C16:1), methyl heptadeca-
noate (C17:0), methyl octadecanoate (C18:0), methyl oleate (C18:1), 
methyl linoleate (C18.2), methyl linolenate (C18:3), methyl eicosanoate 
(C20:0), and methyl docosanoate (C22:0) purchased from Larodan 
(Solna, Sweden). The program Chromeleon 7.2.7 (Thermo Fisher Sci-
entific) was used to analyse the GC result and calculations were made in 
Microsoft Excel. The total amount of FAMEs was calculated as described 
by Breuer et al. (2013). 

2.5. Statistical analysis 

Data were analysed using a two sample t-test at a 95 % confidence 
level (Microsoft Excel). 

3. Results and discussion 

3.1. Soluble sugar analysis 

3.1.1. Chlorella vulgaris 
After soluble sugar extraction, an enzymatic assay was performed to 

study and compare the amount of glucose, fructose, sucrose, and RFOs 
present in C. vulgaris cultured at different temperatures. The glucose and 
fructose content in the algae was very low or negligible; however, 

glucose showed a limited but statistically significant increase when 
C. vulgaris was grown at 5 ◦C compared to 22 ◦C (Fig. 1). The sucrose 
content increased by 14.6 %, from 328.5 nmol/mg dry weight (DW) for 
algae grown at 22 ◦C to 376.6 nmol/mg DW for algae grown at 5 ◦C. This 
result is in agreement with what was found previously in C. vulgaris 
strain 11468, namely sucrose accumulation due to cold shock, indi-
cating that algae and higher plants react to cold in similar ways (Salerno 
and Pontis, 1989). Sucrose is one of the primary cryoprotectants in 
plants and if sugar accumulation is blocked, the plants lose their ability 
to become freeze tolerant (Guy, 1990). The RFO content was greatly 
increased by 300 %, from 8.7 nmol/mg DW for algae grown at 22 ◦C to 
35.4 nmol/mg DW for algae grown at 5 ◦C (Fig. 1). Salerno and Pontis 
(1989) were the first to report raffinose accumulation in response to cold 
shock when C. vulgaris strain 11468 was transferred from 24 to 4 ◦C. 
However, in the present study C. vulgaris was grown continuously at a 
low temperature, while Salerno and Pontis (1989) transferred C. vulgaris 
strain 11468 from 24 to 4 ◦C for 2 days, essentially stopping its growth. 
Raffinose is known to protect the cell and cellular metabolism from 
oxidative damage triggered by salinity, drought, methyl viologen 
treatment, or chilling by acting as an osmoprotectant, scavenging 
reactive oxygen species (ROS), and stabilising membrane (Nishizawa 
et al., 2008). Growing C. vulgaris strain 13-1 at low temperature that 
naturally occur at high latitudes could be of interest for the functional 
food industry because it increases the content of raffinose, a prebiotic 
with beneficial effects on mineral metabolism and intestinal health 
(Pacifici et al., 2017). 

3.1.2. Scenedesmus sp. 
The same enzymatic assay described above was used to study and 

compare the amount of soluble sugars present in Scenedesmus sp. 
cultured at different temperatures. Glucose and fructose content of 
Scenedesmus sp. followed a similar trend to what observed in C. vulgaris 
(Figs. 1 and 2). The fructose content in the algae grown at 22 ◦C was also 
undetectable, and no difference was observed when grown at 5 ◦C. Su-
crose was the most abundant soluble sugar in Scenedesmus sp.; however, 
differently from C. vulgaris, it decreased by 79 %, from 107.8 nmol/mg 
DW when grown at 22 ◦C to 23.0 nmol/mg DW when grown at 5 ◦C 
(Fig. 2). This change is surprising because sucrose accumulation is a 
known response to cold stress in some microalgae and higher plants 
(Salerno and Pontis, 1989), although the change in sucrose in response 
to temperature changes seems to differ greatly among algal species. 
Dunaliella sp. accumulates sucrose at higher temperatures (Müller and 
Wegmann, 1978), while C. vulgaris accumulates sucrose at lower tem-
peratures (Salerno and Pontis, 1989). The RFO content of Scenedesmus 
sp. increased in the algae grown at 5 ◦C, but only to 0.5 nmol/mg DW, 
which is too small of a difference to draw a conclusion. Hence, the 
change in the RFO content in response to low temperature was very 
different between Scenedesmus sp. and C. vulgaris (Figs. 1 and 2). 

3.2. Total FAMEs and FAMEs profile 

3.2.1. Chlorella vulgaris 
The FAME profile and the FAME fractions (%DW) in C. vulgaris were 

altered when the temperature changed (Fig. 3A, B). The fatty acids 
present in C. vulgaris at both temperatures were C14:0, C16:0, C16:1, 
C18:0, C18:1, C18:2, and C18:3 (Fig. 3A). The FAME fractions of C18:1 
and C18:3 were 26.4 % and 19.8 %, respectively, when grown at 22 ◦C, 
and increased to 40.4 % and 23.0 %, respectively, when grown at 5 ◦C. 
The FAME fractions of C16:0, C18:0, and C18:2 were 17.1 %, 1.9 %, and 
31.1 %, respectively, when grown at 22 ◦C, and decreased significantly 
to 14.2 %, 0.9 %, and 17.7 %, respectively, when grown at 5 ◦C. Of the 
tested FAMES, only C16:1 showed no significant difference when 
comparing the temperatures: 3.2 % when grown at 22 ◦C and 3.6 % 
when grown at 5 ◦C (Fig. 3A). The total FAMEs represented about 19.9 % 
of the dry biomass of algae grown at 22 ◦C and about 27.2 % of the dry 
biomass of algae grown at 5 ◦C (Fig. 3B). Hence, C. vulgaris grown at 5 ◦C 
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increased the total FAME content by 36.7 % compared with FAME 
production at 22 ◦C. However, as mentioned above the culture grown at 
the lower temperature needed longer time to reach the stationary phase 
compared with the culture grown at the higher temperature. 

In a previous study on C. vulgaris strain CCTCC M 209256 grown at 
20, 25, 30, and 35 ◦C, saturated fatty acids increased as the temperature 
increased and unsaturated fatty acids increased as the temperature 
decreased (Ma et al., 2014). One reason for this response to low tem-
perature is that higher degree of unsaturated fatty acids increase 
membrane fluidity (Somerville, 1995; Sharma et al., 2012). The cold 
flow property of biodiesel is a critical factor; it is decreased with a high 
percentage of saturated fatty acids like C16:0 because these tend to so-
lidify at cold temperatures (Dwivedi and Sharma, 2014). Hence, the 
increase in the percentage of the monounsaturated fatty acid C18:1 and 
the decrease in the percentage of the saturated fatty acid C16:0 would 
improve the cold flow property of biodiesel (Knothe, 2009). C. vulgaris 
strain 13-1 grown at 5 ◦C had a low percentage of C16:0, a high per-
centage of C18:1, and increased lipid production, all of which are 
important for biodiesel production. Of note, the C18:3 fraction also 
increased from 19.7 % to 23.0 % in C. vulgaris grown at 5 ◦C, which can 

cause biodiesel degradation and poor oxidation stability (Knothe, 2009). 
On the other hand, linolenic acid (C18:3) is an omega-3 fatty acid that, 
in addition to omega-9 fatty acid (C18:1), is essential for humans 
because they cannot be produced by the body and need to be retrieved 
from external sources such as food (Khan et al., 2018). 

3.2.2. Scenedesmus sp. 
Scenedesmus sp. also showed an altered FAME profile and increased 

FAME fractions (%DW) as the temperature changed (Fig. 4A, B). The 
fatty acids present in Scenedesmus sp. at both temperatures were C14:0, 
C16:0, C16:1, C18:0, C18:1, C18:2, and C18:3 (Fig. 4A). The FAME 
fractions of C14:0, C16:0, and C18:0 did not show significant differences 
between the two temperatures. The FAME fractions of C16:1, C18:1, and 
C18:2 were 1.7 %, 50.2 %, and 12.1 %, respectively, at 22 ◦C, and they 
decreased significantly when algae were grown at 5 ◦C, to 0.8 %, 40.3 %, 
and 7.8 %, respectively. Interestingly the content of unsaturated C18:2 
decreased at 5 ◦C in both C. vulgaris and Scenedesmus sp. (Figs. 3A, 4A). 
Because fatty acid desaturases use C18:2 to generate C18:3 (He et al., 
2020), the decrease in C18:2 at a low temperature could be due to 
enzymatic desaturation activity to produce C18:3. The FAME fraction of 
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C18:3 was 11.5 % at 22 ◦C and increased to 26.8 % in the Scenedesmus 
sp. grown at 5 ◦C. Hence, C18:3 was the only FAME that increased 
significantly in Scenedesmus sp. grown at 5 ◦C. As mentioned, a high 

fraction of C18:3 is not optimal for biodiesel production because it de-
creases biodiesel quality, but the aforementioned health effects of this 
omega-3 fatty acid could make this alga beneficial for human health. 
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Fig. 4. Fatty acid methyl esters (FAMEs) profile (A), where each FAME is presented as FAME fraction of total FAMEs (%), and total FAMEs content (% DW) (B) of 
Scenedesmus sp. grown under different temperatures, 22 ◦C and 5 ◦C. Columns represent mean ± SD of three biological replicates. Asterisks indicate a significant 
difference between the two temperatures (P < 0.05, Student's t-test). 

Fig. 5. Morphological changes observed by light microscopy in C. vulgaris (A, B) and in Scenedesmus sp. (C, D) at 22 ◦C (A, C) and 5 ◦C (B, D) with 16 h:8 h light:dark 
cycles. Magnification: 400×. 
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However, when grown at 22 ◦C, the C18:3 fraction of Scenedesmus sp. 
was below the 12 % threshold that is, according to European standard 
EN14214, the maximum percentage of C18:3 allowed in biodiesel, 
meaning that Scenedesmus sp. grown at 22 ◦C could potentially be a 
biodiesel source. The total FAMEs represented 12.5 % of the algal 
biomass when grown at 22 ◦C and increased significantly to 17.5 % of 
the dry biomass when grown at 5 ◦C (Fig. 4B). Hence, total FAMEs 
increased by 40 % when Scenedesmus sp. was grown at 5 ◦C compared 
with 22 ◦C, but the former culture required a longer cultivation time. 

3.3. Morphological changes 

The morphology of both strains grown at 22 and 5 ◦C was studied and 
compared microscopically. Both strains had distinct morphology and 
different cell sizes and shapes (Fig. 5). C. vulgaris grown at 22 ◦C 
appeared as single spherical cells with a diameter between 3 and 8.5 μm. 
C. vulgaris grown at 5 ◦C still appeared as single spherical cells with a 
diameter of 5–9 μm. Scenedesmus sp. grown at 22 ◦C had an ellipsoidal 
cell shape and mainly formed colonies of four cells, but there were also 
single cells and colonies of two cells. The cell length on the longer axis of 
Scenedesmus sp. grown at 22 ◦C was approximately 11–14 μm while the 
shorter axis was approximately 5–7 μm. There were spines 7–10 μm long 
on the colonies of four cells. Scenedesmus sp. grown at 5 ◦C had a very 
different morphology compared with that grown at 22 ◦C. The cell shape 
changed from ellipsoidal to almost round, and the cells were bigger. 
Most cells were 10–16 μm in diameter, but in some case they reached 
around 20 μm in diameter. The spines were mostly gone, or at least 
shorter, and granules were present in the cytoplasm. The typical for-
mation of colonies of four cells was no longer seen in the Scenedesmus sp. 
grown at 5 ◦C; instead, they were clustered in many different ways, often 
two, three, or four together. This considerable change in morphology 
could be the reason why Scenedesmus sp. grew much slower than 
C. vulgaris. It seems that Scenedesmus sp. required considerable reprog-
ramming of its cell morphology, and the large cell size formation might 
be the reason for the slower growth compared with C. vulgaris. The 
observed granules could be a way to accumulate storage products like 
starch or lipids at a low temperature. Scenedesmus sp. follows the 
temperature-size rule proposed by Atkinson (1994): many living or-
ganisms increase their cell size when exposed to cooler temperatures. 
Moreover, phenotypic plasticity has been observed in the Scenedesmus 
and Desmodesmus genera (Lürling, 2003). 

4. Conclusions 

In conclusion, the two cold-tolerant strains, C. vulgaris and Scene-
desmus sp., responded to cold temperatures and produced different 
valuable compounds. C. vulgaris slightly changed its morphology, did 
modify its fatty acid profile, and accumulated sucrose as well as RFOs in 
response to cold. Scenedesmus sp., on the other hand, changed its 
morphology considerably, modified its fatty acid profile, particularly 
increasing the fraction of the omega-3 fatty acid linolenic acid (C18:3), 
and decreased its sucrose content in response to cold. Future studies on 
these cold-tolerant microalgal strains should focus on their potential 
industrial application as food and feed, biopharmaceuticals, nutraceut-
icals, and renewable energy sources. 
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