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The conservation value of forests can be
predicted at the scale of 1 hectare

Check for updates

Jakub W. Bubnicki 1 , Per Angelstam2, Grzegorz Mikusiński3,4, Johan Svensson5 &
Bengt Gunnar Jonsson 5,6

To conserve biodiversity, it is imperative to maintain and restore sufficient amounts of functional
habitat networks. Therefore, the location of the remaining forests with natural structures and
processes over landscapes and large regions is a key objective. Here we integrated machine learning
(Random Forest) and open landscape data to scan all forest landscapes in Sweden with a 1 ha spatial
resolution with respect to the relative likelihood of hosting High Conservation Value Forests. Using
independent spatial stand- and plot-level validation data, we confirmed that our predictions correctly
represent different levels of forest naturalness, from degraded to those with high and associated
biodiversity conservation values. Given ambitious national and international conservation objectives
and increasingly intensive forestry, our model and the resulting wall-to-wall mapping fill an urgent gap
for assessing the achievement of evidence-based conservation targets, spatial planning, and
designing forest landscape restoration.

Remnants of naturally dynamic forest landscapes are key biodiversity hot-
spots providing habitats to a large number of species, forming intact and
resilient ecosystems, and providingmultiple ecosystem-level services1,2. The
scarcity and continuing loss of such forest areas3 has raised awareness about
the need for spatially effective conservation and landscape restoration4. In
particular, primary and old-growth forests with low human impact form
important local biodiversity hotspots5–8. Hence, there is a growing need for
effective mapping of such areas to safeguard their existence through con-
servation and nature restoration to ensure habitat network functionality9–13.

Forest species have adapted to a diversity of naturally occurring dis-
turbance regimes14, which create structural patterns at multiple scales15 and
form diverse habitats. The level of forest naturalness16,17 reflects a transition
from naturally dynamic forests as complex ecosystems to simplified crop-
ping systems managed for wood biomass production18. Globally, such
transitions are creating expanding frontiers of naturalness loss19,20.

Green infrastructure (GI) is an established concept addressing the
urgency of conserving and restoring sufficient areas of functional and
representative habitat networks21–23 through a multi-scale approach sup-
porting biodiversity conservation, ecosystem resilience, biodiversity and
ecosystem services24. Planning and maintaining functional GI networks

requires knowledge about the existence and location of necessary amounts
of high conservation value areas able to maintain structural and functional
connectivity across landscapes and regions23–25. In regions dominated by
intensive cropping systems for the production of wood biomass, the pro-
visioning of other ecosystem services and biodiversity conservation become
limited. The need to identify remnant natural forest patches of importance
for biodiversity conservation triggered the use of the term forest
naturalness16, and the establishment and mapping of High Conservation
Value Forests (HCVF)26, generically capturing forests with high levels of
naturalness27. Typically, HCVF harbour native tree species, have a long
history of forest continuity, vertical and horizontal structural complexity,
and low levels of anthropogenic influence7,28,29. Such HCVF mapping data
can be used for to assess the practical achievement of evidence-based con-
servation targets23,30, spatial planning25,28, anddesigning forest landscape and
nature restoration31.

With a long history of intensivewood biomass production, Sweden is a
globally important producer of wood products with a rotational forest
management system that is applied systematically across the forest land-
scape. However, this has caused an overall transformation of naturally
dynamic forests into effective wood production cropping systems32,33.
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Outside the foothill forests of the Scandinavian mountain ranges, only
fragments of such naturally dynamic forests remain12. In Sweden, the first
national-scale HCVF dataset was compiled in 2016, based on known and
registered forest biodiversity hotspotswithin andoutside formally protected
areas at the time. The HCVF were mapped by field surveys during several
decades andwithout a predefined sampling scheme34. Thus, the background
information, based on costly and time-consuming field work, is neither up
to date nor comprehensive and is limited in terms of its spatial and habitat
representativeness.

The increasing availability of wall-to-wall spatial datasets describing
multiple dimensions of landscapes with unprecedented thematic resolution
and spatial precision, creates an opportunity to overcome these
limitations35,36. Examples of such datasets range from raw remote sensing
data collected globally bymodern, civil satellitemissions such as Landsat 837

and Sentinel-238; sophisticated data products such as the high-resolution
maps of global forest cover change39 and forest canopy height40; to LIDAR-
based forest structure measurements41 and high-spatial and thematic
resolution land cover/land-usemaps42. Furthermore, rapid developments in
applying machine learning within ecology and conservation science43–45

provide anopportunity tomap thenaturalness and thus conservation values
of forests46. It is challenging to provide direct mechanistic meanings to
multi-scale spatial proxy variables describing forest naturalness, as they
interact in complex and highly non-linear ways. However, machine learn-
ing, with its ability to flexibly and automatically detect the best predictive
patterns that explain the data, is promising for providing a robust solution to
this problem. Big spatial data can be processed with machine learning to
develop a contiguous and complex measure of the naturalness of forest
ecosystems, accounting not only for simple tree cover dynamics, but also for
forest structural properties and composition of surrounding landscapes at
different spatial scales46.

Given the high pressure on forest ecosystems and the urgent need for
spatially explicit information on remainingHCVF, the aimof this studywas
to provide validated mapping of forest areas crucial for biodiversity con-
servation at landscape, regional and national levels. Implemented and tested
on Sweden’s forests, themethods we developed are potentially applicable to
other forest regions. We used Sweden as a case study for the following
reasons: (1) Sweden’s forest area is the largest in the European Union (c.
280,000 km2), ranges from temperate deciduous, through boreal to sub-
alpine ecoregions, and covers wide gradients in forest type, landscape
configuration, and ownership pattern; (2) Its natural forests and forest
landscapes have been transformed intowoodbiomass cropping systems to a
high degree, which makes identifying HCVF remnants critical12,47,48; (3)
There is strong political pressure to further intensify wood biomass oriented
forestry49, and (4); The systematic public HCVF field surveys have been
terminated50.

We present a comprehensive framework for predicting the occurrence
of forests with different levels of naturalness using a data mining and pre-
dictive modelling approach. More specifically, we used the Random Forest
(RF) machine learning algorithm and publicly available high-resolution
spatial datasets describing landscape configuration, topography, forest
structural properties, and various socio-economic factors affecting land-
scape patterns and processes at multiple scales. We trained our models and
tested their performance using the only existing, yet incomplete, national-
scale HCVF database. Finally, using a comprehensive set of independent
spatial datasets, we validated the extent to which the predicted relative
likelihoods of HCVF occurrence capture the gradient of forest naturalness
and conservation values. Our focuswas on predicting the continuous values
of the relative likelihood of HCVF occurrence. This is more informative
than binary output, and is crucial for identifying areas that represent dif-
ferent levels of forest naturalness, ranging from degraded forests to those
with high biodiversity conservation values. The derived predictionmap can
support landscape conservation planning by providing crucial information
on where to locate conservation measures, such as protected areas and/or
forest restoration, or alternatively, where to prioritise forestry-oriented
management practices.

Results
Predicting naturalness as conservation value
Weuseddatamining and predictivemodelling51 to scan forest landscapes in
Sweden (Fig. 1, Table 1) for the occurrence of HCVF. This modelling
approach was motivated by the inherent properties of HCVF, which are
complex and high-dimensional with respect to, among other factors, the
physical landscape, biodiversity, socio-economics, intensity of manage-
ment, and history of use. This complexitymeans that a complete set of wall-
to-wall spatial data describing all relevant dimensions is unavailable, and
one has to rely on available spatial proxy variables. Focusing on the level of
naturalness as a proxy for HCVF, our approach was to integrate many
different data sources describingmultiple dimensions of forest landscapes at
multiple spatial scales, including the physical landscape, tree stands’ bio-
physical structure, and socio-economic factors related to current and his-
torical anthropogenic pressure on forests in Sweden (Table 2). We used the
machine learning classifier RF52 to train our models and generate predic-
tions. We predicted the relative likelihood of HCVF occurrence in c. 21.85
million 1 ha pixels that are dominated by forest (i.e., forest cover >0.5) in the
four study regions (Fig. 1), representing c. 78% of the total forest area in
Sweden (Table 1). The results based on a 10-fold spatial cross-validation
(SCV)53–55 show that all four RF models, trained and validated indepen-
dently for each of the four study regions, fit the data well and have high
predictive capabilities. The model performance metrics fall into the fol-
lowing ranges (metric name [range]): ROC AUC [0.89–0.90], PR AUC
[0.84–0.89], Pearson R [0.66–0.68], Brier’s score [0.14–0.15] and MCC
[0.61–0.62] (see Fig. 2 and Table 3 for detailed statistics for each model).

The variable selection procedure to decrease the level of co-linearity
between the initial 128 explanatory variables, appliedbefore the 10-fold SCV
and training the final models, reduced the number of variables to 49, 50, 53
and 48 for the North boreal, South boreal, Hemiboreal and Nemoral
regions, respectively (Supplementary Figs. 2–5). Interestingly, although a
unique combination of variables and spatial scales was selected in each
model,weobserved the samevariables (and similar spatial scales) among the
most influential for eachmodel (Fig. 3; Supplementary Figs. 2–5; see Table 2
for all variable acronyms). Moreover, the Partial Dependencies Plots43,56

clearly indicated consistent patterns of the variables’, often non-linear,
relationships with the relative likelihood of HCVF occurrence across all
independently trained models. This included (1) the variables describing
forest structural properties, such as the uncorrected and regionally-
corrected forest height calculated at a target 1 ha scale (HEIGHT,
HEIGHTc), as well as at 0.3 (HEIGHTc003), 0.5 (HEIGHTc005) and 0.11
(HEIGHTc011) spatial scales (expressed in km as the length of a squared
window placed at the centre of a 1 ha target pixel), which were some of the
most important variables for all regions, and the variation in forest height
within each 1 ha pixel (HEIGHTv), a highly important variable for the
North boreal and South boreal regions; (2) the variables describing the
multi-scale landscape patterns of forest management intensity based on
Hansen’s data39 (GFC; combined layers of forest loss and gain, HAN-
SEN003, HANSEN005 and HANSEN011) and the Swedish national land
cover data (NMD; logged forest, FOPEN003 and FOPEN011), which were
themost influential variables for all regions; and (3) the variables describing
the physical structure of a landscape (also a proxy for its accessibility) as
DEM011 and SLOPE011 (dominant drivers for North boreal, South boreal
and Nemoral regions).

In all regions, HCVF were more likely to be found in areas with more
complex topography (SLOPE, SLOPEv), higher elevation (DEM), in tree
stands that are taller than the regional average tree height (HEIGHTc), and
structurally more diverse (HEIGHTv). All the above variables are consistent
with higher levels of forest naturalness, and showed monotonically
increasing non-linear relationships with the relative likelihood of HCVF
occurrence, inmost cases with a form of sigmoid-shaped function (Fig. 3). In
the Hemiboreal and Nemoral regions, the proportion of broadleaf tree
stands also followed the same pattern. The opposite, i.e., monotonically
decreasing relationships, were observed for all variables representing differ-
ent aspects of a priori negative human impact on landscapes surrounding the
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Fig. 1 | The map of the study area. The study area (Sweden) divided into 4 regions
(1: North boreal, 2: South boreal, 3: Hemiboreal, 4: Nemoral) and the illustration of
the 1 ha forest pixel sampling density used for Random Forest models training and
validation (red: HCVF presence, black: HCVF pseudo-absence). The barplots show
the sampling distribution of presences (True) and pseudo-absences (False) for each

region. The minimum distance between all sampling locations from the same
category was set to 5 km, while the minimum distance between categories was set to
1 km. The forest cover is based on the Swedish national land cover data (NMD), but
excluding temporarily non-forest areas (i.e., recently logged forest or young
plantations).
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target 1 ha forest pixels. These were multi-scale and distance-based variables
related to both direct forest management practices and indirect measures of
landscape accessibility for forestry aimed at wood production (e.g., HAN-
SEN, FOPEN, ROADS). These patterns were consistent among regions.

The multi-scale variables, acting as proxies for forest management
intensity (e.g., HANSENor FOPEN), were important predictors not only in
forest dominated landscapes, but also captured isolated HCVF patches
surrounded by a non-forest matrix (e.g., forest patches on islands, along the
sea coast, or surrounded by agricultural fields). Here, a low value for forest
management intensity in the immediately surrounding pixels increased the
relative likelihood of HCVF presence.

Validation of predictions
Two independent sources of relevant spatially explicit information were
used to validate the model. The stand-level validation of the predicted
relative likelihood of HCVF occurrence, based on data from the Sveaskog
forest company (n = 57548 tree standpolygons), showedconsistent patterns
across all four study regions (Fig. 4, Supplementary Tables 1–4). The mean
predictions per category clearly followed the ordinal scale of forest man-
agement types. The highest values were associated with tree stands set-aside
for conservation, i.e., without anymanagementNF (mean values for regions
1−4: 0.64, 0.67, 0.59, 0.72) and NF_NM (0.72, 0.70, 0.67, NA), followed by
tree stands with conservation-oriented management NM (0.57, 0.53, 0.58,
0.63) and production forests with enhanced conservation concern PE (0.42,
0.40, 0.43, 0.59). The lowest values were associated with production forests
of general concern PG (0.29, 0.28, 0.32, 0.37). The pairwise numerical dif-
ferences between conservation-oriented (NF, NF_NM and NM) and
production-oriented (PE, PG) management objectives were highly statisti-
cally significant (Tukey’s posthoc test, p < 0.001) in all regions except the
Nemoral region, where there were no significant differences between PE,
NM and NF. Similarly, for the forest naturalness variable in all regions, tree
stands labelled as natural had significantly higher mean predicted values
(0.65, 0.63, 0.58, 0.65) than tree stands without this label (0.30, 0.30,
0.33, 0.39).

The results of the second validation, based on plot-level data from the
Swedish National Forest Inventory (NFI; n = 13,775 plots) were in accor-
dance with the Sveaskog stand-level validation and were also consistent

between regions (Fig. 4, Supplementary Tables 5–8). In the North boreal,
South boreal and Hemiboreal regions, NFI plots that had already been
recognised as having a high level of forest naturalness (category “natural”;
mean values for regions 1−3: 0.84, 0.76, 0.63) had significantly higher values
of predicted relative likelihood of HCVF occurrence than average (category
“normal”; 0.36, 0.37, 0.38) and forest plots labelled as “plantation” (0.20,
0.24, 0.27). In the Nemoral region there was no difference between the
naturalness categories; however, there were only two data points available
for the “natural” category. Comparison of predicted values between NFI
plots classified as having Natura 2000 habitat qualities showed clear and
highly statistically significant differences in all regions. These plots had
much higher values of predicted relative likelihood of HCVF occurrence
(mean values for regions 1−4: 0.83, 0.83, 0.72, 0.69) compared to areas
without such qualities (0.35, 0.36, 0.37, 0.41).

Discussion
This study explored integrating machine learning and landscape data
mining to scan forest landscapes across all forestland in Swedenwith respect
to the relative likelihood of hosting biodiversity hotspots in the form of
HCVF. The application of the RF model generated high-accuracy predic-
tions, resulting in a thematicmap that ranks forests and landscapesbased on
their levels of naturalness, representing theHCVF relative likelihood surface
(Fig. 5). We validated the models against different independent datasets
representing forest naturalness at both the forest stand and the plot scales.
This confirmed that the predicted relative likelihoods of HCVF occurrence
actually represent forests with different levels of naturalness and con-
servation values. Therefore, we demonstrated that publicly available spatial
datasets and current machine learning-based predictive modelling can
generate urgently neededmapping of forests with high conservation values,
as well as identify forests with low risks of conflicts between intensive for-
estry andbiodiversity conservation57.Ourpredictions canbe usedas thefirst
step in the process ofmaking informed strategic conservation decisions and
forest management planning. Obviously, before making any final tactical
and operational decisions about the area, field validation should always be
performed.

Comparison with other studies
Attempts to map forests with high levels of naturalness and conservation
value encompass many different approaches ranging from systematic field
inventories (e.g., woodland key habitats schemes in northern Europe)58,
analyses of historical and contemporary databases29,30,59, and more recently,
remote sensing based analyses using multiple sensors and increasingly
advanced mapping methods, including the application of machine
learning3,11,28,60,61. However, in contrast to our work, most other recent stu-
dies using high-resolution and wall-to-wall spatial datasets to map HCVF
either apply a global or continental perspective, as is the case with the maps
of global Intact Forest Landscapes3 and European primary forests11, or
encompass only local areas of general conservation interest28,60. In the case of
global or continentalmodels, the spatial and thematicmapping resolution is
usually too coarse to be useful for strategic landscape-scale spatial planning.
For example, models generating large-scale predictions are trained using
limited and spatially clustered data, often extrapolating beyond the feature
(predictors) space covered by reference data62. The latter usually results in
weak predictive performance, especially when assessed using spatial k-fold
cross-validation strategies55,62 (but See ref. 63). In addition, mapping efforts
focused exclusively on target areas of general conservation interest are
obviously limited by their spatial coverage.

Consequently, global mapping approaches and those targeting local
conservation areas are not well suited for strategic landscape-scale spatial
planning andprioritising areas for conservation and restoration.This lackof
“actionable”maps has been identified as a serious obstacle in the develop-
ment of national climate and biodiversity strategies and in the imple-
mentation of effective actions in the conservation and restoration of
biodiversity64. Our study, presenting detailed information on the relative
likelihood of HCVF occurrence across several eco-regions for an entire

Table 1 | The basic land cover areal statistics (in kha)
describing the study area (Sweden) divided into 4 regions
(North boreal, South boreal, Hemiboreal and Nemoral)

North
boreal

South
boreal

Hemiboreal Nemoral Total for
Sweden

Terrestrial
land

15279.6 13465.7 10206.3 1921.1 40872.7

Buildup 7.3 17.5 54.8 18.5 98.1

Roads 130.9 231.8 330.6 80.5 773.8

Wetlands 2337.5 1191.6 349.7 48.8 3927.6

Agriculture 106.3 326.7 1572.1 577.1 2582.2

Total forest 9481.3 10500.6 6896.0 945.0 27822.9

Current forest 7157.6 8010.5 5673.8 767.1 21609

Temporary
non-forest

1579.5 2279.7 1222.2 177.9 5259.3

Mountain
woodland

744.2 210.4 0.0 0.0 954.6

Formally pro-
tected forest

1522.5 484.6 255.6 38.5 2301.2

HCVF 1960.4 1072.7 351.9 48.8 3433.8

The “Total forest” area is the sum of “Current forest” (tree height >5m), “Temporary non-forest”
(recently logged or burned forest; tree height <5m) and “Mountain woodland”. The “Mountain
woodland” is the subalpine mountain birch (Betula pubescens ssp. czerepanovii) tree line forest79.
The sources of data are the Swedish national land cover dataset (NMD) and High Conservation
Value Forests database (HCVF).

https://doi.org/10.1038/s43247-024-01325-7 Article

Communications Earth & Environment |           (2024) 5:196 4



T
ab

le
2
|T

he
lis

to
f3

1
sp

at
ia
lp

re
d
ic
to
rs

us
ed

as
ex

p
la
na

to
ry

va
ri
ab

le
s
in

th
is
st
ud

y
to
g
et
he

rw
it
h
th
ei
r
b
as

ic
d
es

cr
ip
ti
o
ns

,d
at
a
so

ur
ce

s
an

d
p
re
-p

ro
ce

ss
in
g
(r
e-
sa

m
p
lin

g
)

st
ra
te
g
ie
s

V
ar
ia
b
le

U
ni
t

D
at
as

et
P
ro
fi
le

O
ri
g
in
al

re
so

lu
ti
o
n

1
ha

fu
nc

ti
o
n

M
ul
ti
-

sc
al
e

M
ul
ti
-s
ca

le
fu
nc

ti
o
n

D
es

cr
ip
ti
o
n

D
E
M

m
D
E
M

la
nd

sc
ap

e
50

m
av

er
ag

e
ye

s
av

er
ag

e
el
ev

at
io
n

S
LO

P
E

d
eg

re
e

D
E
M

la
nd

sc
ap

e
50

m
av

er
ag

e
ye

s
av

er
ag

e
sl
op

e

S
LO

P
E
v

d
eg

re
e2

D
E
M

la
nd

sc
ap

e
50

m
va

ria
nc

e
no

N
A

sl
op

e

H
A
N
S
E
N

%
H
A
N
S
E
N

la
nd

sc
ap

e,
so

ci
o-
ec

on
om

ic
,f
or
-

es
ts

tr
uc

tu
re

30
m

p
ro
p
or
tio

n
ye

s
av

er
ag

e
%

of
m
er
ge

d
fo
re
st

lo
ss

(2
00

0–
20

20
)a

nd
ga

in
(2
00

0–
20

12
)

LI
G
H
TS

D
N

LI
G
H
TS

so
ci
o-
ec

on
om

ic
1
km

N
A

ye
s

av
er
ag

e
la
nd

p
ol
lu
tio

n
w
ith

ni
gh

t-
tim

e
lig

ht
s
ex

p
re
ss
ed

as
ca

lib
ra
te
d
d
ig
ita

ln
um

-
b
er
s
(D
N
)

LA
T

d
eg

re
e

N
A

cl
im

at
e,

so
ci
o-
ec

on
om

ic
N
A

N
A

no
N
A

la
tit
ud

e

LO
N

d
eg

re
e

N
A

cl
im

at
e,

so
ci
o-
ec

on
om

ic
N
A

N
A

no
N
A

lo
ng

itu
d
e

A
G
R
I

%
N
M
D

la
nd

sc
ap

e,
so

ci
o-
ec

on
om

ic
10

m
p
ro
p
or
tio

n
ye

s
av

er
ag

e
%

of
ag

ric
ul
tu
ra
la
re
as

B
R
O
A
D
LE

A
F

%
N
M
D

la
nd

sc
ap

e,
fo
re
st

st
ru
ct
ur
e

10
m

p
ro
p
or
tio

n
ye

s
av

er
ag

e
%

of
b
ro
ad

le
af

fo
re
st

B
U
IL
D
d

m
N
M
D

so
ci
o-
ec

on
om

ic
10

m
av

er
ag

e
no

N
A

d
is
ta
nc

e
to

th
e
ne

ar
es

tb
ui
ld
up

ar
ea

FO
P
E
N

%
N
M
D

la
nd

sc
ap

e,
so

ci
o-
ec

on
om

ic
10

m
p
ro
p
or
tio

n
ye

s
av

er
ag

e
%

of
te
m
p
or
ar
y
no

n-
fo
re
st

(lo
gg

ed
)o

ry
ou

ng
p
la
nt
at
io
n

FO
R
E
S
T

%
N
M
D

la
nd

sc
ap

e
10

m
p
ro
p
or
tio

n
ye

s
av

er
ag

e
%

of
to
ta
lf
or
es

tl
an

d

O
P
E
N
N
at

%
N
M
D

la
nd

sc
ap

e
10

m
p
ro
p
or
tio

n
ye

s
av

er
ag

e
%

of
al
ln

on
-f
or
es

tn
at
ur
al
la
nd

co
ve

rc
la
ss
es

O
P
E
N
W
et

%
N
M
D

la
nd

sc
ap

e
10

m
p
ro
p
or
tio

n
ye

s
av

er
ag

e
%

of
w
et
la
nd

s

R
O
A
D
S

%
N
M
D

la
nd

sc
ap

e,
so

ci
o-
ec

on
om

ic
10

m
p
ro
p
or
tio

n
ye

s
av

er
ag

e
%

of
ro
ad

s

R
O
A
D
S
d

m
N
M
D

so
ci
o-
ec

on
om

ic
10

m
av

er
ag

e
no

N
A

d
is
ta
nc

e
to

th
e
ne

ar
es

tr
oa

d

S
H
A
FO

R
N
A

N
M
D

la
nd

sc
ap

e,
fo
re
st

st
ru
ct
ur
e

10
m

S
ha

nn
on

’s
In
d
ex

ye
s

S
ha

nn
on

’s
In
d
ex

S
ha

nn
on

’s
In
d
ex

fo
rf
or
es

te
d
ar
ea

s
on

ly
;f
or
es

tt
yp

es
d
iv
er
si
ty

S
H
A
N
A
T

N
A

N
M
D

la
nd

sc
ap

e
10

m
S
ha

nn
on

’s
In
d
ex

ye
s

S
ha

nn
on

’s
In
d
ex

S
ha

nn
on

’s
In
d
ex

fo
ra

ll
na

tu
ra
ll
an

d
co

ve
rc

la
ss
es

ex
cl
ud

in
g
hu

m
an

m
ad

e
st
ru
ct
ur
es

W
A
TE

R
%

N
M
D

la
nd

sc
ap

e
10

m
p
ro
p
or
tio

n
ye

s
av

er
ag

e
%

of
in
la
nd

w
at
er

W
A
TE

R
d

m
N
M
D

la
nd

sc
ap

e
10

m
av

er
ag

e
no

N
A

d
is
ta
nc

e
to

th
e
ne

ar
es

ti
nl
an

d
w
at
er

U
N
D
E
R
S
TO

R
Y

%
N
M
D
LI
D
A
R

fo
re
st

st
ru
ct
ur
e

10
m

av
er
ag

e
no

N
A

un
d
er
st
or
y
ve

ge
ta
tio

n,
%

of
ar
ea

co
ve

re
d
b
y
tr
ee

s
an

d
sh

ru
b
s
<
5
m

U
N
D
E
R
S
TO

R
Y
v

N
A

N
M
D
LI
D
A
R

fo
re
st

st
ru
ct
ur
e

10
m

va
ria

nc
e

no
N
A

un
d
er
st
or
y
ve

ge
ta
tio

n,
%

of
ar
ea

co
ve

re
d
b
y
tr
ee

s
an

d
sh

ru
b
s
<
5
m

G
A
P
S

%
N
M
D
LI
D
A
R

fo
re
st

st
ru
ct
ur
e

10
m

av
er
ag

e
no

N
A

fo
re
st

ca
no

p
y
ga

p
fr
ac

tio
n,

%
of

ar
ea

w
ith

ou
tt
re
es

>
5
m

G
A
P
S
v

N
A

N
M
D
LI
D
A
R

fo
re
st

st
ru
ct
ur
e

10
m

va
ria

nc
e

no
N
A

fo
re
st

ca
no

p
y
ga

p
fr
ac

tio
n,

%
of

ar
ea

w
ith

ou
tt
re
es

>
5
m

G
A
P
S
vt
m
r

N
A

N
M
D
LI
D
A
R

fo
re
st

st
ru
ct
ur
e

10
m

va
ria

nc
e
to

m
ea

n
ra
tio

no
N
A

fo
re
st

ca
no

p
y
ga

p
fr
ac

tio
n,

%
of

ar
ea

w
ith

ou
tt
re
es

>
5
m

H
E
IG
H
T

m
N
M
D
LI
D
A
R

fo
re
st

st
ru
ct
ur
e

10
m

av
er
ag

e
ye

s
av

er
ag

e
fo
re
st

he
ig
ht
,t
re
es

>
5
m

H
E
IG
H
Tc

N
A

N
M
D
LI
D
A
R

fo
re
st

st
ru
ct
ur
e

10
m

av
er
ag

e
ye

s
av

er
ag

e
re
gi
on

al
ly
co

rr
ec

te
d
fo
re
st
he

ig
ht
,t
re
es

>
5
m
,d

ev
ia
tio

n
fr
om

an
av

er
ag

e
he

ig
ht

fo
rg

iv
en

fo
re
st

ty
p
e
w
ith

in
a
10

×
10

km
w
in
d
ow

H
E
IG
H
Tv

m
2

N
M
D
LI
D
A
R

fo
re
st

st
ru
ct
ur
e

10
m

va
ria

nc
e

no
N
A

fo
re
st

he
ig
ht
,t
re
es

>
5
m

P
R
O
D

%
N
M
D
P
R
O
D

la
nd

sc
ap

e,
so

ci
o-
ec

on
om

ic
10

m
p
ro
p
or
tio

n
ye

s
av

er
ag

e
%

of
no

n-
pr
od

uc
tiv

e
fo
re
st

la
nd

P
O
P

N
A

P
O
P

so
ci
o-
ec

on
om

ic
1
km

N
A

ye
s

su
m

hu
m
an

p
op

ul
at
io
n
si
ze

P
O
P
d

m
P
O
P

so
ci
o-
ec

on
om

ic
1
km

N
A

no
N
A

d
is
ta
nc

e
to

se
tt
le
m
en

ts
w
ith

p
op

ul
at
io
n
si
ze

>
50

0

Th
e
m
ul
ti-
sc

al
e
va

ria
b
le
s
(v
al
ue

“y
es

”
in
th
e
“M

ul
ti-
sc

al
e”

co
lu
m
n)
w
er
e
co

d
ed

fo
rf
ur
th
er

an
al
ys
is
us

in
g
th
e
fo
llo

w
in
g
te
m
p
la
te
:{
va

ria
b
le
_a

cr
on

ym
}{
sp

at
ia
l_
sc

al
e_

co
d
e}
;t
he

co
d
es

fo
rs

p
at
ia
ls
ca

le
s
ar
e
as

fo
llo

w
s:
00

3:
0.
3
km

,0
05

:0
.5

km
,0

11
:1

.1
km

,0
51

:5
.1

km
an

d
10

1:
10

.1
km

.T
he

“1
ha

fu
nc

tio
n”

is
th
e
fu
nc

tio
n
us

ed
to

re
-s
am

p
le
ra
st
er
s
fr
om

th
e
or
ig
in
al
va

ria
b
le
’s
re
so

lu
tio

n
to

a
ta
rg
et

re
so

lu
tio

n
of

1
ha

,w
he

n
ap

pl
ic
ab

le
.T

he
“M

ul
ti-
sc

al
e
fu
nc

tio
n”

is
th
e
fu
nc

tio
n
us

ed
to

ag
gr
eg

at
e
sp

at
ia
li
nf
or
m
at
io
n
w
ith

in
(m

ul
ti-
sc

al
e)
m
ov

in
g
w
in
d
ow

s
of

d
iff
er
en

ts
iz
es

.I
n
to
ta
l,
th
e
in
iti
al

lis
to

fp
re
d
ic
to
rs
,i
nc

lu
d
in
g
al
ld

er
iv
ed

m
ul
ti-
sc

al
e
va

ria
b
le
s,

co
nt
ai
ne

d
12

8
va

ria
b
le
s.

https://doi.org/10.1038/s43247-024-01325-7 Article

Communications Earth & Environment |           (2024) 5:196 5



country, supports informed conservation planning by identifying patches of
high conservation value and the spatial opportunities to expand or link such
patches through area protection or active forest landscape restoration13. For
example, it can be inferred that areas with intermediate likelihood values
that are spatially connected to existing protected areas can support their
functionality through restoration that over time advances their conservation
values and contributes to functional connectivity. Moreover, our modelling
approach also identifies landscapeswith a low level of forest naturalness and
conservation value. Two alternative future management trajectories
could be considered for such areas; forestry oriented to wood biomass
production can be continued, or depending on local environmental prio-
rities, forest conservation and restoration plans can be developed and
implemented13,57,65.

Global models, usually trained using limited and spatially clustered
data62, tend to oversimplify local-scale relationships between explanatory
and response variables in attempts to generalise patterns over large spatial
domains. This often leads to poor predictive performance at local (land-
scape) scales, even when robust machine learning algorithms such as RF or
Boosted Regression Trees are used11. A potential solution would be to apply
a spatially-explicit machine learning algorithm able to cope with spatial
heterogeneity in explanatory variables and their interactions over large
spatial domains, but these methods are currently either at a early stage of
development (e.g., Spatial RF)66,67 or rarely applied in the ecological and
conservation context68. The practical workaround used in this studywas the
“regionalisation” of the study area, i.e., dividing it into four regions char-
acterised by different climatic, anthropogenic, and historical forest condi-
tions and fitting of an independent RF model to each.

The recent studies by Munteanu et al.28 in the Romanian Carpathians
and by Ørka et al.61 in Norway are conceptually and technically the most
similar to our work.Munteanu et al. usedMaxent software, satellite images,
and information on current potential anthropogenic pressure to map
HCVF in the Carpathians in Romania. However, it is difficult to assess the

real predictive power of thismodel, as the training data were highly spatially
clustered and the model performance assessment did not take into account
spatial correlation in the training data that had not been generated by a
random probabilistic sampling process55,62. Moreover, they excluded his-
torically disturbed forests, contrary to our work, and targeted only forests
with the highest level of naturalness, thus making the output map less
suitable for landscape-scale spatial planning applications including both
wood production and biodiversity conservation. Furthermore, while
Munteanuet al. proposed an interesting conceptual framework formapping
HCVF, they neither explicitly included the interactions between structural
andhuman-relatedHCVFdimensions, nor explored the effects of landscape
variables at multiple scales, as we did in our study.

Ørka et al.61 recently presented a framework for a remote sensing-based
forest ecological base map of Norway. One of the mapped variables was
forest naturalness classified as a binomial variable using generalised boosted
regression modelling. Similarly to our work, Ørka et al. stratified the study
area into five regions and fitted an independent model to each region and
provided the maps with predictions for the whole of Norway, although at a
much coarser spatial resolution (10 × 10 km2) than in our study. Thismakes
the results less suitable for landscape-scale spatial planning and conserva-
tion prioritisation. However, the most evident difference between our study
and the forest naturalness model of Ørka et al. is that they focused only on
LiDAR-derived structural metrics as one dimension of HCVF, but not on
direct drivers affecting the level of naturalness.

Limitations of our approach
As training data, we applied a comprehensive compilation of identified
HCVF as included in the national Swedish database34 with updates in 2019
and 2020. This database includes all types of forests in Sweden and is
representative in terms of its spatial coverage of different biomes and
landscapes throughout the country. However, the database does not for-
mally represent a random probabilistic sample of existing HCVF. Being

Table 3 | The results of 10-fold spatial cross-validation53–55 for each study region (mean ± standard deviation)

Region Accuracy TSS ROC AUC PR AUC Pearson R Briers score MCC

North boreal 0.81 ± 0.02 0.61 ± 0.05 0.89 ± 0.01 0.89 ± 0.02 0.68 ± 0.03 0.14 ± 0.01 0.62 ± 0.04

South boreal 0.81 ± 0.02 0.61 ± 0.05 0.90 ± 0.02 0.87 ± 0.04 0.69 ± 0.04 0.14 ± 0.01 0.62 ± 0.05

Hemiboreal 0.81 ± 0.02 0.60 ± 0.06 0.89 ± 0.02 0.84 ± 0.02 0.67 ± 0.03 0.14 ± 0.01 0.61 ± 0.04

Nemoral 0.81 ± 0.05 0.57 ± 0.16 0.89 ± 0.03 0.85 ± 0.05 0.66 ± 0.06 0.15 ± 0.02 0.61 ± 0.09

Next to the classification accuracy and TSS99 (True Skill Statistic) metrics (threshold set to 0.5), multiple threshold-independent model performancemetrics were evaluated: ROCAUC96 (the area under the
ROC Curve), PR AUC96 (the area under the Precision-Recall Curve), Pearson correlation coefficient, Briers score97 and MCC98 (Matthews Correlation Coefficient).

Fig. 2 | The performance of the Random Forest
models trained for each study region. The perfor-
mance of four Random Forest models trained
independently for each study region as resulted from
the 10-fold spatial cross-validation (SCV)53–55, and
visualised as ROC Curve96 (right) and Precision-
Recall Curve96 (left). For SCV we overlaid on the
study area a grid of 20 × 20 km2 and randomly
assigned all grid cells to different spatial subsets (i.e.,
folds) for the cross-validation procedure. The bold
lines are based on the mean values of model per-
formance metrics (calculated for each k-fold), while
shaded areas indicate ±1 SD. AUC is the area under
the curve. The dashed-lines indicate a reference to
no-skilled classifiers (for the PR Curve they corre-
spond to the proportion of HCVF presence samples
in each region).
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Fig. 3 | The six most influential variables in the Random Forest models trained
for each study region.The partial dependence plots (PDPs)43,56 for each study region
(a−d) of the six most influential variables in the Random Forest models (top row in
each panel) and the correspondingmaps (bottom row in each panel). PDPs show the
mean response with 95% confidence intervals obtained from 500 bootstrap repli-
cates. All variables were scaled to 0 mean before the model training. The vertical
dashed-line, together with the corresponding number in grey, indicates the mean

value in the original variable units. The vertical black ticks on the x-axis represent the
distribution of samples used in model fitting for each variable. The maps are
visualised in the original variable units. See Table 2 for the full list and detailed
descriptions of all explanatory variables used in this study. The multi-scale variables
are coded using the following template: {variable_acronym}{spatial_scale_code}; the
codes for spatial scales are as follows: 003: 0.3 km, 005: 0.5 km, 011: 1.1 km, 051:
5.1 km and 101: 10.1 km.
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identified over decades, for different purposes, using different (but com-
parable) protocols over many years and including formally protected and
voluntarily set aside forests aswell as non-protected forests, their actual level
of naturalness and conservation value may differ. This variability could not
be controlled for in the modelling and represents a priori expected noise in

the predicted relative likelihood of HCVF occurrence. Moreover, we were
unable to track the cases where a field inventory failed to confirm that a
candidate forest is actual HCVF, because this information was not saved in
the database. We accounted for this while arranging the training data
(presence-only) and interpreting the final results (relative likelihood instead
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of an actual probability), as described in detail in the Methods section. Still,
by building ourmodels onmore than 6000 1 ha pixels selected out of a total
area of c. 3.44 million ha of confirmed HCVF by applying our sampling
strategy (including a minimum distance of 5 km between sampled pixels
andfiltering out areas <10 ha), we compiled a representative trainingdataset
of HCVF occurrences covering different landscapes and distributed uni-
formly across the entire country and the four study regions.

All our models use Global Forest Change (GFC)39 data as one of the
variables predicting the relative likelihood of HCVF occurrence. Recognising
issues related to the use of these data in calculating the absolute level of forest
loss69, we argue that our models use these data in a correct way. In particular,
we used the GFC as one of many potential proxies of human-related
pressure on forest areas that, in most cases, correctly reflects the spatial
patterns of forest management intensity at the local landscape level. By
combining the “loss” and “gain” layers of the GFC, we provided the model
with information about the continuity of forest cover (since 2001) at mul-
tiple scales. However, this information does not take into account the cause
of the detected change (i.e., natural disturbance, final felling or thinning).

The applicability of our approach in other countries and regions (in
terms of its transferability and scalability) may be limited by the availability
of similar spatially-extensive datasets as used in this study. However, as we
observe a rapid technological breakthrough in “sensing” the environment
generating an enormous amount of newaccumulateddata, we expect this to
change in the near future. Even today, most of the source datasets (or their
counterparts) used in this work as spatial predictors are globally or
nationally available (GFC, night-time lights, high-resolution land cover
maps, road networks, etc.). On the other hand, the availability of LiDAR-
derived proxies describing forest biophysical structural properties is still
limited inmanycountries and regions.An interesting alternative to airborne
LiDAR for obtaining similar information can, at least to some extent, be the
use of satellite data and statistical extrapolation of point-based measure-
ments of forest canopy height as proposed by Potapov et al.40.

However, we argue that themost limiting factor to apply our approach
in other areas is still the availability of HCVF training data. Potential useful
sources of national level reference data on HCVF occurrence can include,
for example, databases of forest monitoring systems assessing forest nat-
uralness in the field (as, e.g., National Forest Inventories in Sweden,Norway
and Finland), retrospective remote sensing analysis of forest cover
dynamics12,28,47, or citizen-science projects addressing high conservation
value areas64 and involving different groups of forest landowners. At the
international level, initiatives such as the “European primary forest database
v2.0” seem to be especially promising59. Moreover, rapidly growing infor-
mation on the occurrence of species of conservation interest such as that in
the Global Biodiversity Information Facility (GBIF) will increasingly allow
for additional validation of identified (potential) HCVF areas.

Making use of the prediction map
In spite of national and international policies on biodiversity conservation,
the favourable conservation status of species populations, habitat network
functionality, and resilience of forest ecosystems is deteriorating70. Con-
sistent with the quantitative conservation targets of the Convention of
Biological Diversity (CBD)71, the EU Biodiversity Strategy for 203072 pro-
posed to protect at least 30%of the EU land area, of which a third should be
under strict legal protection. In contrast to this, the actual area of legally
protected forests in Sweden is 8.9% if including mountain areas and only

3.9% if not (basedonOfficial Statistics of Sweden). This calls forfilling of the
gaps between the targets and currently set-aside area shares, both through
the conservation of existing HCVF73, management and restoration of near-
natural forest remnants13. Our approach to mapping the relative likelihood
of hosting HCVF can contribute to addressing both these challenges, pro-
vided that field validation will precede actual conservation decisions.

In addition to providing quantitative conservation targets, establishing
functional GI networks also requires that qualitative targets are satisfied23,71.
An important principle for assessing and planning functional habitat net-
works is the acronym BBMJ74, which stands for Better, Bigger, More and
Joined. This approach is a key principle for ranking local landscapes with
respect to where to focus on establishing protected areas, or initiating
landscape and nature restoration23.

Themodelwe provide constitutes a systematic and consistentfirst-step
conservation and restoration priority mapping, based on which a second-
step field validation can be designed for final selection of additional areas
that strengthen GI functionality. Accordingly, we provide both a national-
scale filter for spatial GI-planning, which currently does not exist but which
is urgently needed, and opportunities for cost-efficient and precise HCVF
field surveys. Furthermore, the model provides spatially explicit identifica-
tion of areas in a continuous gradient from the lowest to the highest relative
likelihood of HCVF occurrence. Therefore, the areas where our models
predicted the intermediate values (that is, the green, orange and yellow
colour codes in Figs. 5, 6) represent “crossroad” entities that, depending on
the governance andmanagement choices, canbeplacedonapath to support
GI or not. For supporting GI, nature conservation values can develop
naturally over time if the focal forest patch is set aside for natural (free)
development, or be enhanced through active restoration management75.
Based on habitat functionality assessments, restorationmanagement can be
oriented towards improving currently unfavourable ecological status by, for
example, increasing quantities of dead wood, increasing structural com-
plexity or favouring broadleaf trees34. These forest attributes are insufficient
in large areas of northern European boreal forests13,76. Additionally, the
continuous gradient of predicted values of HCVF relative likelihood, pro-
vides opportunities at regional scales to enlarge previously known con-
servation hotspot areas, such as expanding the Scandinavian mountain
intact forest landscape77 eastwards, or identifying previously unknown
clusters of forests that in the future may develop intact forest landscape
qualities and improve landscape connectivity over larger scales.

On the contrary, forest landscapes dominated by low values of HCVF
relative likelihoodmay identify areas where conservation ambitionsmay be
lower and that can support continued forestry for wood biomass produc-
tion, climate smart forestry approaches or closer to nature management
alternatives78 depending on the local premises. In addition to configuring
forests into efficient spatialmanagement units, however, it is also important
to consider factors such as proximity to road networks and industry, as well
as the forestland ownership status, particularly when concerning non-
industrial private and private forest company ownership. Thus, we see a
potential for our model to provide the input needed to design a landscape-
scale zoning of management as proposed, for example, in the TRIAD
approach78.

Conclusions
To conclude, in the era of big data and technological revolution, access to
free and open evidence-based knowledge is key to democratic and efficient

Fig. 4 | The results of external validation using independent spatial datasets. The
results of external validation with the Sveaskog forest management compartment
dataset (stand-level; n = 57548 polygons; a, b), and the NFI (plot-level; n = 13775
plots; c, d) datasets. The boxplots show the median and the quartiles of the dataset,
while the whiskers extend to show the rest of the distribution, except for points that
are determined to be “outliers” using amethod that is a function of the inter-quartile
range. Additionally, the boxplots are overlaid with the mean values (blue dots) with
95% confidence intervals. Four categorical variables related to forest naturalness and
conservation values verified in the field were used for validation: (a) Forest

management objectives for individual compartments (Sveaskog): “NF” (Nature
conservation, non-intervention), “NF_NM” (Nature conservation, not yet speci-
fied), “NM” (Nature conservation-oriented active management), “PF” (Production
with enhanced conservation concern), and “PG” (Production with general con-
servation concern); (b) Forest naturalness (Sveaskog, binary); (c) Forest naturalness
(NFI): “plantation”, “normal”, “natural”; (d) Natura 2000 habitat qualities (NFI,
binary). The horizontal red dashed-line indicates the HCVF relative likelihood
threshold at 0.5.
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Fig. 5 | The final prediction map visualising the relative likelihood of HCVF
occurrence for the entire Sweden with 1 ha spatial resolution. The map can be
used for ranking landscapes with respect to forest naturalness. An independent
Random Forest model was trained for each study region, and predictions for all

regions were compiled into the final map. The online interactive version of this map
is available at: https://bubnicki.users.earthengine.app/view/swedentest. Background
map attribution: Imagery©2023 TerraMetrics, Map data ©2023 Google.
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governance and operational decision-making towards sustainable forest
landscapes. Our approach uses open access spatial data including remote
sensing and LiDAR data, open source software tools, andmachine learning
to assist ranking forest landscapes at multiple scales with respect to their
level of naturalness and conservation values. We provide an “actionable”
map with sufficient details for regional to local-landscape spatial planning,
which fills a critical gap for implementing national, EU and international
biodiversity conservation policy.

Methods
Study area
The study area covers thewhole country of Sweden, ofwhich 70% is forested
(Table 1). We divided Sweden into four regions (Table 1, Fig. 1) based on
biogeography (from nemoral to north boreal) delimited by county borders,
which represent units for statistical reporting and regional spatial planning.
Although forest is themain land cover in all regions, the fraction is lowest in
the Nemoral (49.2%) and highest in the South boreal region (78.0%). Scots
pine (Pinus sylvestris) forests dominate (39.8%), followed byNorway spruce
(Picea abies) forests 27.7%, mixed coniferous forests 12.8% and mixed
coniferous and deciduous forests 7.0%48. Broadleaf forests cover 7.4% of the
entire forestland, including 1.1 million ha of subalpine mountain birch
(Betula pubescens ssp. czerepanovii) tree line forests79.

The Swedish forest landscapehasbeen the subjectof clearing forests for
agriculture on fertile soils formillennia. Commercial harvesting ofwoodhas
occurred since medieval times80, and has re-shaped the forest landscape
from the 1800s onwards, with forestry expanding from the south, north-
and westwards throughout the country81. Initially, logging targeted large
diameter trees for saw timber, and regionally even-aged managed forests
were exploited to provide wood and bioenergy for the mining and iron
industries, which reduced growing stocks significantly up to the early 20th
century82. In the 1920s, silvicultural measures to increase wood production
were introduced, and since then the growing stock has increased sig-
nificantly. Clearcutting became the dominant harvesting method from the
1950s and onwards. Currently, approximately 70% of Swedish forestland
has been clear-cut at least once83. In the 1990s, some measures were intro-
duced to ameliorate the impact of intensive silvicultural practices on bio-
diversity. Currentmanagement practices include soil scarification, planting,
pre-commercial and commercial thinning, and inmany cases also draining

and fertilisation84. This has created forests with high growth rates, domi-
nated by cohorts of single tree species (mainlyPicea abies orPinus sylvestris)
void of old-growth characteristics48. Generally, historical land clearing for
agriculture has had a larger impact in the Hemiboreal andNemoral regions
than in the North and South boreal regions, where human expansion and
settlement are less pronounced, being limited to fertile soils and favourable
local climates, particularly along river valleys.Nationally, the largest share of
protected forests is in the ScandinavianMountainsGreenBelt12 of theNorth
and South boreal regions, in which also the presence of indigenous Sami
culture and reindeer husbandry is an important characteristic of forest
landscapes.

Data sources
We used the publicly available national Swedish HCVF database (see Data
availability section for more information about all data sources used in this
study) with 641,095 polygons delineating c. 3.44Mha of forests with known
high levels of naturalness and conservation values34. This data is a compre-
hensive compilation of ten different data sources describing forests known to
have high conservation value identified through field surveys and delineated
based on the forest cover of the national topographic terrain (1:50,000) and
road maps (1:100,000). The database documents the conservation value of
HCVFs as the level of naturalness assessed in the field, indicated by dead
wood in different stages of decay, multi-layered old-growth vegetation
structure, and presence of indicator species. This database originally pro-
vided the status up to 2016 but was updated in 2019 and 2020 with the new
areas in the mountain region added. The database includes different cate-
gories of long- and short-term formally protected, voluntarily set aside, and
unprotected areas. We used the Swedish National Land Cover data (NMD)
as a source of information on forests type, height, and productivity, as well as
non-forest land cover (e.g., open land, water, agricultural land). NMD is
provided in raster format with a spatial resolution of 10 × 10m2 and was
produced based on a combination of data sources including existing digital
maps (from 2018), satellite images (from 2015 to 2018) and airborne LiDAR
(from 2009 to 2018). The height of trees and their coverage were derived
from the NMD auxiliary layers based on airborne LiDAR data.

The otherpublicly available datasets used in this studywere (1) a digital
elevation model of Sweden (DEM) with a spatial resolution of 50 × 50m2,
(2) GFC maps with data on global forest loss (2000−2020) and gain

Fig. 6 | The distribution of predicted relative likelihood of HCVF occurrence for
each study region. a histogramswith fitted kernel density estimates (upper row) and
(b) barplots of the fraction of total forestland estimated per region and including

temporary non-forest areas (bottom row). The colours correspond to the six classes
of HCVF relative likelihood visualised in the prediction map (Fig. 5).
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(2000−2012) with a spatial resolution of 30 × 30m2 (GFC)39, (3) a har-
monised global night time light dataset with a spatial resolution of 1 × 1 km2

(1992−2018; LIGHTS)85 and (4) a database of total human population in
Sweden with spatial resolution of 1 × 1 km2 (POP).

Data pre-processing
All raster and vector datasets (see Tables 2 and 3) were organised into a
country-wide GIS database using the GRASS GIS software v8.2.186. We
defined the minimum mapping unit as 1 ha (100 × 100m2) for our pre-
dictive modelling, and re-sampled all imported raster and rasterised vector
layers to this target resolution. We used dataset-specific re-sampling pro-
cedures that, in most cases, preserved the spatial information from the
original dataset’s resolution (see below).

The original 10 × 10m2 NMD raster was decomposed into multiple
target land cover classes (or a combination of classes; see Table 2) using the
parallelised version of the GRASS GIS “r.resamp.stats” resampling algo-
rithm, which aggregates raster values at coarser resolutions using statistical
functions. For each target class, its area proportion within 1 ha raster cells
was computed. The same resampling algorithm was used to process the
other categorical raster layers (e.g., the forest productivity layer). The cate-
gorical maps of forest cover loss (2000–2020) and gain (2000–2012) (GFC)
were converted into binarymaps (loss/gain vs no change) andmerged prior
to re-sampling.

The distance-based explanatory proxy variables for high forest man-
agement intensity (e.g., distance to roads andbuilt-up areas)were calculated
using the original resolution and the GRASS GIS algorithm “r.grow.-
distance” generating raster maps containing distances to the nearest target
features and then re-sampled using the average as an aggregation function.
A similar re-sampling approach was used to compute the variables origi-
nating from continuous rasters (i.e., maps of landscape or forest structure
attributes expressed as arrays of float numbers, e.g., elevation, tree height, or
night-time lights). In the latter cases, in addition to an average, we also
calculated variance among pixels aggregated at a coarser resolution (e.g.,
variation in forest height).

As tree height is determined by numerous factors, including climate
(varying along a latitudinal gradient, from temperate to boreal forests), site
productivity, and elevation, we developed a simple procedure to compute a
corrected (or regionalised) version of the original LiDAR-based tree height
variable. For each forest type (derived fromNMD)we computed the height
deviation from an average value calculated within a 10 × 10 km2 moving
window (the variable H5c in Table 3).

The other explanatory variables derived from the “decomposed”NMD
layer were two Shannon’s indices expressing the diversity of (1) different
forest types (SHAFOR) and (2) all land cover classes we considered natural
elements of a landscape (i.e., not containing human-made features; SHA-
NAT). Both indices were calculated at multiple scales.

In the next step, similar to Cushman et al.87, we computed multi-scale
versionsof selectedvariables (seeTable 2, SupplementaryFig. 1) to represent
information about the neighbourhood of each target 1 ha forest pixel.
Hence, we strengthened our model with information about patterns of
landscape configuration and composition across multiple spatial scales88,89.
We used the moving window algorithm (MW) available in the ndimage
module from the scipy v1.6.0 Pythonpackage for scientific computing90.We
ran MWwith a variable-specific aggregation function (see Table 2) for five
different spatial scales (expressed here as the length of a squared window
placed at the centre of a target 1 ha pixel): 0.3, 0.5, 1.1, 5.1, and 10.1 km.

Finally, to focus our predictive modelling of HCVF on 1 ha pixels
dominated by forest, we developed a forest mask by applying a threshold of
0.5 to the proportion of total forest cover. All pixels below this threshold
were not taken into account when preparing the training and validation
datasets and making the final prediction maps.

Modelling approach
The RF classifier is an ensemble model (or meta-classifier) that fits many
decision tree classifiers (individual models) on various sub-samples of a

dataset and then combinespredictions fromall decision trees to improve the
predictive accuracy and to control for over-fitting43. It uses bagging (boot-
strap aggregation) as an ensemble method. The RF has several advantages
over other statistical classifiers, including the ability to model complex
interactions among predictor variables and its known robustness in gen-
erating useful predictions from noisy, non-normal data43,52,87. Another
useful built-in feature of RF is that, by design, it provides a probability-like
unbiased individual estimate that a given sample belongs to a certain class.
However, this estimate is just a fraction of decision trees that vote for a
certain class, and thus it is not a true probability (i.e., there is no strong
theoretical foundation for such an interpretation).

The national HCVF database contains information about forest areas
verified asHCVF(i.e., truepresences) but not about forests classified asnon-
HCVF (i.e., true absences). Hence, this is a presence-only (or presence-
background) data type91,92 for which training and validation subsets need to
be selected even more carefully than in the other classification tasks so that
they are representative and reflect the composition of an actual landscape.
Moreover, this type of data influences how the output of a model can be
interpreted. The HCVF detection process could not be explicitly modelled
and therewas likely spatial sampling biaswhen identifying newHCVFareas
introduced by various regional socio-economic factors and/or land-use
history. Thus, we interpreted and ranked the predictions of the model as a
relative likelihood of occurrence, rather than an actual probability of
occurrence92. We minimised spatial sampling bias and ensured that land-
scape sampling was representative with our procedure of generating
training and validation datasets as described below. When designing this
procedure, our aim was to mimic (to the largest possible extent) a random
probabilistic sampling process sensuMeyer & Pebesma62.

The HCVF training samples (true presences) were generated using
both formally protected and unprotected HCVF areas distributed
throughout Sweden. First, the HCVF vector layer was rasterised and over-
laid with the forest mask based on the original NMD dataset (10 × 10m2).
Next, we re-sampled the HCVF layer to 1 ha resolution (the result was a
proportion of HCVF pixels) and applied a threshold of 0.5 to select only
those 1 ha forest pixels that are dominated byHCVF. To reduce noise in the
training samples, we excluded HCVF areas smaller than 10 ha (i.e., areas
consisting of less than10 connected 1 ha pixels). Finally, we used theGRASS
GIS “r.random.cells” algorithm to randomly distribute sampling locations
over these areas, assuring a minimum distance of 5 km between each two
selected pixels to minimise the effect of any potential spatial bias that may
have been present in the original HCVF database.

To generate pseudo-absences (background data) we applied a 1 km
buffer around HCVF areas to lower the chance of unrecognised HCVFs
nearby being used as pseudo-absence samples used formodel training, thus
minimising the number of false negative predictions (or increasing model
sensitivity/recall). We then subtracted the buffered areas from the forest
mask raster and excluded areas smaller than 10 ha. In the last step, we used
the same algorithm as for the HCVF presence samples to distribute sam-
pling locations over these subtracted areas, keeping a minimum distance of
5 km between selected pixels. After this procedure the number of HCVF
pseudo-absenceswas larger than the number of presences ofHCVF (Fig. 1).
This caused the training dataset to be moderately imbalanced.

We trained all RF models and computed performance metrics using
the Python library scikit-learn v1.2.156 and imbalanced-learn v0.10.1, and
following the recommendation of Valavi et al.93, used a balanced RF94

implementation, which is more robust in dealing with imbalanced datasets.
In this implementation, each tree of RF is provided with a balanced boot-
strap sample (i.e., sampling with replacement) using a random down-
samplingprocedure at the level of an individual tree. Initially,we trained and
evaluated all models with default values for all hyper-parameters (see the
official scikit-learndocumentation), except that thenumberof decision tress
(estimators) was set to 500 (default value was 100). RF are known to work
reasonably well with default parameters93, and an expected potential gain in
performance metrics is usually only around 1–2%95. Moreover, our final
model validation procedure (see the next section) was based on external
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independent spatial datasets (of different structure and properties than the
data used formodel training), and it is not clear how this could be integrated
into the tuning procedure. However, to ensure that default hyper-
parameters are robust, we ran the tuning procedure for the best-
performing models using Bayesian optimisation with Gaussian processes
implemented in the Python package scikit-optimise v0.9.0. For all models
and regions, the difference in performance of tuned models compared to
models ran with default hyper-parameters was less than 0.5% as measured
by ROCAUC (see Supplementary Table 10 and SupplementaryData). This
confirmed that the default values were robust for our application.

We evaluated the performance of each model (internal validation)
using a 10-fold SCV53–55 and a set of complementary model performance
metrics. For the SCV, we overlaid a 20 × 20 km2 grid on the study area and
randomly assigned grid cells to different spatial subsets (i.e., folds) during
eachmodel fitting, including the finally selectedmodels for the four regions
and the alternative models presented below.

Since we were more interested in predicting the continuous relative
likelihood ofHCVF occurrence rather than a binary categorisation of target
forest pixels,which reduces the content of information comparedwithusing
the full range of values92, we put more emphasis on threshold-independent
metrics evaluating continuous patterns of predicted values, such as the area
under ROC curve (ROC AUC)96, area under Precision-Recall curve (PR
AUC)96 and Brier’s score97. The ROCAUC can be interpreted as the overall
probability that a classifier will predict a higher probability for true positive
cases than true negative cases. The PR AUC was computed to better
understand the behaviour and performance of our models in predicting the
positive class. As both precision and recall focus on the positive class (that is,
the presence of HCVF), the PRAUC score gives a general evaluation of the
model performance related to this class. Brier’s score is the mean squared
difference between the predicted probability and the actual outcome.
Additionally, we computed two correlation-like metrics: the Pearson cor-
relation coefficient andMatthewsCorrelationCoefficient (MCC)98,which is
regarded as a robust metric of the quality of binary classification, especially
for imbalanced datasets. For completeness, we provided two threshold-
based metrics (calculated for the 0.5 threshold): accuracy and True Skill
Statistic (TSS)99. The latter is commonly used in the ecological literature.

To decrease the level of co-linearity between explanatory variables used
formodel training and to enhance the interpretability of the finalmodel, we
followed the procedure proposed byMcGarigal et al.88 and Cushman et al.87

with some modifications. We fit univariate RF models for all 125 variables
(including multi-scale variables), assessed their performance with the 10-
fold SCV and computed the average values of two metrics: ROC AUC and
Pearson correlation between predicted and test HCVF datasets (as com-
puted for each k-fold). In the next step we ranked variables based on the
ROC AUC and iteratively checked all pairs of variables for severe co-
linearity (Pearson correlationbetweenvariables> 0.7)100.Where co-linearity
was found, we selected the variable with a higher ROC AUC if a difference
was >= 0.01 or with a higher Pearson correlation (the threshold also set at
0.01) if the ROC AUC difference was <0.01. If there was no difference in
both metrics we kept the variable with the higher absolute value of
ROC AUC.

To test the robustness of the specification of ourmodel (M1, which we
refer to as “selected”), we compared its performance against seven alter-
native models trained and validated using the same data: (M2) the “global”
model using data from the entire Sweden (i.e., without regional stratifica-
tion; (M3) the “full”model trained with all spatial predictors, including all
derived multi-scale features, and ignoring a strong (>0.7) pairwise correla-
tion between some variables; (M4) the “onescale” model trained with all
spatial predictors but excluding all multi-scale features; (M5) the “baseline”
model trained using only 4 key spatial predictors, all hypothetically having a
strong effect on the probability of HCVF occurrence (elevation, tree height,
distance to roads and%of logged areaswithin 1 ha); Additionally, the “full”,
“onescale” and “baseline”models were trained with and without longitude
and latitude as the auxiliary variables. The results of 10-fold SCV confirmed
the robustness of our model’s specification as it performed best or equally

well as the “full”model for all regions. (Supplementary Table 9). Moreover,
we have not noticed any significant differences when comparing the results
of the external validation (as described in the next section; Supplementary
Data). The “global” model performed equally well but, based on pixel-to-
pixel pairwise Pearson correlation coefficients, produced different predic-
tions for the Hemiboreal and Nemoral regions when compared to the best
“regionalised” models (Supplementary Fig. 7), suggesting that global pre-
dictions were mainly driven by the patterns that the model learnt for the
northern Sweden. As expected, the weakest performance was observed for
the “baseline”model followed by the “onescale”model, but interestingly the
latter performed almost as well as the best models in all regions.

Finally, we compared the predictive performance of our RF models
against the Logistic Regression (LR) as implemented in the Python library
scikit-learn v1.2.1. We fitted six additional LRmodels for each study region
(i.e., 24 models in total; Supplementary Table 9). The overall difference
between RF and LR for the North & South Boreal and Nemoral study
regions was approximately 2–3% for the ROC AUC and 3–4% for the PR
AUC metrics in favour of RF for all models. The exception was the
Hemiboreal region, where LR outperformed RF by less than 1%, meaning
that both models performed equally well. These results are in line with the
results of the two largest (to our knowledge) comparative studies of pre-
dictive performance of RF and LR. The study by Couronné, Probst &
Boulesteix101 was a large-scale benchmark experiment run on 243 real
datasets from various domains provided by the OpenML online database.
The authors reported that themean difference betweenRF and LRwas ~3%
for accuracy and ~4% for ROC AUC in favour of RF. Another large-scale
benchmark study, more similar to our application, was done by Valavi
et al.102, where the authors compared the predictive performance ofmultiple
ML and statistical models, including RF and LR, in predicting species dis-
tributions using presence-only data. Again, on average, the difference
between RF and LR was around 2–3% in both ROC and PRAUC in favour
of RF (see Fig. 3 and Fig. 10 in ref. 102). The authors also reported that the
difference betweenmodels was not consistent across study regions, which is
in line with our results. This can indicate that for some regions, non-linear
responses to predictors can play a bigger role than in others. This is howwe
interpret equal performance of RF and LR in the Hemiboreal region, where
the response of HCVF to the most important predictors seems to be more
linear than in the other regions (Fig. 3). In the next step, we checked the
pixel-to-pixel Pearson correlations between maps predicted by RF and LR
for different regions (Supplementary Fig. 7). Despite the similar predictive
performance scores, the maps produced by LR differ spatially from those
producedbyRF, as indicated by correlation coefficients ranging from0.9 for
the North Boreal region to 0.82 for the Nemoral region. This is not very
surprising, as the two models are based on different assumptions and use
different algorithms to fit the data. However, this indicates some spatial
differences, confirmedby thevisual inspectionofpredictionmaps.Themost
interesting case was for the Hemiboreal region, where both models per-
formed equally well, but the Pearson correlation was “only” 0.84. The
validation of LR predictions against the external independent datasets
(described in the next section) reproduced similar patterns as for RF pre-
dictions, but the variation of predicted values for most of the categorical
variables related to forest naturalness and conservation values was higher
than for RF predictions. This is indicated by larger interquartile ranges
(IQR) of boxplots (Fig. 4, Supplementary Data). Lastly, we noticed a simi-
larity in the qualitative interpretation of LR and RF results for our selected
model (M1). That is, approximately the same set of factors had the strongest
effect on the relative likelihood of HCVF occurrence in both cases (Sup-
plementary Data). This indicates that non-linear responses captured by RF
canbe approximated by linear responses captured byLR, and the cost of this
simplification is around 2–3%. In summary, although LR is a viable alter-
native to RF in our application, RF outperforms LR for three out of four
study regions and seems to be more precise, as indicated by the validation
against external datasets. Taking all these results together, we conclude that
our approach is robust and the choice of RF is reasonable, although alter-
native methods, such as LR, may provide similar results.
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Model validation with external data
Two independent sources of relevant spatially explicit information were
used for model validation. The first is the forest management data from
Sweden’s largest forest owner, the state company Sveaskog. Their forest
management data provide information at the tree stand (compartment)
level. It is based on field sampling that assesses variables such as total wood
volume (living trees and deadwood), proportion of wood volume of living
trees divided into different species, stand age, site type, and many other
characteristics.We used two categorical variables from the Sveaskog dataset
expressing different levels of forest conservation and naturalness values on
an ordinal scale: (1) forest management type (5 levels) and (2) forest nat-
uralness (binary). The forest management type is set for each tree stand
using the following categories103: (1) NF = Nature conservation, non-
intervention; (2) NF_NM=Nature conservation, not yet specified; (3) NM
= Nature conservation-oriented active management, often implying
restoration measures; (4) PE = Production with enhanced conservation
concern; (5) PG = Production with general conservation concern (green-
tree and deadwood retention for biodiversity at harvest). For each stand
polygon that had a minimum of 10 pixels, we calculated the mean value of
predicted HCVF relative likelihoods. In total, we used data from 57,548
Sveaskog tree stand polygons.

The second source of information for model validation was the
Swedish National Forest Inventory (NFI), which uses a randomly plan-
ned regular sampling grid104, including around 4500 permanent tracts
with each tract being surveyed once every 5 years. The tracts have a
rectangular shape of different sizes in different parts of the country and
consist of 4–8 circular sample plots (each plot 314m2). We used two NFI
categorical variables relevant to conservation and forest naturalness
values: (1) the level of forest naturalness (three levels: natural, normal,
plantation) and (2) a binary indicator if plots meet the minimum
requirements to be considered Natura 2000 habitat according to the EU
Habitats Directive based on its interpretation in Sweden. The NFI data
used in this study originated from the 2015 to 2019 inventories. For each
NFI plot selected for validation, we extracted the average predicted
HCVF relative likelihood from the pixel spatially overlapping with the
plot and its four nearest neighbours. In total, we used data from 13,775
NFI plots spread across all study regions.

We summarised both datasets for each study region using boxplots
produced with the Python package Seaborn v0.11.1. Finally, we used
Tukey’s posthoc test to check the statistical significance of the differences
between the different levels of all validation variables. The motivation for
these comparisons was to test if our predictions are consistent with the
expected patterns of HCVF occurrence in forests characterised by different
management practices and representing varying levels of naturalness, as
measured on the ground.

Final predictions
After the 10-fold SCV validation procedure, to achieve the highest predic-
tion performance (see ref. 53), we produced the final predictions using all
available trainingdata tofit newmodels for all four regions.Here,we assume
that the model performance metrics estimated from the 10-fold SCV are
conservative, i.e., the final models can still perform better53. These final
predictions were used for model validation with external independent
spatial datasets as described above.

To understand which variables were the main drivers of the predicted
values for each model, we estimated the impurity-based variable
importance43,56. Furthermore, to visualise and explore the relationships
between the top six most important variables and predict the relative like-
lihood of HCVF occurrence, we generated plots of partial dependence,
which is the dependence of the relative likelihood ofHCVFpresence on one
predictor variable after averaging the effects of the other predictor variables
in the model43,56. The 95% confidence intervals of the mean response were
obtained from 500 bootstrap replicates.

All resultingmaps were created using QGIS v3.22 “Białowieża” (QGIS
Development Team, 2022) and the Python package matplotlib v3.3.3. The

interactive visualisation of the prediction map was implemented using the
Google Earth Engine platform and is available online at https://bubnicki.
users.earthengine.app/view/swedentest.

Data availability
The spatial datasets used in this study are publicly available: DEM. Terrain
Model Download, grid 50+ . Lantmateriet, Swedish Ministry of Finance.
Available online at https://www.lantmateriet.se/en/maps-and-geographic-
information/geodataprodukter/produktlista/terrain-model-download-
grid-50/ (accessedApril 28, 2022).GFC.Global Forest Change.Global Land
Analysis and Discovery, Department of Geographical Sciences, University
of Maryland. Available online at https://glad.earthengine.app (accessed
April 28, 2022). HCVF. A database of High Conservation Value Forests in
Sweden. Swedish Environmental Protection Agency. Available online at
https://geodata.naturvardsverket.se/nedladdning/land/skogliga_
vardekarnor_2016.zip (accessed April 28, 2022). [Please note that this
database originally provides the status up to 2016 but has been updated in
2019 and 2020 with the new areas in the mountain region which were not
publicly available at themoment ofwriting thismanuscript but are available
on request from the Swedish Environmental Protection Agency]. LIGHTS.
A harmonised global nighttime light dataset 1992–2018. Available online at
https://doi.org/10.6084/m9.figshare.9828827.v2 (accessed April 28, 2022).
NMD. National Land Cover Data. Swedish Environmental Protection
Agency. Available online at https://www.naturvardsverket.se/en/services-
and-permits/maps-and-map-services/national-land-cover-database/
(accessed April 28, 2022). POP. Total Population in Sweden. Statistics
Sweden. Available online at https://www.scb.se/en/services/open-data-api/
open-geodata/grid-statistics/ (accessed April 28, 2022). The original inde-
pendent spatial datasets used for validation (Sveaskog and NFI) are not
publicly available. However, we have included theminimal dataset required
to interpret and replicate our results in this repository: https://gitlab.com/
oscf/hcvf-model-sweden/-/tree/main/src/config/validation.

Code availability
The source code to reproduce the spatial data processing pipeline, training
and validation of the Random Forest models, and all other analyses pre-
sented in this paper is available at https://gitlab.com/oscf/hcvf-model-
sweden.
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