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This article has the objective of presenting our method to develop and test a motion control
system for a heavy-duty hydraulically actuated manipulator, which is part of a newly developed
prototype featuring a fully-autonomous unmanned forestry machine. This control algorithm is based
on functional analysis and differential algebra, under the concepts of a new type of approach known
as model-free intelligent PID control (iPID). As it can be unsafe to test this form of control directly
on real hardware, our main contribution is to introduce a framework for developing and testing
control software. This framework incorporates a desktop-size mockup crane equipped with comparable
hardware as the real one, which we design and manufactured using 3D-printing. This downscaled
mechatronic system allows to safely test the implementation of control software in real-time hardware
directly on our desks, prior to the actual testing on the real machine. The results demonstrate that
this development framework is useful to safely test control software for heavy-duty systems, and it
helped us present the first experiments with the world’s first unmanned forestry machine capable of

performing fully autonomous forestry tasks.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of Shandong University. This is an open access
article under the CCBY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

This article presents the steps we followed to develop, imple-
ment, and test a motion control algorithm for automating the
motions of a hydraulically-actuated heavy-duty forestry crane.
This crane is part of the world’s first unmanned forestry ma-
chine capable of performing fully autonomous forwarding tasks,
i.e. extracting logs out of the forest without the need for hu-
man involvement [1]. This machine has been developed to be
a research platform for testing the technology needed to auto-
mate forest operation tasks. The purpose of the controlled crane
movements is to perform pick-and-place actions during these
tasks. Our control algorithm centers around recent advancements
in model-free intelligent PID controllers (iPID), a method that
can be formulated without the need of the system’s dynam-
ics model, and provides robustness, disturbance rejection and
adaptive properties [2,3].

1.1. Overview

In Fennoscandia, electro-hydraulically actuated cranes are an
essential component of forestry machinery, providing efficient
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tree cutting and heavy log maneuvering, when performing forest
operations. Over the years, the technology to manually operate
these cranes has advanced from old-fashioned open-loop joint-
by-joint control to the use of semi-automated solutions, such
as the most recent Cartesian end-effector control [4,5]. To this
end, the new innovations from crane manufacturers involve in-
corporating motion sensors on cranes’ joints [6,7], and pressure
sensors in hydraulic valves [8], giving place to the introduction of
feedback motion control software. As controlling the crane forms
the largest portion of the work for machine operators, using feed-
back control systems has positively influenced the way forestry
operators experience working with cranes. This has generated the
interest to move to a new era of development, where forestry
machines gain the benefits of automation and robotics [9].

The concept of unmanned and automated forestry machines
has long been contemplated in the Fennoscandian region [10],
driven by various factors such as environmental impact reduc-
tion, weight and manufacturing cost reduction, operator comfort
regarding vibration exposure, and increased productivity in for-
est operations [9]. In these regard, several prototypes consist-
ing of radio-controlled machines have been developed over the
years, such as BESTEN (eng. The Beast) and the eBeaver [11,12].
However, these machines have not succeeded to reach market
production because they do not meet industry expectations in
terms of productivity or simplification of work tasks for machine
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Fig. 1. AORO machine platform. In this scenario, the AORO machine was
equipped with a trailer to emulate a forwarder.

operators. On the contrary, employing conventional joint-by-joint
open-loop control commands for remote operation of these ma-
chines has been shown to intensify the inherent complexity of
manual control. Nevertheless, unmanned machines with varying
degrees of automation offer solutions to address challenges in
forestry, including the shortage of qualified operators, environ-
mental concerns, and high operating costs. For this reason, the
transition from manual to full automation has been an ongoing
area of research [13,14].

Our group, the Arctic Off-Road Robotics Lab (AORO) [1], has
developed a heavy-duty unmanned forestry machine to serve as
a dedicated testing platform for forestry automation research (see
Fig. 1). The objective is to pave the way for the development of
unmanned forestry machines and test a variety of automation
software that has been developed over the years to achieve fully-
autonomous operations, focusing initially on forwarding tasks.
Forwarding involves the task of collecting logs that have been
felled by a harvester machine. The forwarder machine transports
these logs out of the forest into a road-side area for collection. To
this end, the machine is equipped with an electro-hydraulically
actuated crane for handling the logs and a trailer for transporting
them. Referring to Fig. 1, the crane in our platform is an off-the-
shelf component, implying that it is not a customized solution,
highlighting our aim to develop solutions that can be readily
implemented in the industry.

1.2. Overview of control systems in forestry

Since the performance of autonomous robots requires that
the system becomes capable of executing meaningful and co-
ordinated motions, closed-loop motion control algorithms are
at the core of the functionality of these systems [15]. In this
regard, numerous control methods, including linear and nonlin-
ear model-based approaches, have been proposed for hydraulic
cranes, as evidenced in previous studies [16-18] and related
references. However, it is worth noting that the majority of these
methods have not undergone comprehensive testing in com-
mercial cranes or real-world operating conditions. The lack of
follow-up on these developments highlights both the interest and
challenges involved in automating forestry cranes.

Our research group has been involved in the development of
automation of forestry cranes for nearly two decades. Initially, we
explored the feasibility of using different approaches based on
model-based nonlinear control algorithms, as this is an standard
approach in the control of industrial robotic manipulators [17,19].
However, we found that one of the drawbacks of such meth-
ods is the need for dynamics models, which proved to be time
consuming, challenging, costly and thus impractical to transition
our development to our industrial partners. Therefore, our focus
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shifted towards researching on model-free control alternatives,
inspired on the successful performance of such controllers in a
variety of applications in systems presenting complex nonlinear
and time-varying dynamics [2,20,21].

1.3. Problem formulation

The problem we are trying to solve is the development and
testing of a model-free control algorithm for automating the
motions of hydraulically-actuated heavy-duty cranes. The aim is
to overcome the challenges associated with obtaining accurate
dynamics models, which demand time and resources, rendering
it impractical for the forest industry, which is recently starting
to adopt automation technology. To address this issue, we are
proposing to use model-free intelligent PID (iPID) controllers, as
an option that offers to eliminate the need for explicit system
models, facilitating the integration of control algorithms into
forestry machines [22]. Model-free intelligent PID control uses
concepts involving ultra-local models, functional analysis and
differential algebra to provide a control algorithm that has shown
better performance than classical PID control and has already a
quite impressive list of successful concrete applications in most
diverse fields, ranging from intelligent transportation systems,
robot manipulators, to energy management [2,3,20].

As iPID controllers rely mainly on real-time input and output
signals to calculate the control input, we require a safe and cost
efficient method to test its performance with hardware during
the development process. However, performing direct experi-
mentation on the system can be both dangerous and expensive,
specially in the early stages of software development. To mitigate
these challenges, we are proposing to use a 3D-printed replica of
the crane equipped with hardware resembling the real system,
i.e. sensors and microprocessors, but with electrical actuators.
This approach enables rapid-prototyping and real-time hardware
performance evaluation directly on our desks.

A significant challenge arises from the inherent differences
in dynamics between the real crane and its replica. However,
both cranes operate on the same principle, where applying a
voltage input results in the motion of a specific link or degree-
of-freedom. Therefore, while the cranes exhibits differences in
motion characteristics, such as variations in range of motion,
speed, and acceleration, the underlying principle of translating
voltage inputs to link motions remains constant. This shared
operational principle forms the basis for the use of the iPID
controller and the transferability of the controller from one crane
to another. It is relevant to verify this assertion, particularly
considering our intention to apply this control algorithm and
framework of testing for most of our development.

Achieving this form of development framework, where the
controller developed for the crane replica behaves nearly similar
on the real one, becomes a rapid-prototyping and safe testing
method that is time and cost-effective during the software devel-
opment cycle. Furthermore, this framework enhances our ability
to present compelling results to our industry partners, before
deciding to move into tests with commercial machines.

The subsequent sections of this article showcase this develop-
ment framework and present the results we have obtained using
it.

2. Material and methods
2.1. Development framework and experimental setups
Our framework of testing involves a two step process of de-

velopment. In the first stage, we use a desktop sized mockup
of the forestry crane, which we have equipped with comparable



P. La Hera, O. Mendoza-Trejo, H. Lideskog et al.

Fig. 2. Desktop size mockup crane. Top figure shows the CAD model design.
Bottom figure shows the 3D printed model including the electrical actuators.

hardware to the real crane and has equal number of degrees-
of-freedom. This system helps verifying the implementation and
real-time functionality of control algorithms developed in soft-
ware. The software we use for implementation is Simulink, which
is part of MATLAB [23]. Consequently, once the tests in this mock-
up setup meet our desired specifications, in terms of trajectory
tracking performance and robustness, the algorithms are then
transported to the commercial size crane. This framework al-
lows to spot early mistakes in the implementation of real-time
software, plan the process of tuning the control algorithm param-
eters, and avoid outcomes that can be harmful to the machine
when testing software with these large heavy-duty cranes.

To facilitate our development, we have implemented a nor-
malization for the control input, to constrain the input signal
generated by the control algorithm to the range [—1, 1]. The
scaling of this input signal to the voltage required for the respec-
tive degree-of-freedom is consequently done for each crane in
accordance to the maximum and minimum voltage they allow
by hardware. This normalization facilitates the transportability of
the algorithm from one crane to another.

2.1.1. The 3D printed mockup crane

Referring to Fig. 2, the mockup system is a 3D printed model
that we designed using CAD software. This crane was designed
as a system that can replicate the amount of degrees-of-freedom
(DOF) and principles of motions observed in most forestry cranes.
However, the mockup system does not necessarily present iden-
tical architecture as the commercial crane.

This crane uses micro linear actuators to emulate the cylinders
that provide the forces that provoke motion. These actuators
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are L12-P Micro Linear Actuators with Position Feedback from
Actuonix [24]. The position feedback is given as an analogue value
between 0 to 5 V. To run software, this system has an 8-bit
Arduino MEGA microcontroller as the main processing unit. The
Arduino Mega has analogue to digital converters with a resolution
of 10 bits to read analog sensors [25], as well as output ports with
PWM for driving external analog devices. To drive the actuators,
this system uses an external H-bridge amplifier to amplify the
control signals from the arduino’s output ports from 5 to 12 V
and up to 2 Amp per channel.

To program this system, the algorithms are developed in MAT-
LAB, in particular Simulink, and they are directly compiled to run
in real-time using Simulink Coder [26].

2.1.2. The commercial size forwarder crane

The AORO machine uses a model FC8 crane from the company
CRANAB [7], a crane with a maximum reach of 10 meters and
weighting 1.4 Tons. This is a four degrees-of-freedom hydrauli-
cally actuated manipulator that follows a RRRP (R = revolute, P =
prismatic) configuration, according to robotics nomenclature [ 15].
Referring to Fig. 3, these DOF are specified as the slewing q1, inner
boom g,, outer boom g3, and telescope q4. The end-effector for
grabbing logs is attached at the boom-tip, model CR250 grap-
ple, having two active degrees-of-freedom for orientation gs and
grabbing qg. However, the grapple is an under-actuated tool, as it
is freely hanging at the joint connecting to the boom-tip.

This crane belongs to a new line of products from CRANAB
with the special feature of having analogue encoders as joint posi-
tion sensors built-in within its mechanical structure. In addition,
the electro-hydraulic valve has a set of pressure sensors that can
measure each cylinder chamber’s pressure.

To run software, the machine has a UEISIM real-time computer
from United Electronics running a light-weight Linux OS [27]. It
also has several I/O cards installed for sensor inputs and control
outputs. To program this system, the algorithms are developed
in MATLAB/Simulink and compiled to run in real-time on the
UEISIM target using Simulink Coder [26]. As explained above,
these algorithms are those initially tested in the mockup crane,
but reconfigured to the UEISIM’s 1/O channels.

Referring to Fig. 4, all crane sensors are connected to the 12-
bit DAC from the main UEISIM unit. To provide control signals to
the hydraulic valve, the UEISIM unit output port is connected to
a power amplifier board.

2.2. Control algorithm

Our work is centered around the development of a decentral-
ized control system based on model-free intelligent PID control
(iPID) [3]. iPID is a relatively new method that resembles active
disturbance rejection controllers [28], with the difference that it
does not require a model of the system to achieve its desired
objective. Instead, it uses an ultra-local model, formulated as

yW=¢+a-u (1)

where y) is the derivative order v > 1 of y chosen by the
practitioner, and « € R is a non-physical constant parameter
making the magnitudes of « - u and y*) equal. Most successful
applications use v = 1, and very few examples require v =
2 [3,29-31]. In our case, our controller design uses v = 1, as we
have not found any benefits from using higher order.

The terminology “ultra-local model” points to the concept
that any nonlinear system behaves linearly in small segments of
time or time-windows. Thus, the linear model (1) can replace a
nonlinear model as a form of linearization, but it is valid only
locally for a very short time-window (e.g. a couple of millisec-
onds depending on the sample time of the control-loop). As a
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|T1| Slewing
|q_2| Inner boom

|T3| Outer boom

lq_4| Telescope

|q_5| Grapple’s rotation

|q_6| Grapple's opening

Grapple / 9~0 &

Fig. 3. Forwarder crane: hydraulic manipulator with four degrees-of-freedom, specified in this graph as the slewing q;, inner boom g5, outer boom g3, and telescope
g4. It holds an end-effector attached at the boom-tip, serving as a tool to grab logs. It is known as the grapple, having two active degrees-of-freedom, specified as
gs for rotation, and gg for its opening. All sensors measure positive in counter-clockwise direction.
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Sensor signals: joint position and cylinders’ hydraulic pressures

Fig. 4. Hardware architecture used as part of the crane’s control system.

consequence, the values for ¢ have to be updated for every time-
window, making the controller adaptive and with outstanding
properties of robustness and disturbance rejection.

To develop a feedback controller based on (1), the control law
is defined as
u=1(v-9) @

o

resembling a feedback linearization action that leads to the
degree-one integrator y = v, if the estimation <f§ is ideally equal
to ¢. Thus, this integrator can be stabilized via feedback by the

term

e=y—y" (3)

where C(e) is a standard Proportional-Integral-Derivative con-

troller, and y* is the first derivative of the reference trajectory.
To estimate ¢ online, the authors of [3] suggests using an

integral over a time-window of fixed length, because integrals are
the lowest order low pass filters. This estimation is formulated as:

v=y"—C(e),

1

(g:g/é(y*_a.u_qe))dp, u=u(t—1) (4)
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Fig. 5. General feedback control loop diagram.

Thus, the key features provided by the model-free Intelligent
PID Control (iPID) algorithm (2)-(4) include:

o Ultra-Local Models: iPID relies on ultra-local models, e.g. (1),
often referred to as "ultradifferentiable models”. These mod-
els capture the local behavior of the system around its
current operating point. Instead of tuning fixed PID param-
eters, iPID continuously estimates the local model based on
real-time system data.

e Adaptive Control: iPID dynamically adjusts its control ac-
tions based on the ultra-local model, which is continuously
estimated online. It does not focus on tuning PID gains in the
conventional sense but rather adapts its control efforts to
suit the system’s observed behavior. This adaptability allows
iPID to maintain control performance even as the system
dynamics change.

e Nonlinearity Handling: One of the key advantages of iPID
is its ability to handle nonlinear systems effectively. By
continuously updating its understanding of the local system
behavior, iPID can provide control actions that are bet-
ter suited to nonlinearities, without relying on fixed PID
parameters.

In summary, iPID’s intelligence comes from its capacity to
adapt and respond to a system’s behavior based on ultra-local
models, rather than relying on pre-tuned PID parameters. This
approach is particularly useful for systems with nonlinear dynam-
ics and time-varying characteristics, as it can provide robust and
effective control without the need for manual adaptation of the
PID gains.

2.2.1. Controller implementation

In our development, we use Simulink, a versatile software
tool developed by MathWorks, as a central element for both
control algorithm development and real-time hardware imple-
mentation [23]. Simulink offers a user-friendly graphical interface
that serves as our primary platform for programming control
algorithms with great efficiency. To enable the seamless deploy-
ment of these algorithms on the real-time hardware platforms
integrated into our cranes, we take advantage of Simulink’s au-
tomated code generation feature, typically resulting in C or C++
code [26]. What is important to mention is that Simulink offers us
the capacity to develop control algorithms in a generalized fash-
ion, allowing us to create a single algorithm that can be compiled
for a variety of hardware platforms without the need for exten-
sive modifications. Therefore, the control algorithm developed for
the mockup crane can be directly compiled to work with the
AORO crane, simply by changing the hardware settings needed
for the compilation, and the control parameters that correspond
to each case. This methodology greatly streamlines our processes

for rapid prototyping and validation, ensuring the effectiveness
of our research efforts. The following paragraphs provide a de-
scription of our implementation of the control algorithm (2) in
Simulink.

Fig. 6(a) shows our general MATLAB/Simulink implementation
of the controller described by Egs. (2) and (4). This implemen-
tation corresponds to the content inside the “control algorithm”
block in Fig. 5, representing a generic feedback control loop. The
controller consists of two primary components: a feedforward
compensation and the model-free-controller. The feedforward
compensation block is responsible for providing the valve’s input
values that provoke the crane to start moving. This is related to
Coulomb friction and it is implemented as follows:

ug = fc - tanh(p -Y)+ Afe (5)

representing an asymmetrical Coulomb friction model [16], hav-
ing f. as the averaged Coulomb friction value, Af, is the offset
from the average, and tanh(B - y) is a smooth function that
approximates the most common signum function sign(-) to avoid
chattering around zero velocity. Although many studies show that
the control law based on iPID is capable of compensating for
complex friction phenomena [3], throughout our development we
found important to provide the estimation of Coulomb friction.
This helps to increase the controller’s tracking performance, as
these values are substantial in hydraulic systems, accounting for
nearly 40% of the maximum allowable control action for our
commercial crane. Fig. 6(b) shows an implementation for the
model-free controller as the inner implementation of the block
observed in 6(a). The implementation of C(e) is done using a
standard discrete-time PID controller block from the Simulink
Library. )

Fig. 7 shows one example for estimating ¢ using a time-
windowed integration. The integral is numerically computed us-
ing the Trapezoidal rule of N equally spaced values. To this
end, we use a MATLAB/Simulink Discrete FIR filter block with
the specific vector of coefficients “[1 2*ones(1, n-1) 1]*Ts/2” in
MATLAB code. This defines a numerical approximation of the
integral according to

b N
T.
| dx 25 g+ 1) (6)
a k=1
b—a
~ W(f(’ﬁ)“‘zf(xl)'i‘”' (7)
+2f(xn) + f(Xn+1))
where the summation can be implemented with a FIR filter with
vector coefficients [1 2 --- 2 1], and Ts is the sample-time. The

user sets the value n to define the integration length. Then, the
value of delta = § is equivalent to § = n - Ts. Observe that to
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Fig. 6. (a) MATLAB/Simulink implementation of model-free-control with feedforward Coulomb friction compensation. (b) Implementation of the model-free control
é(j/* — ¢ — C(e)). Notice that the controller C(e) adds to the control law, because in implementation we compute e = y* — y.
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Ce)

INTEGRAL
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Fig. 7. Estimation of ¢ according to zZ) = % f @* —a - u(t — 1) — C(e)) dp. For the integral block we use a FIR filter set with the MATLAB coefficients as “[1 2*ones(1,

n-1) 1]*Ts/2".

avoid algebraic loops, we use a backward control signal u[k — 1],
as specified in (4) and seen by the delay in Fig. 7.

Similar control blocks are implemented for each joint. The
expected dynamic coupling interaction among links is handled by
the control algorithm due to its disturbance rejection properties,
as reported by previous studies [20,32].

2.3. Control tuning

An important aspect of obtaining a successful performance
of model-free control is tuning its parameters. As a forestry
crane is a multi degree-of-freedom manipulator, it is tedious
and difficult to use manual tuning for a system requiring all
degrees-of-freedom to operate simultaneously. Therefore, our

framework involves an optimization procedure able to tune these
parameters automatically, removing the need for ad-hoc manual
tuning. To this end, the optimization algorithm performs a
sequential test for tuning each degree-of-freedom controller in-
dividually. The optimization goal is to find the controller param-
eters [o, C(e; Kp, K;)] that minimize the standard control system
cost function [15]

2

. 1,
min ]:Ee + du”,

[, C(e;Kp,Kj)]eR
subject to II’]""1 < Kp(0) < K™ (8)
KM < Ki(0) < k"™ 9)

™" < @(0) < o™ (10)
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where e = y — y is the tracking error, u the control signal, and
the minimum/maximum values for the tuning parameters are
denoted by (-)™" and (-)™* correspondingly.

To apply this optimization approach, we use the Optimization
Toolbox from MATLAB [23]. The initial conditions for the parame-
ters are specified by preliminary defining a set of values within a
range known to stabilize the feedback loop [17,19]. The maximum
and minimum values for these parameters are also defined within
a range known to guarantee the stability of the feedback loop. As
reference trajectories, we use a summation of sinusoidal signals
for each joint, having amplitudes and frequencies able to excite
dynamics of the system [33], i.e. up to a frequency of 0.7 rad/s.
Unlike standard optimization techniques that use a simulation
system to tune parameters, the algorithm in this case runs in
real-time, meaning that it drives the actual crane to tune the
parameters online.

2.4. Experimental studies

The experimental studies evaluate the implementation and
tracking performance of the controller. They consist of two sets of
experiments conducted using both platforms, going progressively
from the desktop-size to the AORO machine’s crane.

2.4.1. Circle in world coordinates

In the first case, the aim is to evaluate the trajectory tracking
performance and robustness of the controller after its parameters
have been tuned. Specifically, the tests involve tracking a circular
motion in world coordinates, a challenging task for a manipulator
of this kind. This motion generates reference trajectories in joint
coordinates that comprise sum of sinusoidal signals, making them
difficult to accurately track when substantial Coulomb friction is
present.

In these experiments the controller’s fundamental settings, as
it is the case of its parameters, remain consistent throughout
the experiments. The objective of this approach is to evaluate
the controller’s performance in various scenarios without mak-
ing adjustments to its internal parameters, thereby assessing its
inherent robustness and stability in handling different conditions
and challenges.

The experiments conducted to assess robustness and stability
are structured as follows:

o Robustness to Variations in Dynamics: This test examines
how well the controller performs when the crane undergoes
changes in its dynamics, specifically with and without a
load. For instance, in the case of the desktop-sized crane, an
additional load of 400 grams is introduced (approximately
90% of its maximum capacity), while the AORO machine’s
crane carries an additional load of approximately 200 kg
(roughly 40% of its maximum capacity). These variations in
load mimic real-world scenarios and allow us to evaluate
how effectively the controller copes with such dynamic
changes.

o Stability and Trajectory Convergence: This test assesses
the controller’s stability and its ability to converge to the
desired trajectory. To challenge the controller’s stability, the
crane-tip location is randomly initialized away from the
main reference motion. This deviation from the expected
starting position evaluates how well the controller can bring
the system back on track and achieve the desired trajectory
without modifying its underlying parameters.
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Table 1

Coulomb friction parameters.
Link 3D printed crane AORO'’s crane

fe Afe B fe Afe B

Slewing 0.21 0.03 50 0.31 0.02 50
Inner Boom 0.15 0.05 20 0.4 0.03 250
Outer Boom 0.12 0.01 20 0.33 0.01 200
Telescope 0.11 —0.01 20 0.38 0.02 250

2.4.2. Reaching specified target locations in world coordinates

The second case is specifically for the AORO machine’s crane,
as the controller after the first test is already implemented in it.
The aim is to evaluate the accuracy of moving the crane from an
initial to a final configuration in work space coordinates, resem-
bling the pick-and-place motions the crane needs to perform to
collect logs.

The purpose is to quantify the deviation error at the final
target location, as the principle to grab logs is by placing the
crane’s grapple autonomously at specified target locations. To this
end, the initial crane configuration is the center of the trail where
logs are piled up (see Fig. 8). The goal location is the desired
Cartesian coordinate where the crane’s tip is meant to reach. To
move between these two points, our system uses the motion
planner based on dynamic movement primitives (DMPs) [34],
which for our case was presented in [35]. DMPs are able to plan
semi parabolic paths for the end-effector that are transformed
to joint space using inverse kinematics. Referring to Fig. 8, four
desired test locations were selected to cover the four quadrants
in the x-y axis, having the coordinate system at the base of the
crane.

To calculate an estimation of the positioning accuracy, the
deviation of the crane’s tip position to the desired target is calcu-
lated by Euclidean distance. To get a reliable estimation, several
repetitions of the same motion to each target location are per-
formed. Consequently, the mean value for all the deviation errors
of the four target locations is used to get a final estimation of the
crane’s deviation error.

3. Experimental results

In this section, all data is presented in international units.
This implies that distances are given in meters [m], and angular
motion is given in [rad], unless otherwise specified.

3.1. Parameters for the controller

Tests to identify the parameters for the Coulomb friction
model (5) were first performed for both experimental platforms.
To this end, the desktop size crane served as a test example
for designing a procedure to identify Coulomb friction based on
joint open-loop response to sums of sinusoidal input signals. The
technique was simplistic in that the input values required to start
the motion in each degree-of-freedom, in positive and negative
directions, were derived from the recorded velocity response.
Consequently, the same method was applied to the crane of the
AORO machine.

Table 1 lists the parameters obtained for both experimental
platforms. It is worth noting that the input signal is a normalized
value between [—1, 1]. Thus, Table 1 shows that Coulomb friction
is substantial in relation to the maximum input signal for both
cranes. For the 3D printed crane it varies between 11 to 21% of
the total input signal. For the crane of the AORO machine it ranges
from 30 to 40% of the total input signal.

Table 2 presents the control parameters used for all experi-
ments described below. These were found using the optimization
procedure (10) described in Section 2.3.
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Fig. 8. Crane’s desired motions from it initial configuration at the center of the trail, towards four desired locations in the Cartesian Space.

Table 2
Control parameters.
Parameter 3D printed crane AORO’s crane

Kp Ki Kd alpha  Kp Ki Kd alpha

Inner Boom 10.69 3.62 0.23 0.35 5 1 0 1.36
Outer Boom 11.31 9.7 0.14 0.81 25 1 0.5 1.18
Telescope 10.75 0 0.23 0.03 15 5 0 6.06

3.2. Tracking a circle in world coordinates

The first results refer to tracking a circle in world coordinates.
To this end, a circular path in space is given as a reference
motion, such that the boom-tip (see Fig. 3) tracks it as close as
possible. The circular path is defined in Cartesian Coordinates,
but the inverse kinematics is used to derived the joint reference
trajectories.

3.2.1. Desktop size crane

Fig. 9 shows results when the crane has no load. The left figure
shows the reference path in Cartesian space, together with the
resulting motion performed by the crane. The starting crane-tip
position is pointed with a dark blob, implying that the joints can
be started at any random initial condition. The right of the figure
shows the joint reference trajectories, together with the joint
trajectories recorded from the motion sensors. Similar results for
the case when the crane is loaded with a weight of 900 grams
(near 90% of maximum load capacity) is presented in Fig. 10.

To show the behavior of the controller to changes in dynamics,
Fig. 11 shows the control inputs for both test cases. Note that
the effort of the control input increases as the crane is loaded,
specially for the parts of the motion that are involved in the
lifting process. For the first link, the control input reaches near
saturation levels. Despite that, the controller is able to accurately
track the reference trajectories as seen in Figs. 9 and 10.

In summary, the results above verify the controller’s stability,
as it is evident from Figs. 9 and 10 that the crane motion is able to
converge towards the reference trajectory, even when the crane
is started far from the reference. This is true for the cases where
the crane is with and without load, demonstrating the controller’s
robustness to changes in dynamics.

3.2.2. AORO machine’s crane

Fig. 12 shows the results of tracking a circular path without
any load on the grapple. In both Cartesian and joint coordinates,
the results in Fig. 12 display similar characteristics as the case of
the small crane in terms of stability. However, since the AORO
crane has more complex nonlinear dynamics caused by the hy-
draulic system, the tracking performance is not as perfect as the
desktop crane. Nevertheless, the plot of joint trajectories shows
that the controller is able to handle the nonlinear dynamics and
track reference trajectories quite accurately. Similar results for
the case when the crane is loaded with a weight of 200 kg (near
40% of maximum load capacity) are shown in Fig. 13.

To show the behavior of the controller when the crane is
with and without load, Fig. 14 shows an overlay of the control
inputs for both cases. We see that the effort of the control input
increases as the crane is loaded, specially for the parts of the
motion that are involved in the lifting process. However, for the
first link, the control input does not have any noticeable changes,
because there exists internal settings on the electro-hydraulic
valve to compensate pressure during lifting actions.

As the circular path performed by the crane is not as accurate
as the desktop crane, it is important to estimate the deviation
error. For the case when the crane is empty, the tracking error in
Cartesian coordinates is within a range of 5 cm, and 3 cm for the
case when it is loaded. Note that the error reduces as the crane is
loaded, which can be attributed to the reduction in flexible modes
of the crane when the grapple is holding logs.

3.3. Reaching target positions

Referring to the tests described in Section 2.4, our motion
planning algorithm plans quasi-parabolic paths to move the crane
from an initial configuration towards a desired goal. In order
to get an statistical estimation of the control system’s accuracy,
multiple trials of the same motions were recorded. These were
performed both with the grapple empty and with a load of 200
Kg. As sketched in Fig. 8, four target locations specified by the
following Cartesian Coordinates were chosen for this test:

Point 1 = [6, —1.86, 1]
Point 2 = [6, 1.86, 1]
Point 3 = [4.27, —1.86, 1]
Point 4 = [4.27, 1.86, 1]
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Fig. 9. Desktop size crane results without load. Tracking a circle in world coordinates. The left figure shows results in Cartesian coordinates. The right Figure shows
results in joint coordinates.
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Fig. 10. Desktop size crane results with load. Tracking a circle in world coordinates. The left figure shows results in Cartesian coordinates. The right Figure shows
results in joint coordinates.
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Fig. 11. Desktop size crane. This results shows the control input for the cases when the crane is with load (dark bold signal) and without load (gray signal).
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in joint coordinates.

Considering as a reference the sketch presented in Fig. 8,
Fig. 15 shows the specific data points of the four target locations,
as well as the recorded data for the crane-tip Cartesian coordi-
nates once it stops at the final target location. A number of 20
trials is presented at each target location, meaning that a total of
80 data points are shown for all four target locations.

The left of Fig. 15 shows the results using a 3D Cartesian
coordinate system. However, to have a better observation of the
results at each target location, the right side of Fig. 15 shows a
top view of the individual results for each target location in the
X-Y axis. In all the cases, all data points with a square are for the
motions with an empty grapple, while data points with an x are
for the motions with a loaded grapple.

To show the accuracy of the crane’s motion control system, we
use the Euclidean distance of the boom-tip to the desired location
as a measurement of error, because this value tells how much
the crane deviates from the target location. Fig. 16 presents a

10

histogram showing these values for all data points, i.e. the data for
all four desired locations are piled up into a single histogram plot.
The left plot is the Euclidean distance calculated in 3D, i.e. using
the data in the [x,y, z] axis. The middle plot is the Euclidean
distance calculated in 2D, i.e. using the data in the [x, y] axis. The
right plot is the error in height, i.e. z axis.

Results show that the Cartesian coordinate positioning error
in 3D follows a normal distribution, having an average value of
8 cm, i.e. the crane reaches the vicinity of the desired location
with an average error of 8 cm. However, we see that the error in
the [x, y] axis is smaller on average, i.e. 4 cm. This implies that
the highest error in the crane positioning is the height of the tip,
which deviates by an average of 6 cm with respect to the desired
height. This phenomenon can be observed in the left of Fig. 15,
which shows that the deviation error in the z-axis is larger for
the locations where the crane needs to extend further.
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Fig. 14. AORO crane. This results shows the control input for the cases when the crane is with load (dark bold signal) and without load (gray signal).
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4. Discussion

Testing control algorithms can be time-consuming, expen-
sive, and potentially unsafe if one decides to test against a

real heavy-duty system. Therefore, techniques involving Soft-
ware and Hardware-in-the-Loop (SIL and HIL) testing solutions
have advanced greatly the past decades, providing an effective,
cost-effective, and safe way to test control software prior real
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implementation. Nevertheless, many applications still require
techniques to ease the transition of implementation, because the
interaction between hardware and software of many systems are
not easy to simulate in software.

Having the ability to complement early development with 3D
printing has several advantages. The most important to us is
having the ability to equip our 3D printed cranes with hardware,
facilitating performance tests with complete hardware and in
real-time with model-free controllers. In this article, we have
shown how 3D printing has been useful as part of our develop-
ment framework, both for preliminary tests of control software
implementation, as well as to prepare experimental tests that
need to be carried out on the commercial crane. In summary,
having desktop-size forestry cranes at our disposal has helped to
efficiently plan, prepare, and test experiments, thus reducing the
risks of damage that malfunctioning software can cause.

In regards to our optimization-based tuning procedure, it is
important to highlight that while our manuscript focuses on
the development of a motion control system specifically tai-
lored for the AORO platform’s crane, this technique is presented
as a possible general tuning approach for a controller of this
kind. This implies that even though we could manually fine-tune
the controller for our specific example, the significance of this
methodology lies in its scalability. The tuning approach enables
to tune the controller of multiple cranes, each varying in size
and design, a common situation in manufacturing companies
selling the function of computer-controlled cranes. Essentially,
our work presents not just a solution for a single crane but a
methodology addressing the complexities of tuning diverse crane
systems systematically, without the need for a control system
expert.

4.1. Choice of control algorithm

Over the years, we have reported results with a variety of
motion control methods for electro-hydraulically actuated ma-
nipulators. These include PID, sliding mode, feedback lineariza-
tion, and other nonlinear control methods, as it can be read
in [16,17,19]. Many of these cases involve nonlinear model-based
control algorithms, as these are standard in research involving
motion control of robotic manipulators [15]. However, in our
experience, obtaining a reliable model of a hydraulically actuated
manipulator leads to arduous, tedious, and difficult system iden-
tification testing. In many instances, the model of a crane cannot
directly be applied for a second one, as the settings in hydraulic
valves are not general from crane to crane, or manufacturer
to manufacturer, forcing to remodel and repeat system identi-
fication tests every single time we approach a new system. In
addition, even though we have experienced that the performance
of model-based nonlinear controllers is superior to standard PID
controllers, we have also experienced that they fail to provide
the robustness we seek to drastic changes in parameters. To put
it clearly, forestry cranes perform work provoking the system
to undergo huge and sudden variations in parameters, because
they have the capacity to manipulate loads with weights nearly
similar to their own. Also, oxidation affects the friction of the
actuators from season to season, in turn affecting the motion of
the system. Therefore, a method to improve such controllers is to
develop online load weight and friction estimations, giving the
control algorithm adaptive properties. Yet, the performance of
such controllers has not been greater to that of model-free iPID
control, making it difficult to justify the effort of implementation.

In our experience, model-free control is the best performance
controller we have developed so far, with the advantages that it
is robust, it has adaptive properties, it is relatively easy to imple-
ment, it does not require a system’s model in its development,
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and it provides a good trade-off between accuracy and perfor-
mance. In addition, the simplicity on its implementation and
tuning makes it a great option for engineers in industry that need
to adapt the controller for products having similar functional
characteristic, but different sizes and weights, e.g. cranes with
different sizes. This is also one of the reasons why this controller
has lately become interesting for a wide range of applications,
including industrial automation [30], as well as more complex
robotic systems [20,21,32].

It is important to highlight that within research on iPID con-
trol, possessing an ultra-local model of degree one suggests that
an iP controller should be adequate for effectively controlling this
system. Nevertheless, the parameters employed in our experi-
ments are a product of an optimization process designed to en-
hance tracking performance by leveraging additional parameters.
Given our objective to utilize such software for parameter tuning,
our primary concern is to ensure that the resultant parameters
are not only reliable but also perform as intended.

4.2. Discussion about results

Unlike industrial robot manipulators, highly accurate control
of forestry cranes is challenging, due to size, weight, and nonlin-
ear hydraulic dynamics. When we implement control algorithms
in a heavy-duty crane, we often need to make a compromise be-
tween dynamic performance and control accuracy, i.e. performing
motions that are accurate enough without exciting the flexible
dynamics of the system. In these regards, our crane motion con-
trol system provides the ability to perform both smooth and fast
motions with accuracy that is sufficient for our application, where
having a grapple as end-effector is a rather forgiving mechanism
to successfully pick-and-place logs.

The end application for our motion control system is to per-
form pick-and-place tasks, as seen from standard forwarder ma-
chines. To this end, our results confirm the controller’s ability
to reliably track reference trajectories, while being robust to
variations in the grapple’s load, i.e. when it is loaded or empty. In
addition, our results demonstrate that our positioning accuracy is
within a few centimeters, which is sufficient for a crane working
on ranges of several meters, and having to handle logs having
dimensions in the range of meters.

5. Conclusion

Our current results have several strengths. Firstly, we were
able to show that using a 3D printed mockup system for the
development of model-free controllers offers several benefits:

(1) Real-World Validation: The mockup crane provides a phys-
ical representation of the actual hydraulic crane, allowing
us to work with a tangible setup. This enables the evalua-
tion of our control algorithm in a physical setup, ensuring
that it perform as expected when we transfer it to the real
crane.

(2) Data Collection: The mockup crane generates real-world
data during its operation. This ability allow us to plan
experiments that have to be repeated in the real crane.

(3) Adaptability: Hydraulic cranes often operate in dynamic
and unpredictable environments. A mockup system allows
researchers to test and refine the controller’s adaptability
to varying conditions, such as changes in load, terrain, or
operational requirements.

(4) Model-Free Approach: Model-free control methods, like
intelligent PID control, do not rely on precise mathematical
models of the system. The mockup crane facilitates the
development of such controllers by providing similarities
to the real input-output data without the need for complex
system modeling and simulation.
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(5) Risk Mitigation: Testing and refining control algorithms on
a mockup system before implementing them in an actual
crane can help mitigate risks associated with unproven
software or control strategies. It allows for thorough val-
idation and optimization before deployment.

Safety: The mockup crane provides a safe and controlled
environment for testing and experimentation, helping us
to mitigate risks associated with unproven software or
wrongly coded control strategies.

Secondly, the primary contribution of our research lies in the
application of model-free iPID control to a heavy-duty hydraulic
crane, which is an area that has not been previously studied,
as there are not so many groups that can easily access these
kind of setups. Most developments in this field often rely on
intricate mathematical models and simulations. However, in the
case of heavy-duty hydraulic cranes, the dynamic nature of their
operations and the absence of precise models pose significant
challenges. Our work pioneers a novel approach by employing
model-free iPID control, which uses input and output data with-
out relying on a predefined system model. The characteristics of
this control approach allows us to robustly control the crane’s
motions despite changes in dynamics. By introducing this control
technique, as well as the AORO platform in general, we are open-
ing the possibility to explore fully autonomous forest operations,
which is an important domain of development that aligns with
future sustainability goals [36].
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