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A B S T R A C T   

Spatial indices of tree diversity have often been proposed as surrogates of direct measures of biodiversity. They 
are comparatively straightforward to measure as part of forest ecosystem monitoring designed to alert to 
potentially negative effects of ongoing climate change. The loss of biodiversity, which is thought to be related to 
a decline in tree diversity, is perceived as a substantial threat, since biodiversity is also crucial to ecosystem 
resilience. We studied the correlation between community species mingling and size inequality of Knysna Forest, 
a well-known Afromontane forest ecosystem in South Africa, to better understand the principles of how nature 
maintains tree diversity. This is an important prerequisite for active conservation. The aforementioned corre-
lation is indicative of the mingling-size hypothesis predicting that large trees are surrounded by significantly more 
heterospecific trees than smaller trees. The mingling-size hypothesis helps understand natural principles of tree 
diversity maintenance and is motivated by the well-known Janzen-Connell and herd-immunity hypotheses. Our 
results revealed that the correlation between spatial species mingling and size inequality is mostly negative at 
Knysna Forest, which is comparatively rare. This implies that the mingling-size hypothesis does not hold in this 
forest ecosystem. This has implications for conservation, because spatial size-inequality is no longer a by-product 
of high species mingling and potentially requires additional conservation effort. We could also show that the 
aforementioned negative correlation can be inferred from the mark cross correlation function when applying this 
spatial summary characteristic to the mingling and size inequality indices of individual trees.   

1. Introduction 

With ongoing climate change that is currently unfolding at a pace 
which is considerably faster than what we know from past events of 
natural climate change alterations, a widely perceived threat is a rapid 
loss of biodiversity (McElwee, 2021; Román-Palacios and Wiens, 2020). 
The potential loss of species is a serious concern in itself, however, 
research has also shown that biodiversity is crucial to ecosystem resil-
ience and thus to sustaining terrestrial and marine ecosystems and 
habitats (Yachi and Loreau, 1999; Matias et al., 2013; Oliver et al., 2015; 
Fischer et al., 2006). The loss of biodiversity may therefore contribute to 
a destabilisation of ecosystems. 

In this context, the continued monitoring of tree diversity is an 
efficient way to check on the rate of change in biodiversity in forest 
ecosystems, since tree diversity is closely correlated with more direct 

measures of biodiversity (Pommerening and Grabarnik, 2019). Of 
particular interest are tree-diversity measures of spatial species mingling 
and size inequality (Gadow, 1993; Weiner and Solbrig, 1984), since 
these diversity components are the most important elements of spatial 
forest structure. Spatial species mingling describes the spatial interac-
tion of tree species, i.e. how individual trees of certain species are 
spatially mixed with those of other species. Spatial size inequality or size 
diversity describes the spatial mixing of the sizes of individual trees, i.e. 
spatial tree size diversity. It is very common that mean species mingling 
and mean size inequality of the species populations in the same wood-
land are correlated (Wang et al., 2021). Interestingly, Pommerening and 
Uria-Diez (2017) and independently Wang et al. (2018) found that in 
many forest ecosystems there is a tendency for large trees to be sur-
rounded by significantly more heterospecific trees than small and 
medium-sized trees and termed this observation the mingling-size 
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hypothesis. The mingling-size hypothesis in turn can be motivated by the 
Janzen-Connell and the herd-immunity hypotheses (Janzen, 1970; 
Connell, 1971; Wills et al., 1997; Murphy et al., 2016) suggesting that 
natural competitors, herbivores and pathogens target conspecific plants 
in areas of high conspecific densities, eventually leaving only few 
specimens of a particular species alive. These specimens – in the absence 
of neighbouring trees, since they died – eventually develop into large 
trees whilst they are increasingly surrounded by much smaller trees 
from later colonisation cohorts. This combined effect of species and size 
replacement enforces both local size hierarchies (Ford, 1975; Suzuki 
et al., 2008) and the mingling of different tree species in a given area or 
patch, and naturally prevents the development of monocultures whilst 
facilitating tree diversity (Pommerening and Grabarnik, 2019). 

A direct consequence of the mingling-size hypothesis is that mean 
species mingling and size inequality of species communities are posi-
tively correlated, i.e. where there is high species mingling in a given 
forest ecosystem, size inequality is high, too, and where species mingling 
is low so is size inequality. Conversely, in woodlands where negative 
correlation slopes occur this means that low species mingling can be 
found where there is high size differentiation and vice versa. The dif-
ference in sign of the slope of the linear relationship between community 
species mingling and size inequality indicates fundamentally different 
ecological patterns: Positive slopes stress the importance of between- 
species population size differences, because where heterospecific trees 
mingle their sizes are very different. Where negative slopes prevail, 
heterospecific trees often have similar sizes and size inequality is mainly 
a function of within-species size differences (Wang et al., 2021). In that 
case, the mingling size hypothesis does not hold and other ecological 
processes are at work that are not yet fully understood, since this pattern 
is rare. The correlation of species mingling and size inequality of species 
communities is therefore a valuable indicator of the mingling-size hy-
pothesis which can easily be estimated from mapped tree data. Spatially 
explicit time series are still comparatively rare and the mingling-size 
hypothesis has so far been mostly studied in one-off monitoring plots. 

The objectives of this paper are (1) to study the species community 
mingling-size inequality correlations of an Afromontane forest 
ecosystem, the Knysna Forest (South Africa), in time and space, (2) using 
point process statistics to identify underlying processes causing negative 
mingling-size inequality correlations and (3) based on our results to 
suggest options for active conservation in such forest ecosystems. 

2. Materials and methods 

2.1. Study data 

The Knysna FVC monitoring area is part of the southernmost patches 
of the Afromontane forest in South Africa located south of the mountains 
between Humansdorp and Mossel Bay. The Knysna Forest represents the 
largest indigenous forest complex in South Africa. The monitoring area 
was established in the Diepwalle State Forest in 1937. The forest is 
located to the north of the southern coastal town of Knysna (at about 33◦

57’S, 23◦ 11’E). Forest management experiments were carried out in the 
monitoring areas until 1954 and were completely abandoned at that 
time. This was followed by the initialisation of the Diepwalle forest 
dynamics monitoring project in the 1970s by scientists of the Saasveld 
Indigeneous Forest Research Centre of the South African Forest Research 
Institute (Gadow et al., 2016). In 2005, the project and sites were 
transferred to the South African National Parks (SANParks) to become 
part of the Garden Route National Park. 

The monitoring area used in this study is 380 m long and 120 m wide 
and involves 25 different species, most of them are of tropical origin. 
The most frequent species include ironwood (Olea capensis L. subsp. 
macrocarpa), kamassi (Gonioma kamassi E. MEY.) and real yellowwood 
(Podocarpus latifolius (THUNB.) R. BR. EX MIRB.). Knysna Forest is 
characterised by a rich variety of bryophytes, ferns, epiphytic lichens 
and orchids (Gadow et al., 2016). The study area is situated at 517 m a.s. 

l and has a predominantly Southern aspect. The average annual 
maximum temperature for the region is 19.2 ◦C while the average 
minimum is 11.1 ◦C. Rainfall occurs in all seasons and the climate can be 
considered transitional between the tropical/subtropical and temperate 
regions. The mean annual precipitation may vary between 700 and 
1230 mm, subject to orographic influences and is increasing from west 
to east (Gadow et al., 2016). 

Full surveys of the FVC monitoring area were carried out in 1972, 
1978, 1987, 1992 and 1997. All trees with a stem diameter (measured at 
1.3 m above ground level) of at least 5 cm were included in the surveys, 
their stem diameters, spatial locations (in terms of Cartesian co-
ordinates) were measured and the species were recorded. In between the 
survey years, birth and death processes occurred and were recorded as 
part of the survey work. We subdivided the elongated monitoring area 
into three large plots, plot 1, plot 2 and plot 3, with approximately the 
same size (130 × 120 m) to be able to distinguish between changes in 
both time and space, whilst maximising plot size so that there was a 
sufficiently large number of specimens per species at all survey times. 

The summary characteristics quantified for each survey year and plot 
show many similarities (Table 1) with only slight differences: Plot 3 has 
markedly higher basal areas and number of trees per hectare than the 
other two plots. The stem diameter range is largest in plot 2. The 
quadratic mean diameter was highest in plot 1 throughout the survey 
years. Species mingling is much the same across all three plots, but 
highest in plot 1. Species richness is highest in plot 3 and stem-diameter 
differentiation is lowest in plot 3. 

Seifert et al. (2014) analysed competition effects on stem-diameter 
growth and Gadow et al. (2016) studied the effects of tree species di-
versity and forest structure on tree growth and forest production at 
Knysna. 

2.2. Tree diversity indices 

In our study, spatial species mingling was quantified as the richness 
weighted species mingling index (Hui et al., 2008, 2011). Gadow (1993) 
defined spatial species mingling as the mean heterospecific fraction of 
plants among the k nearest neighbours of a subject plant i, i.e. Mi =

1
k
∑k

j=11
(

speciesi ∕= speciesj

)
. Here, 1(A) is an indicator function with 

1(A) = 1, if A is true, otherwise 1(A) = 0. Speciesi denotes the species of 
subject tree i whilst speciesj is the species of neighbour j. Hui et al. 
(2008, 2011) extended this concept of Mi by combining species mingling 

Table 1 
Basal area, G, number of trees per hectare, N, minimum stem diameter, dmin, 
maximum stem diameter, dmax, quadratic mean diameter, dg , species mingling, 

M′, stem-diameter differentiation, T, and global species richness, S, in the three 
Knysna plots.  

Year G [m2 

ha− 1] 
N 
[ha− 1] 

dmin 

[cm] 
dmax 

[cm] 
dg 

[cm] 
M′ T S 

Plot 1 
1972  25.2  549.4  5.5  66.7  24.2  0.57  0.42  20 
1978  27.5  575.4  6.5  67.5  24.7  0.56  0.41  20 
1987  31.0  641.7  6.9  70.4  24.8  0.57  0.41  20 
1992  31.4  625.3  7.2  72.4  25.3  0.57  0.41  20 
1997  32.0  631.5  7.3  72.2  25.4  0.58  0.40  20 
Plot 2 
1972  24.6  574.9  5.8  73.5  23.4  0.55  0.41  21 
1978  27.4  624.9  0.1  73.5  23.6  0.54  0.41  22 
1987  30.2  685.6  6.7  74.6  23.7  0.57  0.40  22 
1992  31.0  682.3  6.0  74.7  24.1  0.58  0.40  23 
1997  31.5  680.3  6.8  75.3  24.3  0.57  0.39  23 
Plot 3 
1972  29.0  717.3  6.3  71.7  22.7  0.55  0.38  22 
1978  31.8  764.0  6.5  71.7  23.0  0.56  0.38  22 
1987  35.8  821.2  6.4  73.3  23.5  0.55  0.39  23 
1992  37.2  812.0  6.5  76.0  24.1  0.55  0.39  23 
1997  37.7  808.0  6.5  74.7  24.4  0.56  0.39  23  

A. Pommerening et al.                                                                                                                                                                                                                         



Forest Ecology and Management 558 (2024) 121787

3

with localised species richness (Eq. 1). 

M′
i =

1
k × c

∑k

j=1
1
(
speciesi ∕= speciesj

)
× si with c = min(S, k + 1) (1) 

Accordingly, in Eq. (1) each Mi is multiplied by the local species 
richness si among the k nearest neighbours. Species richness is defined as 
the absolute number of species without reference to area (Magurran, 
2004). Wang et al. (2021) amended the original index definition by 
introducing term c to ensure that the maximum number of species that 
are theoretically possible in a group of k+1 trees is limited by the 
number of species present in the forest stand or in the monitoring area 
studied. S is global species richness, i.e. the total number of species in a 
monitoring plot. Values of M′

i are generally smaller and take a larger 
range of different values than those of Mi. All index values lie between 
0 and 1. 

Size inequality in this study was expressed as the mean ratio of 
smaller-sized and larger-sized stem diameters of the k nearest neigh-
bours subtracted from one. Gadow (1993) referred to this diversity index 
as size differentiation (Eq. 2). 

Ti = 1 −
1
k
∑k

j=1

min(di, dj)

max(di, dj)
(2) 

Here di denotes the stem diameter of subject tree i whilst dj is the size 
of neighbour j. Size differentiation produces continuous results between 
0 and 1 and Ti increases with increasing average size difference between 
neighbouring trees. 

Readers interested in more details of spatial tree diversity indices are 
referred to the textbook by Pommerening and Grabarnik (2019). 

2.3. Nearest neighbours and edge correction 

There are many different neighbourhood concepts. In the past, 
neighbours were often identified by Euclidean distance, mainly for 
simplicity in field surveys and computations. Rajala and Illian (2012) 
pointed out that Euclidean neighbourhoods are parametric, since the 
number of nearest neighbours is a variable parameter and is often 
arbitrarily chosen (Pommerening and Grabarnik, 2019). In this study, 
we decided to base the tree diversity indices of Section 2.2 on Voronoi 

neighbours which form non-parametric neighbourhoods (Rajala and 
Illian, 2012). Voronoi neighbours can be determined by Voronoi 
tessellation (also termed Dirichlet or Thiessen tessellation) which di-
vides the entire plane into non-overlapping polygons with one tree 
location in each of them (Illian et al., 2008; Dale and Fortin, 2014). By 
definition, all pixels in each polygon are closer to the tree location of that 
particular polygon than to any other tree. Voronoi neighbours of a 
subject tree i are all those trees whose Voronoi polygon share a boundary 
with that of subject tree i (Fig. 1A). Voronoi neighbours better describe 
interactions from an individual-tree perspective, since the neighbour-
hood covers 360◦ around the subject tree. Rajala and Illian (2012) found 
that Voronoi neighbourhoods lead to more realistic estimations of 
spatial species mingling because they are less sensitive to the underlying 
point pattern formed by the tree locations. 

As a result of tessellation, the trees have varying numbers k of nearest 
neighbours whilst with parametric neighbours, k is usually fixed. To our 
knowledge, this is the first time that Voronoi neighbours were used for 
an entire ecological study. In most other publications referenced in this 
article the number of nearest neighbours, k, has been set to a fixed, 
arbitrary value, e.g. k = 4. 

For spatial edge correction we applied a variant of the nearest 
neighbour edge correction method referred to as NN2 by Pommerening 
and Stoyan (2006; Fig. 1B): All trees were excluded from the estimation 
of index population means whose polygons shared a boundary with the 
monitoring plots; however, such trees still served as Voronoi neighbours 
of others. This typically leads to an irregular buffer zone as shown in 
Fig. 1B. We used our own R code (R Development Core Team, 2023) and 
the R spatstat package (Baddeley et al., 2016) in these calculations. 

2.4. Standardised major axis regression 

As an alternative to simple linear regression we applied standardised 
major axis (SMA) regression, a method involving total least squares, 
where residuals are calculated with regard to both the x and the y axis 
(Warton et al., 2012). We applied SMA regression to the relationship 
between the arithmetic species population means of stem-diameter 

differentiation, T, and species mingling, M′: 

Fig. 1. A: The principle of Voronoi neighbourhoods: Voronoi neighbours (highlighted in red) are those that share a Voronoi polygon boundary with the polygon of 
the subject tree (highlighted in yellow). B: Voronoi tessellation of plot 3 (1992 survey; 130 × 117 m). The polygons that share a boundary with the plot boundary and 
are potentially affected by missing information on off-plot neighbours are highlighted in red. (For interpretation of the references to colour in this figure, the reader is 
referred to the web version of this article). 
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M′
= a+ b × T (3) 

Model coefficients a and b are the intercept (also termed elevation) 
and the slope of the linear model, respectively. 

SMA regression has generally more in common with principal 
component analysis than with traditional linear regression and the 
method is highly recommended for studies of allometry (Pommerening 
et al., 2020) and plant traits. Since we were not interested in predicting 
one variable from another and there was no clear distinction between 
dependent and independent variables, estimating the intercept and 
slope was not a simple linear regression problem in our study. Besides 
simple linear regression often underestimates slope parameters b 
(Warton et al., 2006). 

In order to quantify meaningful relationships between species pop-
ulation means of differentiation and mingling, we included only those 
species that had more than 18 specimens in a given plot. We carried out 
SMA regressions and associated tests using the R smatr package 
(Warton et al., 2012). 

Past analyses using many different data sets from across the world 

have revealed that the slopes involved in the linear relationship M′
∼ T 

are usually positive (Pommerening and Uria-Diez, 2017; Wang et al., 
2021). 

2.5. Mark correlation functions and mark cross correlation functions 

The mark correlation function kmm(r) is a second-order characteristic 
assessing the similarity and dissimilarity of marks at given distances r 
(Penttinen et al., 1992; Stoyan and and Penttinen, 2000; Illian et al., 
2008; Pommerening and Grabarnik, 2019). In the mark correlation 
function, the product of the marks of a pair of trees is calculated at 
distance r between them. From the single values for each pair of trees a 
mean is computed for each r. Thus, the function kmm(r) is conceived, 
which is dependent on r. It is advisable to divide the function by the 
square of the mean mark, m2, in order to make interpretation easier. 
Illian et al. (2008) gave the estimator of the mark correlation function as 

k̂mm(r) =
1

m2

∑∕=

ξi , ξj∈W

m(ξi) m
(
ξj
)

kh(
⃦
⃦ξi − ξj

⃦
⃦ − r)

2πr A(Wξi ∩ Wξj )
. (4) 

Here, ξi and ξj are arbitrary tree locations in the forest monitoring 
plot W. m(ξi) and m

(
ξj
)

are so-called marks, i.e. additional information 
on the trees, e.g. stem diameters or total heights of the trees at locations 
ξi and ξj. However, in our study we used the individual tree species 
mingling and stem-diameter differentiation indices M′

i (Eq. 1) and Ti (Eq. 
2) as marks. kh in our case is the Epanechnikov kernel function, a 
function dealing with pairs of trees that approximately have distance r 
between them but whose inter-tree distance slightly differs from r. 
A(Wξi ∩ Wξj ) is the area of intersection of Wξi and Wξj , see Illian et al. 
(2008, p. 481 f. and p. 188), relating to the translation edge correction 
(Ohser and Stoyan, 1981). 

When trees at close proximity both have small marks, this typically 
causes mark correlation functions to be smaller than 1. For kmm(r) > 1 
both trees of pairs at close proximity need to have marks larger than the 
mean mark. With r→∞ the mark correlation function tends towards the 
limit of 1 indicating situations where there is no spatial correlation be-
tween the marks at distance r. The actual limit may, however, differ 
from 1 because of statistical fluctuations and spatial inhomogeneity 
(Ballani et al., 2019). 

In the context of this study, where we are interested in the rela-
tionship between species mingling and stem-diameter differentiation, it 
makes sense to consider the mark cross correlation function (Stoyan, 
1987) in addition to the mark correlation functions and to apply it to the 
mingling and differentiation marks. The mark cross correlation function 
klm(r) simultaneously considers two quantitative marks characterising 
every point (i.e. tree location) of a given spatial tree pattern and 

addresses the question, which spatial correlations exist between the two 
marks. In analogy to Eq. (4) and following Stoyan (1987), we can write 
the estimator of the mark cross correlation function as 

k̂ lm(r) =
1
lm

∑∕=

ξi ,ξj∈W

l(ξi) m
(
ξj
)

kh(
⃦
⃦ξi − ξj

⃦
⃦ − r)

2πr A(Wξi ∩ Wξj )
. (5) 

The notation is the same as for Eq. (4), however, two different types 
of quantitative marks are considered now, i.e. l(ξi) and m

(
ξj
)
. In our 

application, l(ξi) and m
(
ξj
)

are defined by M′
i (Eq. 1) and Ti (Eq. 2). The 

interpretation of klm(r) largely follows that of kmm(r): When trees at close 
proximity both have small species mingling and size differentiation 
index values this typically causes the mark cross correlation functions to 
be smaller than 1 and indicates positive correlation. For klm(r) > 1 both 
trees at close proximity need to have diversity indices larger than the 
mean mark. This would also lead to a positive correlation of the two 
index marks. With largely different values of M′

i (Eq. 1) and Ti (Eq. 2) 
trees at close proximity and with r→∞ the mark cross correlation 
function tends towards the limit of 1 indicating situations where there is 
no spatial correlation between M′

i and Ti at distance r. 
For each forest plot and survey year we estimated kmm(r) twice, once 

where all quantitative marks were M′
i and once where Ti was the 

exclusive mark. Finally we estimated klm(r) for both marks simulta-
neously. 

In our study we used pointwise envelopes for testing the klm(r)
functions. This procedure was based on 999 simulations of spatial tree 
patterns where the locations were fixed while the two M′

i and Ti marks 
were permuted, i.e. the indices were independently and randomly re- 
assigned to the trees. The simulated patterns obtained by this proced-
ure follow the so-called random labelling hypothesis (Illian et al., 2008). 
Statistical inference is then based on a visual comparison of observed 
and simulated functions which were summarised by pointwise 95% 
envelopes. If the behaviour of the observed functions is not typical of 
random labelling, i.e. if the corresponding curves are located outside the 
envelopes, we concluded that there may be ecological reasons to expect 
that the diversity indices of close trees are significantly related to each 
other (Pommerening and Grabarnik, 2019). 

When plotting the graphs of the two kmm(r) functions and of klm(r)
and studying them, it is visually evident that the graph of the mark cross 
correlation function is influenced by both mark correlation functions 
(Stoyan, 1987). Usually the influence of one kmm(r) function appears to 
be stronger than that of the other one which can be gauged from the 
proximity of the two graphs to that of klm(r). Consequently a distance 
measure was necessary to determine the proximity of the two kmm(r)
functions to the corresponding klm(r) function. For deriving such a dis-
tance measure we modified an approach taken by Pommerening et al. 
(2011) and calculated the sum of the absolute differences between 
kmm(r) and of klm(r) using a step width of 0.25 m between minimum 
distance, r0, and an upper limit r1 = 30 m: 

Δm =
∑r1

r0
|kmm(r) − klm(r) | (6) 

The upper limit r1 was chosen so that it approximately corresponded 
with the maximum correlation range of the mark (cross) correlation 
functions but also considered the size of the monitoring plot at the same 
time. For each plot and survey year, Δm was calculated twice, i.e. once 
for kmm(r) using M′

i and once for kmm(r) using Ti as marks. This resulted in 
two deviation measures, ΔM′ and ΔT. Finally, we calculated the deviation 
ratio Δ as 

Δ =
ΔT

ΔM′
. (7) 

The smaller Δ, the larger is the influence of kmm(r) (using only Ti as 
marks) on klm(r) and the smaller is the influence of kmm(r) based entirely 
on M′

i marks. For Δ = 1, the influence of both mark correlation functions 

A. Pommerening et al.                                                                                                                                                                                                                         



Forest Ecology and Management 558 (2024) 121787

5

on klm(r) would be the same and for Δ > 1 the influence of kmm(r) solely 
based on M′

i is greater than that of kmm(r) using Ti marks only. The mark 
(cross) correlation functions were calculated using the R spatstat 
package (Baddeley et al., 2016). 

3. Results 

Examining the relationship between individual-tree species mingling 
M′

i and size differentiation Ti revealed quite similar, seemingly unin-
teresting patterns throughout the three plots and the five survey periods 
(Fig. 2) when inspected superficially. The main differences occur at the 
fringes of the main data clouds, i.e. with very small and large Ti values. 

For example, in plot 3 individual data points on the left-hand side of 
the main data clouds seem to disappear with time whilst more appear on 
the right-hand side where Ti values are large. There is also some vari-
ability, particularly between plots, i.e. in space, at the bottom of the data 
clouds where M′

i values are low (Fig. 2). These differences at the pe-
ripheries of the main data cloud are likely to be the unique signatures of 
individual trees in space and time. Fig. 2 also highlights that the size 
differentiation values vary much more than those of species mingling, 
although the definition of Eq. (1) and the use of Voronoi neighbours with 
variable k increase the range of possible individual-tree mingling results 
compared to the traditional species mingling index with fixed k: For one 
and the same M′

i value many different Ti can be observed. The range of Ti 

values is usually widest around M′
i = 0.5, thus indicating the maximum 

width of the data clouds. 

Our analyses have shown that the linear relationships M′
∼ T (Sec-

tion 2.4), i.e. the relationship of the means of the two diversity indices in 
each species community, are more similar in time than they are in space 
(Fig. 3). We can clearly see that between survey years intercept and 
slope vary only marginally, particularly in plot 3 (Fig. 3C), which was 
confirmed by the SMA tests for common slope and intercept (not 

shown). The greatest difference exists between the M′
∼ T relationships 

of plots 1 and 3 (Fig. 3A and C) on one hand and that of plot 2 (Fig. 3B) 
on the other. 

The Knysna FVC monitoring area is one of the few exceptions across 

the world where negative slopes in the M′
∼ T relationship occur and 

prevail, namely in plots 1 and 3 (Fig. 3A and C). Here the negative sign of 
the slope is mainly driven by within-species population size differences. 

However, the M′
∼ T relationship in plot 2 (Fig. 3B) follows the com-

mon, more frequent pattern where the positive sign is mainly caused by 
between-species population size differences (see Section 1). 

The aforementioned similarities of the M′
∼ T relationship in time 

are also confirmed by Fig. 4. Both intercepts (Fig. 4A) and slopes 
(Fig. 4B) are nearly horizontal lines over time, thus indicating little 
change. Also here, it is evident that plots 1 and 3 are similar in terms of 
both linear model coefficients whilst those related to plot 2 are quite 
different. 

In general, the mark (cross) correlation functions did not differ much 
from the horizontal line through 1 indicating that the corresponding 
marks are not spatially correlated (Fig. 5), which may have been caused 
by differences in the index values of paired trees. Still, the 95% point-
wise envelopes produced from 999 random labelling simulations clearly 
show that most of these functions indicate significant patterns particu-
larly at short distances, but often also at larger distances, especially in 
plot 2, where it is possible that spatial inhomogeneities exist, e.g. 
gradual differences in tree density. The difference between the mark 
(cross) correlation functions and the horizontal line through 1 is 
particularly small for plot 3 across all survey years. In plot 1, the mark 
cross correlation function is significant between r = 5 − 25 m in 1972 
and 1978. After that function klm(r) is not significant anymore. The 
general shape of the function in plot 1 suggests comparatively large 
values of the two diversity indices at very short distances followed by 

pairs of trees with indices of similar, but small size in the medium range 
and no correlation at very large r. In plot 2, the mark cross correlation 
function is significant after the first three metres and continues to be so 
up to r = 50 m and beyond throughout all survey years. The more or less 
constant deviation of klm(r) from the horizontal line through 1 may 
indicate inhomogeneous spatial patterns. On the other hand it is very 
likely that this deviation indicates strong positive correlation between 
the two index marks caused by small values of M′

i and Ti of the corre-
sponding pairs of trees considered. This would support the positive 

correlations between M′
∼ T shown in Fig. 3B. The general shape of the 

klm(r) function in plot 2 suggests similar-sized large index values at short 
range followed by indices of similar, but small size throughout the 
remaining r range. In plot 3, only the first 8 m of the mark cross corre-
lation function are outside the 95% pointwise envelopes, i.e. here short- 
range interactions between species mingling and size inequality are of 
particular interest. In this distance range, both diversity indices are 
similar, but small. For r > 8 m, klm(r) in plot 3 mostly shows indices of 
paired trees with different values. Generally, the fact that the klm(r)
curves in plots 1 and 3 run more closely along the horizontal line 

through 1 supports the negative correlations between M′
∼ T shown in 

Fig. 3A and C. 
Possible answers to the question which of the two mark correlation 

functions, kmm(r), have a greater influence on and show a shorter dis-
tance to the graph of klm(r) are supported by the results for Δ in Fig. 5. In 
plot 1, deviation Δ initially takes a value close to 1 where the influence 
of both kmm(r) over the first 30 m is similar. The value of Δ subsequently 
decreases over the years so that the influence of kmm(r) based entirely on 
differentiation (Ti) marks increases. A different trend unfolds in plot 2 
where the initial Δ = 0.878 steadily increases over the years to reach a 
maximum of Δ = 1.194 in 1987. Δ values larger than 1 indicate an in-
fluence of kmm(r) (based on M′

i marks) on klm(r) which is stronger than 
that of kmm(r) using only differentiation marks. In plot 3, Δ takes the 
lowest value of all three plots indicating a strong relative influence of 
kmm(r) based entirely on differentiation marks on klm(r). With the 
notable exception of 1978, where the value of Δ drops down to 0.494, in 
plot 3 deviation ratio Δ remains fairly constant throughout the survey 
years. 

The final step of our analysis involved studying the relationship be-

tween deviation ratios Δ and slopes b of the 15 M′
∼ T relationships. 

Here we analysed both spatial and temporal trends. The spatial trend 
can be observed between the three plots and the temporal trend de-
scribes the relationship within the plots over the survey years. According 
to the spatial trend, with increasing deviation ratio Δ the slope of the 

M′
∼ T relationship increases exponentially (Fig. 6, grey curve). At 

approximately Δ = 1.032 the slope changes signs from negative to 
positive. This is close to Δ = 1.0 where the influence of both kmm(r)
functions on klm(r) is the same. According to the spatial trend, slope b 
turns from negative to positive exactly when the influence on klm(r)
exerted by kmm(r) based on mingling marks becomes stronger than 
kmm(r) using only differentiation marks. 

The temporal trend within the three plots clearly differs from the 
exponential spatial trend. Separate temporal trends are obvious in Fig. 6, 
since the points relating to each of the three plots form distinctive, in-
dividual data clouds. Within each cloud we found linear relationships 

indicating that with increasing deviation ratio Δ the slope of the M′
∼ T 

relationship decreases. Judging by the slopes, this temporal trend is 
stronger in plots 1 and 3 than in plot 2. 

4. Discussion 

In times of climate change, maintaining tree diversity is more 
important than ever for mitigating the loss of diversity and resilience in 
forest ecosystems (The Royal Society and the US National Academy of 
Sciences, 2020; McElwee, 2021; Román-Palacios and Wiens, 2020; 
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Fig. 2. Scatterplots of individual-tree species mingling, M′
i (Eq. 1), and size differentiation, Ti (Eq. 2), indices in the three plots and five survey years.  
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Oliver et al., 2015; Fischer et al., 2006; Kühl et al., 2020; Hoffmann, 
2022). A prerequisite for conservation and maintenance of tree diversity 
is a proper understanding of the mechanisms and processes in natural 
forest ecosystems. Accordingly, our study has made an effort to under-
stand how spatial species mingling and size inequality are related in a 
key natural Afromontane forest ecosystem through time and space. 
These forest ecosystems are special, since they are small remnants of 
what originally were much larger natural forests and include a high 
diversity of tree species and sizes. They are also special with regard to 
the correlations between mean community spatial species mingling and 
size inequality which often have a negative sign. Ecologically, negative 
signs of this correlation imply that the corresponding size inequality is 
low whilst species community mingling is high and vice versa. In such 
situations the different species communities involved have similar size 
structures and size inequality is mainly the result of size diversity within 
the same species communities. This pattern is rare and does not often 
occur in forest ecosystems of different climate zones around the world 

(Pommerening and Uria-Diez, 2017; Wang et al., 2021). 
Our results have shown that the community correlation relationship 

M′
∼ T in the Knysna Forest plots does not change much with time, 

although the monitoring spans a time period of 25 years (Figs. 3 and 4). 
On first sight, this may seem a fairly short time for a tree-dominated 
plant community, however, given the climate eco-physiological pro-
cesses are fast in such woodlands and spatially explicit time series data 
from such large research plots like those in the Knysna Forest are hard to 
come by. Our finding is consistent with earlier research that could 
demonstrate that spatial forest structure usually tends to differ more in 
space than in time (LeMay et al., 2009). The mark (cross) correlation 
functions applied to the individual-tree M′

i and Ti indices (Fig. 5) 
confirmed the same relative constancy of spatial forest structure in time. 
Ecologically this means that the spatial structure of the subtropical 
forest ecosystem at Knysna is comparatively resilient and well adapted 
to local sites. 

Fig. 3. Linear relationships M′
= a+b × T (Eq. 3) between mean species mingling, M′, and mean size differentiation, T, of all tree species communities with more 

than 18 specimens per plot and obtained from standardised major axis (SMA) linear regression. A: plot 1. B: plot 2. C: plot 3. Blue: 1972, orange: 1978, green: 1987, 
cyan: 1992, purple: 1997. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article). 

Fig. 4. Intercept (a, A) and slope (b, B) of the linear relationships M′
= a+b × T (Eq. 3) between mean species mingling, M′, and mean size differentiation, T, across 

survey years. Blue: plot 1, red: plot 2, black: plot 3. (For interpretation of the references to colour in this figure, the reader is referred to the web version of 
this article). 
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Fig. 5. Mark correlation functions kmm(r) based on either only M′
i (Eq. 1) marks (red) or Ti (Eq. 2) marks (blue) and the mark cross correlation function klm(r) using 

both marks simultaneously (black). The bandwidth parameter used in the estimation of both kmm(r) and klm(r) was h = 1.35 m. The pointwise 95% envelopes 
calculated from 999 random-labelling simulations are shown in grey. The deviation measure Δ quantifies the relative influence of the two kmm(r) functions on klm(r)
and is defined in Eq. (7). The inter-tree distance is denoted by r. (For interpretation of the references to colour in this figure, the reader is referred to the web version 
of this article). 
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We applied the mark (cross) correlation functions to the spatial tree 
patterns of Knysna Forest in order to learn more about the individual- 
tree correlations between the M′

i and Ti indices. These correlations 
differed between plots, however, the most interesting finding of our 
study was that the relative proximity of the two kmm(r) functions to the 
klm(r) function expressed as quantity Δ is correlated with the slope of the 

M′
∼ T species community relationship. Relative proximity of graphs is 

an expression of influence on the klm(r) function and thus the relative 
importance of single-type marks, either M′

i or Ti, motivate the type of 
influence (Stoyan, 1987). Our study highlighted that values of Δ < 1 are 

typical of negative slopes of the M′
∼ T relationship whilst Δ > 1 in-

dicates positive slopes. In the former case, size inequality is more 
important than species mingling and in the latter case it is the other way 
round. The sign of the slopes changes approximately at Δ ≈ 1 where the 
relative influence of species and size diversity indices is even (Fig. 6). 

Data are nearly always statistically dependent in space and time and 
spatio-temporal processes can lead to complex interactions (Cressie and 
Wikle, 2011). This is also likely to be true for data from forest ecosys-

tems and our problem of species community M′
∼ T correlation. As part 

of these complex interactions it is quite possible that spatial and tem-
poral trends differ, since they operate in different dimensions. 
Commonly, spatial variation in temporal trends is studied but in the case 
of forest structure, judging by Fig. 6, it is rather a matter of temporal 
variation in spatial trends: The linear within-plot trends indicated by the 
orange lines in Fig. 6 are an expression of the temporal variation around 
the spatial, exponential trend. Although we observed some constancy 

over time in the M′
∼ T community relationship (Fig. 3), there is clearly 

some limited temporal variation in the b ∼ Δ relationship which we see 
expressed in the linear within-plot trends. 

5. Conclusions 

The starting point of active conservation is a comprehensive under-
standing of how biodiversity including tree diversity is maintained 

naturally. The interaction between species and size diversity is crucial to 
this understanding, since, unlike other plants, trees can come in very 
different sizes. A consequence of the mingling-size hypothesis usually is 
that community species mingling and size inequality are positively 
correlated, i.e. where there is high species mingling in a forest 
ecosystem, size inequality is high, too. The practical benefit of positive 
correlations is that it is sufficient for conservation management to 
monitor and support only spatial species diversity, as size inequality 
follows suit. However, there is evidence at Knysna Forest that these 
ecosystems predominantly have negative species mingling ~ size 
inequality correlations. Negative correlations usually imply that in-
stances of high spatial species mingling are not necessarily related to 
large trees. In that case high size inequality is not a by-product of high 
species mingling and conservation management needs to make a special 
effort to monitor and encourage spatial size inequality in addition to 
species mingling. Our study has demonstrated that the sign of species 
mingling ~ size inequality relationships can be inferred from the mark 
cross correlation function when applying it to the diversity indices of 
individual trees. We have also learnt that individual-tree size inequality 
rather than species mingling is mainly responsible for negative com-

munity M′
∼ T correlations, which is typical of Knysna forest. This type 

of species-size diversity can practically be maintained as part of active 
conservation by ensuring a diverse size distribution in each species 
population, i.e. a wide range of conspecific tree sizes, through selective 
small-scaled disturbances. 
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