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A vast number of diverse microorganisms have thus far 
eluded cultivation and remain accessible only through 
cultivation-independent molecular approaches. Genome- 

resolved metagenomics is an approach that enables the reconstruc-
tion of composite genomes from microbial populations and was 
first applied to a low-complexity acid mine drainage community1. 
With advances in computational methods and sequencing tech-
nologies, this approach has now been applied at much larger scales 
and to numerous other environments, including the global ocean2, 
cow rumen3, human microbiome4–6, deep subsurface7 and aquifers8. 
These studies have led to substantial insights into evolutionary  
relationships and metabolic properties of uncultivated bacteria  
and archaea8–10.

Beyond expanding and populating the microbial tree of life11,12, 
a comprehensive genomic catalog of uncultivated bacteria and 
archaea would afford an opportunity for large-scale comparative 
genomics, mining for genes and functions of interest (for example, 
CRISPR–Cas9 variants13) and constructing genome-scale meta-
bolic models to enable systems biology approaches8,14,15. Further, 
recent genome reconstructions of uncultivated bacteria and archaea  
have yielded unique insights into the evolutionary trajectories of 
eukaryotes and ancestral microbial traits16–18.

Here we applied large-scale genome-resolved metagenomics to 
recover 52,515 medium- and high-quality metagenome-assembled 
genomes (MAGs), which form the Genomes from Earth’s 
Microbiomes (GEM) catalog. The GEM catalog was constructed 
from 10,450 metagenomes sampled from diverse microbial habi-
tats and geographic locations (Fig. 1). These genomes represent 
12,556 novel candidate species-level operational taxonomic units 

(OTUs), representing a resource that captures a broad phylogenetic 
and functional diversity of uncultivated bacteria and archaea. To 
demonstrate the value of this resource, we used the GEM catalog 
to perform metagenomic read recruitment across Earth’s biomes, 
identify novel biosynthetic capacity, perform metabolic modeling 
and predict host–virus linkages.

Results
Over 52,000 metagenome-assembled genomes recovered from 
environmentally diverse metagenomes. We performed metage-
nomic assembly and binning on 10,450 globally distributed metage-
nomes from diverse habitats, including ocean and other aquatic 
environments (3,345), human and animal host-associated environ-
ments (3,536), as well as soils and other terrestrial environments 
(1,919), to recover 52,515 MAGs (Fig. 1a–c and Supplementary 
Tables 1 and 2). These metagenomes include thousands of unpub-
lished datasets contributed by the Integrated Microbial Genomes 
and Microbiomes (IMG/M) Data Consortium, in addition to pub-
licly available metagenomes (Methods and Supplementary Tables 1 
and 2). This global catalog of MAGs contains representatives from 
all of Earth’s continents and oceans with particularly strong repre-
sentation of samples from North America, Europe and the Pacific 
Ocean (Fig. 1d and Supplementary Fig. 1). The GEM catalog is 
available for bulk download along with environmental metadata 
(Data availability and Supplementary Table 1) and can be inter-
actively explored via the IMG/M (https://img.jgi.doe.gov) or the 
Department of Energy (DOE) Systems Biology Knowledgebase 
(Kbase; https://kbase.us) web portals for streamlined comparative 
analyses and metabolic modeling.
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The reconstruction of bacterial and archaeal genomes from shotgun metagenomes has enabled insights into the ecology and 
evolution of environmental and host-associated microbiomes. Here we applied this approach to >10,000 metagenomes col-
lected from diverse habitats covering all of Earth’s continents and oceans, including metagenomes from human and animal 
hosts, engineered environments, and natural and agricultural soils, to capture extant microbial, metabolic and functional 
potential. This comprehensive catalog includes 52,515 metagenome-assembled genomes representing 12,556 novel candidate 
species-level operational taxonomic units spanning 135 phyla. The catalog expands the known phylogenetic diversity of bacte-
ria and archaea by 44% and is broadly available for streamlined comparative analyses, interactive exploration, metabolic mod-
eling and bulk download. We demonstrate the utility of this collection for understanding secondary-metabolite biosynthetic 
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genome-centric approaches for revealing genomic properties of uncultivated microorganisms that affect ecosystem processes.
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MAGs from the GEM catalog all meet or exceed the 
medium-quality level of the MIMAG standard19 (mean complete-
ness = 83%; mean contamination = 1.3%) and include 9,143 (17.4%) 
assigned as high quality based on the presence of a near-full com-
plement of rRNAs, tRNAs and single-copy protein-coding genes  
(Fig. 1a,b and Supplementary Table 2). Genome sizes of high- 
quality GEMs ranged from 0.63 to 11.28 Mb, with most small-sized 
MAGs belonging to expected reduced genome lineages like the 
Nanoarchaeota or Mycoplasmatales, and similarly, large-sized 
MAGs belonging to Myxococcota and Planctomycetota. Genome 
size and GC content was lowest in host-associated microbiomes 
(median: 2.61 Mb; 46.9%) and highest in terrestrial microbiomes 
(median: 3.77 Mb; 57.1%), which is consistent with pangenome 
expansion in soil environments20. MAG sizes were consistent with 
isolate genomes of the same species, indicating no major loss of gene 
content in individual genomes (Supplementary Fig. 2). One excep-
tion was Sinorhizobium medicae, in which MAGs assembled from 
root nodules were nearly two times larger than isolate genomes 
(11–12 Mb compared to 6–7 Mb for isolate references; 99% aver-
age nucleotide identity (ANI) and 65% alignment fraction (AF) to  
S. medicae USDA1004). Although tetranucleotide frequency compo-
sition of binned scaffolds showed good consistency overall, numer-
ous SNPs were detected, suggesting a composite arising from two 
strains of the same population. We additionally compared MAGs 
independently assembled by Parks et al.10 for a subset of GEM sam-
ples, which further reinforced the reproducibility of our composite 
genome bins (Supplementary Table 3 and Supplementary Note).

Taxonomically defined reference genomes are commonly used 
to infer the abundance of microorganisms from metagenomes but 
fail to recruit the majority of sequencing reads outside the human 
microbiome21. To explore whether the MAGs from the GEM cata
log could address this issue, we aligned high-quality reads from 
3,170 metagenomes with available read data to the 52,515 GEMs 

and to all isolate genomes from NCBI RefSeq. This revealed that 
an average of 30.5% (interquartile range (IQR) = 5.9–49.3%) and 
14.6% (IQR = 0.9–15.8%) of metagenomic reads per sample were 
assigned to one or more GEMs or isolate genomes, respectively 
(Supplementary Fig. 3 and Supplementary Table 4). Across all sam-
ples, GEMs resulted in a median 3.6-fold increase in the number 
of mapped reads, which was particularly pronounced for certain 
environments like bioreactors or invertebrate hosts (Supplementary 
Fig. 3). Despite this improvement, nearly 70% of reads remained 
unmapped to any MAG or isolate genome. This was particularly 
noticeable for soil communities (for example, >95% of reads were 
unmapped to any genome in 55% of samples), which are highly 
complex and challenging to assemble22,23. Consistent with this 
result, metagenomes with the highest k-mer diversity24 tended to 
have the lowest mapping rates (Spearman’s r = −0.68; P value = 0). 
These communities likely contain closely related organisms, which 
pose a major problem for metagenomic assembly and binning25. 
Low mapping rates may also reflect the presence of viruses, plas-
mids and microbial eukaryotes, which were not recovered by the 
pipeline used in this study.

The GEM catalog expands genomic diversity across the tree of 
life. To uncover new species-level diversity, we clustered GEMs on 
the basis of 95% whole-genome ANI revealing 18,028 species-level 
OTUs (Fig. 2a,b, Supplementary Fig. 4 and Supplementary Table 
5). Although the species concept for prokaryotes is controversial26, 
this operational definition is commonly used and is considered to 
be a gold standard27,28. Based on taxonomic annotations from the 
Genome Taxonomy Database (GTDB)29,30, we found that the GEMs 
cover 137 known phyla, 305 known classes and 787 known orders. 
The vast majority of non-singleton OTUs contained GEMs from 
only a single environment or multiple closely related environments 
(for example, bioreactors and wastewater; Supplementary Fig. 5), 
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Fig. 1 | Environmental and geographic distribution of metagenome-assembled genomes. a, A total of 52,515 MAGs were recovered from geographically 
and environmentally diverse metagenomes in IMG/M. The majority (6,380 of 10,450; 61%) of metagenomes were reassembled for this work using the 
latest state-of-the-art assembly pipeline (Supplementary Table 1). These genomes form the GEM catalog. All MAGs were ≥50% complete, were ≤5% 
contaminated and had a quality score (completeness − 5 × contamination) of ≥50. b, Distribution of quality metrics across the MAGs. Approximately 
200 randomly selected data points are overlaid on each boxplot, showing the minimum value, first quartile, median, third quartile and maximum value. 
See Supplementary Table 2 for quality statistics for all MAGs. c, Distribution of MAGs across biomes and sub-biomes, based on environmental metadata 
in the Genomes OnLine Database (GOLD; https://gold.jgi-psf.org). The number of MAGs associated with each sub-biome is indicated next to the plot. d, 
Geographic distribution of MAGs within each biome.
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suggesting that few species have a broad habitat range, whereas 
nearly 40% were found in multiple sampling locations (Fig. 2c). 
Accumulation curves of MAGs revealed no plateau for species-level 
OTUs (Supplementary Fig. 6), indicating that additional species 
remain to be discovered across biomes, which is also suggested from 
the low percentage of mapped reads.

Next, we compared the 18,028 OTUs against an extensive data-
base of 524,046 reference genomes including >300,000 MAGs 
from previous studies, >200,000 genomes of organisms isolated in 
pure culture (including all of RefSeq) and >2,000 single-amplified 
genomes (SAGs; Fig. 2a). These included large MAG studies con-
ducted in the human microbiome4–6, global ocean2, aquifer sys-
tems7,8,31, permafrost thaw gradient14, cow rumen3, hypersaline 
lake sediments32 and hydrothermal sediments33, as well as several 
large isolate genome sequencing studies such as the Genomic 
Encyclopedia of Bacteria and Archaea (GEBA) project34,35 and the 
Human Microbiome Project (HMP)36, although several studies 
were published during the course of the current study and were 
not included37,38. All reference genomes were subjected to the same 
quality criteria as we applied to the GEM dataset (≥50% complete-
ness, ≤5% contamination and a quality score of ≥50).

Notably, 12,556 OTUs from the GEM catalog (representing 
23,095 MAGs) were distinct from reference genomes at 95% ANI 
and thus represent new candidate species. At the same time, 70% 

of all reference genomes were recruited to the GEM catalog at 
>95% ANI, indicating it has good coverage of existing genomes. 
New OTUs were found in 326 studies, with an average of 40 for 
each study. The Microbial Dark Matter (MDM) Phase II study,  
an extension of the GEBA-MDM project12, contributed the most 
novelty with 790 new OTUs derived from 1,124 MAGs found in  
80 metagenomes.

Supporting their novelty, the vast majority of the 12,556 new 
OTUs were distantly related to reference genomes or barely aligned 
at all (93.7% of OTUs with <90% ANI or <10% AF compared to 
references), and >99% were unannotated at the species level by the 
GTDB. However, MAGs from new OTUs tended to be slightly less 
complete (averages: 81.0% versus 84.6%), displayed slightly higher 
contamination (averages: 1.5% versus 1.1%) and were often found 
as singletons (Fig. 2d, Supplementary Table 6 and Supplementary 
Note). These observations are likely explained by a number of fac-
tors, including genome reduction for uncultivated lineages6, prob-
lems assembling the 16S rRNA locus39 and challenges recovering 
members of the rare biosphere40.

We clustered the unrecruited reference genomes into an addi-
tional 27,571 OTUs, resulting in a combined dataset of 45,599 
species-level OTUs (Fig. 2a,b). This revealed that while the GEM 
catalog contained fewer genomes, it represented 3.8 times more 
diversity compared to any previously published study (Fig. 2e). For 

MAGs
(52,515)

De novo
95% ANI clustering

Isolates
(207,129)

MAGs
(314,725)

SAGs
(2,192)

Current study*a

Phylogenetic diversity
(branch length of bacteria & archaea) (%)

c

Singleton
(1 MAG) 2 MAGs

>2 MAGs

Previously unknown species
(0 references)

8,693
OTUs

1,968
OTUs

1,895
OTUs

Species-level OTUs
(n = 18,028)

Combined species-level
OTUs (n = 45,599)

Classification &
de novo clustering

of unclassified

684

30

14,033

69

9

31

6

1,022

12,556

592
1,180 31

30

11,766

3,560

MAGs, 
current study

(18,028 OTUs)

Ref. SAGs
(890 OTUs)

Ref. isolates
(17,626 OTUs)

Ref. MAGs 
(16,903 OTUs)

b

Non-singleton OTUs (%)

Found in
>1 biome

Found in
>1 sub-biome

Found in
>1 location

5.2% 81.2%

12.0%

36.1%

89.9%

92.1%

Observed
Random expectation

d

e

f

Wu et al. (2009)
Stewart et al. (2018)

Brown et al. (2015)
HMP 2010

Dombrowski et al. (2018)
Vavourakis et al. (2018)
Woodcroft et al. (2018)
Mukherjee et al. (2017)

Probst et al. (2018)
Almeida et al. (2019)
Nayfach et al. (2019)

Tully et al. (2018)
Pasolli et al. (2019)

Anantharaman et al. (2016)
Parks et al. (2018)
Parks et al. (2017)

Current study

0 20 30 40 50 60

Number of species-level OTUs

10

Brown et al. (2015)
Wu et al. (2009)

Dombrowski et al. (2018)
Probst et al. (2018)

Vavourakis et al. (2018)
Stewart et al. (2018)

Woodcroft et al. (2018)
HMP 2010

Anantharaman et al. (2016)
Mukherjee et al. (2017)

Tully et al. (2018)
Parks et al. (2018)

Nayfach et al. (2019)
Almeida et al. (2019)

Parks et al. (2017)
Pasolli et al. (2019)

Current study

0 5,000 10,000 15,000 20,000

>50% complete
>90% complete

>50% complete
>90% complete

References*

* Completeness ≥50%
Contamination ≤5%
Quality score ≥50

Fig. 2 | Species-level clustering of the GEM catalog with >500,000 reference genomes. a, MAGs from the current study were compared to 524,046 
publicly available reference genomes found in IMG/M and NCBI. All reference genomes met the same minimum quality standards as applied to the GEM 
catalog. All MAGs and reference genomes were clustered into 45,599 species-level OTUs on the basis of 95% ANI and 30% AF. b, Overlap of OTUs 
between genome sets. MAGs from the current study revealed genomes for 12,556 species for the first time. c, The vast majority of OTUs with >1 genome 
from the GEM catalog were restricted to individual biomes and sub-biomes, although over a third were found in multiple geographic locations. d, A large 
proportion of the 12,556 newly identified species were represented by only a single genome. e,f, Comparison of the current dataset with the 16 largest 
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diversity compared to any previously published study.
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example, Parks et al. performed large-scale assembly and binning 
of all environmental metagenomes available in the NCBI Sequence 
Read Archive in an unprecedented effort to expand genomic repre-
sentation of uncultivated lineages10,30. Based on the clustering and 
quality control performed in the current study, these 10,728 MAGs 
represent 5,200 OTUs, covering only 12% of OTUs from the GEM 
catalog (Supplementary Table 7).

Next, we constructed a phylogeny of the 45,599 OTUs based 
on 30 concatenated marker genes (Fig. 3a, Supplementary Table 8 
and Methods). Phylogenetic analysis of this tree supported that the 
GEM catalog is the most diverse dataset published to date (Fig. 2f). 
Overall, the GEM catalog resulted in a 44% gain in phylogenetic 
diversity across the entire tree of bacteria and archaea and currently 
represents 31% of all known diversity based on cumulative branch 
length. Gains in phylogenetic diversity were relatively consistent 
across taxonomic groups, but especially high for certain large clades 
that included Planctomycetota (79% gain), Verrucomicrobiota 
(68% gain) and Patescibacteria (also referred to as the ‘Candidate 
Phyla Radiation’) (60% gain) (Fig. 3b and Supplementary Table 9). 
The GEM catalog resulted in more variable gains across environ-
ments (Supplementary Table 10), though almost no new diversity 
was uncovered in human-associated samples (Fig. 3b) which were 
previously analyzed in recent MAG studies4–6. Notably, these anal-
yses also revealed that 75% of the phylogenetic diversity of cata-
loged microbial diversity is exclusively represented by uncultured 
genomes (that is, MAGs or SAGs).

To determine whether the GEM catalog contained new lin-
eages at higher taxonomic ranks, we used relative evolutionary 
divergence (RED)30 to cluster all 45,599 OTUs into monophyletic 
groups, including singletons, representing 16,062 genera, 5,165 
families, 1,928 orders, 368 classes and 129 phyla (Supplementary 
Tables 11–13, Supplementary Fig. 7 and Methods). At the phylum 
level, we identified 16 clades exclusively represented by GEMs (11 
clades in bacteria and 5 in archaea), which may indicate new phyla. 
However, these clades were supported by only 29 GEMs, which 
were largely assigned to known phyla by the tool GTDB-Tk (28/29). 
At lower taxonomic ranks, considerably more novel groups were 
identified, including 456 new orders, 1,525 new families and 5,463 
new genera. We conclude that, in contrast to earlier metagenome 
binning studies that uncovered vast new lineages of life, the major-
ity of deep-branching lineages are represented by current genome 
sequences.

Encoded functional potential in the GEMs. To provide 
a systems-level snapshot of metabolic potential, we built 
genome-scale metabolic models for the nonredundant, high-quality 
GEMs with >40 representatives for each environment (n = 3,255) 
in KBase41 (Supplementary Figs. 8 and 9, Supplementary Table 14 
and Supplementary Note). Beyond known metabolic pathways, 
we hypothesized that MAGs from the GEM catalog contained a 

reservoir of functional novelty. To address this question, we com-
piled a catalog of 5,794,145 protein clusters (PCs) representing 
111,428,992 full-length genes, with 51.7% of PCs containing at 
least two sequences. The vast majority of PCs were not functionally 
annotated compared to the TIGRFAM or KEGG Orthology data-
bases, and most lacked even a single Pfam domain (95.2%, 88.9% 
and 74.5% unannotated for TIGRFAM, KEGG and Pfam, respec-
tively). Comparatively, for a catalog of 270 million genes from 
76,000 reference bacterial and archaeal genomes available through 
IMG/M42, these percentages are approximately 70%, 50% and 20%, 
respectively. Nearly 70% of all PCs were not functionally annotated 
by any of the three databases, and 47% had no significant similarity 
to UniRef (https://www.uniprot.org), a large and regularly updated 
protein resource. While the largest PCs tended to be previously 
known, several large PCs lacked any annotation, including 356 clus-
ters with at least 1,000 members and 28,869 clusters with at least 
100 members.

While it is outside the scope of this study to systematically 
interpret the functional capacities of all GEMs, here we present a 
few illustrative vignettes. First, we found that GEMs recapitulated 
recent observations of an expanded purview of methanogenesis 
(Supplementary Fig. 10) due to membership of new archaeal phyla 
like the Halobacterota, Hadesarchaea (including Archaeoglobi and 
Syntrophoarchaeia) and lineages within the Crenarchaeota (for 
example, Thermoprotei, Korarchaeia and Bathyarchaeia)43–46. At 
a lower taxonomic rank, we identified GEMs for a novel species  
of the genus Coxiella, which includes the class B bioterrorism 
agent Coxiella burnetii associated with substantial health and eco-
nomic burden47, providing an opportunity to gain new insights into  
the evolution of host–pathogen interactions within this genus. 
Several virulence factors were found in the GEMs, including the 
Dot/Icm type IV secretion system (Supplementary Fig. 7) used to 
deliver effector proteins into the cytoplasm of the host cell48; how-
ever, the characterized C. burnetii T4SS effectors were absent. Thus, 
GEMs offer potential for new discovery at the highest and lowest 
taxonomic ranks.

Broad and diverse secondary-metabolite biosynthetic potential. 
Most secondary metabolites have been isolated from cultivated bac-
teria affiliated to only a handful of bacterial groups, includingStrep-
tomycetes, Pseudomonas, Bacillus and Streptococcus49. More recently, 
mining of metagenomic data from soil has expanded representa-
tion to members of the phyla Acidobacteria, Verrucomicobia, 
Gemmatimonadetes and the candidate phylum Rokubacteria50. The 
GEM catalog affords a unique opportunity to explore the repertoire 
of secondary-metabolite biosynthetic gene clusters (BGCs) encoded 
within this taxonomically and biogeographically diverse genome 
collection. We identified 104,211 putative BGC regions from the 
52,515 GEMs using AntiSMASH (v5.1)51 (Supplementary Table 15). 
For comparison, this represents an increase of BGCs in IMG/ABC 

Fig. 3 | The GEM catalog fills gaps in the tree of life. a, A phylogenetic tree was built for 43,979 of the 45,599 OTUs based on a concatenated alignment 
of 30 universally distributed single-copy genes. The full alignment contained 4,689 amino acid positions, with each OTU containing data for at least 30% 
of positions. Species-level OTUs were further clustered based on phylogenetic distance into 1,928 approximately order-level clades. Green branches 
indicate new lineages represented only by the GEM catalog. The inner strip chart indicates whether an order is newly identified (green; represented only 
by GEMs) or was previously known (light gray; represented by a reference genome). The next strip chart indicates whether an order is uncultured (blue; 
represented only by MAGs/SAGs) or cultured (gray; represented by at least one isolate genome). The next four strip charts indicate the environmental 
distribution of the orders; the last plot indicates the number of MAGs from the GEM catalog recovered from each order. The GEM catalog’s composite 
genomes are broadly distributed across the tree of life, including many new order-level clades, though most new lineages are interspersed between 
existing ones. Vast regions of the tree are represented only by uncultivated genomes. b, Phylogenetic diversity was computed for subtrees represented by 
the GEM catalog/reference genomes (green scale) or cultivated/uncultivated genomes (blue scale). Gray bars indicate percentage of total phylogenetic 
diversity represented by each taxonomic group (left) or environment (right). The GEM catalog consistently expands phylogenetic diversity across different 
phyla within bacteria and archaea and for different environments. One exception is the human microbiome, where the GEM catalog contributes little new 
diversity. Combining the GEM catalog with other uncultivated genomes, it becomes apparent that uncultivated genomes dominate the diversity within 
most phyla and environments, particularly for groups like the Patescibacteria (Candidate Phyla Radiation) and Nanoarchaeota.
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(Atlas of BGCs)52 by 31% and is 54 times the size of the manually 
curated MIBiG dataset49. Approximately 66% of GEM BGCs inter-
sected with one or more contig boundaries, indicating that a major-
ity may be incomplete (Supplementary Fig. 12), which is consistent 
with previous observations based on fragmented recovery50,53. We 
assigned the class of secondary metabolites synthesized by each 
BGC across the GEM catalog (Fig. 4a). A total of 44,835 gene clus-
ters or cluster fragments containing nonribosomal peptide synthe-
tases (NRPSs) and/or polyketide synthases (PKSs) were identified 
from 104 phyla, 23,738 terpene clusters from 79 phyla and 12,360 

ribosomally processed peptide (RiPP) clusters from 76 phyla. While 
fragmentation likely skewed cluster content counts in unpredictable 
ways, we observed trends that may be reflective of nature. For exam-
ple, Firmicutes had unusually high numbers of RiPPs (more than 
half of their BGCs were RiPP clusters), while Thermoplasmatota 
and Verrucomicrobiota contained relatively high numbers of ter-
pene clusters (68% and 50% of their BGCs, respectively). Analyses 
of environmental trends for BGCs were less clear, with no environ-
mental source group showing a clear skew in relative BGC family 
content (Fig. 4a). If accurate, this implies that specific chemistry is 
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not limited or amplified by environment, and that most classes of 
secondary metabolites can be found nearly anywhere.

To evaluate BGC novelty, we queried each BGC sequence against 
the NCBI nucleotide sequence collection. Using a threshold of 75% 
identity over 80% of the query length, we identified 87,187 (83%) as 
putatively novel BGCs that encoded new chemistry (Supplementary 
Table 16). Although many modular clusters are fragmented, we 
identified over 3,000 BGC regions >50 kb in length and more than 
17,000 >30 kb. Together, the GEM catalog holds potential as a rich 
source of novel predicted BGCs and provides ample opportunity 
to explore biosynthetic potential outside known clades. As noted 
elsewhere54, Myxococcus showed promising biosynthetic poten-
tial, with 1,751 regions across 232 MAGs and a broad diversity of 
antiSMASH-defined BGC families. The single largest BGC region 
was found in a soil-derived bacterium putatively of the phylum 
Acidobacteria and genus UBA5704, encoding a remarkable num-
ber of 62 PKS or NRPS modules with three clear colinear module 
chains (Fig. 4b). Although several Acidobacteria are known to con-
tain PKS and NRPS clusters, this MAG contains an additional 66 
BGC regions, indicating a level of biosynthetic potential that may 
have been underestimated within this phylum.

GEMs reveal thousands of new virus–host connections. In addi-
tion to the assembly of microbial genomes, recent studies have high-
lighted how metagenomes can be mined for novel viral genomes55. 
However, most uncultivated viruses cannot be associated with a 
microbial host, which is crucial for understanding their roles and 
impacts in nature. We reasoned that MAGs from the GEM cata-
log could be used to improve host prediction for viral genomes. 
To address this, we identified connections between the 52,515 
GEMs and 760,453 viruses in IMG/VR56 using a combination of 
CRISPR-spacer matches (≤1 SNP) and genome sequence matches 
(>90% identity over >500 bp), which showed good agreement 
(Supplementary Note). IMG/VR viruses were connected to consis-
tent host taxa (95% of linkages per virus to the same host family), 
and >96% of connected viruses and GEMs were derived from a 
similar environment based on the top level of the GOLD57 environ-
mental ontology.

Using a combination of the two approaches, we predicted con-
nections between 81,449 IMG/VR viruses and 23,082 GEMs (Fig. 
5a and Supplementary Table 17), increasing the total number of 
IMG/VR viruses with a predicted host by >2.5-fold (from 36,976 
to 92,872). However, these expanded virus–host connections still 
covered only 10.7% of the 760,453 viral genomes from IMG/VR and 
44.0% of MAGs from the GEM catalog. This is exemplified for cer-
tain phyla like Thermoplasmatota, where a virus was linked to only 
1.6% of the 624 assembled MAGs.

To address this limitation, we performed de novo prediction 
of integrated prophages in GEMs using VirSorter58 after carefully 
removing viral contamination (Methods). This approach provided 
an additional 10,410 viruses linked to 7,805 GEMs. These novel 
MAG-derived virus–host linkages included several groups of under-
studied clades, including the double jelly roll (DJR) lineage, which 
is a commonly overlooked group of non-tailed double-stranded 
DNA viruses59,60. Recent studies of DJR virus diversity have revealed 
that members of this group infect hosts across the three domains 
of life, yet they have also highlighted subgroups without a known 
host59. Here, we identified 73 DJR sequences in the GEM catalog, 
which provided host information for four additional DJR clades 
(Fig. 5b). In addition, two of these clades were linked through the 
GEMs to uncultivated bacterial and archaeal groups that had not 
yet been identified as putative DJR hosts (namely Omnitrophica 
and Nanoarchaeota). Beyond the DJR group, we identified putative 
hosts for two single-stranded DNA virus families, including four 
clades of Microviridae and 28 clades of Inoviridae (Supplementary 
Fig. 12 and Supplementary Table 18). Taken together, these differ-
ent examples demonstrate how MAGs can resolve novel virus–host 
linkages.

Discussion
This resource of 52,515 medium- and high-quality MAGs repre-
sents the largest effort to date to capture the breadth of bacterial and 
archaeal genomic diversity across Earth’s biomes. The GEM catalog 
considerably expands the known phylogenetic diversity of bacte-
ria and archaea, increases recruitment of metagenomic sequenc-
ing reads, contains a wealth of biosynthetic potential and improves 
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host assignments for uncultivated viruses. Despite an overall 44% 
increase in phylogenetic diversity of bacteria and archaea, we 
found little evidence of new deep-branching lineages representing 
new phyla, consistent with recent studies of microbial diversity30,61. 
Likewise, despite a 3.6-fold increase in recruitment of metagenomic 
reads, over two-thirds of metagenome reads still lack a mappable 
reference genome. Thus, continued efforts to capture the genomes 
of new species- and strain-level representatives will further improve 
metagenomic resolution.

Large-scale genomic inventories provide critical resources to the 
broader research community34–36. With that said, MAGs from the 
GEM catalog, like other MAGs generated to date, have several limi-
tations for users to be aware of, including undetected contamina-
tion, low contiguity and incompleteness. Although these MAGs are 
important placeholders for many new candidate species, we expect 
many will be replaced in the future by higher quality MAGs or ulti-
mately by genome sequences from clonal isolates. As we have illus-
trated with the large repertoire of new secondary metabolite BGCs 
and putative virus–host connections, we anticipate that the GEM 
catalog will become a valuable resource for future metabolic and 
genome-centric data mining and experimental validation.
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Methods
Metagenomic samples and assembly. For genome binning, we used 10,450 
metagenomic assemblies from the IMG/M database42 that correspond to 
527 studies and 10,331 samples from a myriad of microbial environments 
(Supplementary Table 1). The majority (6,380 of 10,450; 61%) of metagenomes 
were reassembled for this work using the latest state-of-the-art assembly pipeline: 
read filtering with BFC, followed by assembly with metaSPAdes with the option 
‘--meta’. Assembled metagenomes from IMG/M were generated using a variety 
of quality-control and assembly methods, as described by Huntemann et al.62. 
Where unassembled metagenomes were available, reads were mapped back to 
assembled contigs using BWA-MEM63 with default parameters, and contig coverage 
information was generated using SAMtools64.

Metagenome binning and quality control. MAGs were recovered for 
the individual metagenomic assemblies using MetaBAT65 on the basis of 
tetranucleotide frequencies using v0.32.4 and v0.32.5 with option ‘--superspecific’ 
(Supplementary Table 2). Depth information was used when available, and contigs 
shorter than 3,000 bp were discarded. The resulting MAGs were refined in two 
stages. First, RefineM (v0.0.20)10 was used to remove contigs with aberrant read 
depth, GC content and/or tetranucleotide frequencies. Second, contigs were 
removed with conflicting phylum-level taxonomy. Taxonomic annotations of 
contigs were obtained based on protein-level alignments against the IMG/M 
database (downloaded 07 December 2017) using the Last aligner (v876)66 and 
taking the lowest common ancestor of taxonomically classified genes.

The completeness and contamination of all MAGs was estimated using 
CheckM (v1.0.11)67 via the lineage-specific workflow. Based on these results, we 
selected 52,515 MAGs that were estimated to be at least 50% complete, with less 
than 5% contamination and had a quality score of >50 (defined as the estimated 
completeness of a genome minus five times its estimated contamination). 
As additional indicators of completeness, we identified tRNA genes using 
tRNAscan-SE (v2.0)68 and rRNA genes using Infernal (v1.1.2)69 with models from 
the Rfam database70. Based on these results, we found that 9,143 of the 52,515 
MAGs were classified as high quality based on the MIMAG standard (≥90% 
completeness, ≤5% contamination, ≥18/20 tRNA genes and presence of 5S, 16S 
and 23S rRNA genes), with the remaining classified as medium quality. These 
52,515 MAGs form the GEM dataset.

Metagenomic read recruitment to MAGs and reference genomes. We selected 
3,170 metagenomic samples with available sequencing reads from the Joint 
Genome Institute and Sequence Read Archive databases to quantify mappability 
(Supplementary Table 4). Up to 500,000 reads from each metagenome were  
aligned to a database containing 52,515 GEMs and another database containing 
151,730 genomes from NCBI RefSeq (release 93)71. We used only 500,000 reads  
per metagenome, representing a median of 0.84% of reads across datasets 
(IQR = 0.40–1.78%), to avoid the high computational cost of aligning all reads and 
is in line with previous analyses4. Read alignment was performed using Bowtie 
(v2.3.2) in ‘end-to-end’ mode with the option ‘--very-sensitive’, and up to 20 
alignments per read were retained72. After alignment, we discarded low-quality 
reads with an average base quality score of <30, read length of <70 bp or any 
ambiguous base calls. Additionally, we discarded poor alignments where the edit 
distance exceeded 5 per 100-bp reads (that is, <95% identity).

Clustering MAGs into species-level OTUs. The 52,515 MAGs from the GEM 
dataset were clustered into 18,028 species-level OTUs on the basis of 95% 
genome-wide ANI (Supplementary Tables 2 and 5). ANI was estimated using 
MUMmer (v4.0.0)73 with default parameters, which computes the average DNA 
identity across one-to-one alignment blocks between genomes. Alignments 
covering <30% of either genome were discarded. We used a 30% AF threshold, 
as opposed to a previous study that recommends using 60% AF (ref. 74), to avoid 
the formation of spurious OTUs that can result from incomplete genomes6. 
Centroid-based clustering was performed, where the MAG with the highest 
CheckM quality score was designated as the centroid, and all MAGs within 95% 
ANI to the centroid were assigned to the same cluster. As validation, we quantified 
the similarity of the species-level OTUs to the GTDB taxonomy for 23,009 MAGs 
assigned to a known species. Both datasets represented a similar number of species 
(3,537 OTUs versus 3,481 from the GTDB), and MAGs tended to be assigned to 
the same species in both databases (adjusted Rand Index = 0.99).

Comparing MAGs to >500,000 genomes in public databases. We compared 
representative genomes from the 18,028 OTUs to a large number of publicly 
available reference genomes. Approximately 564,467 reference genomes were 
obtained from a variety of sources, including IMG/M (59,047 isolates, 8,412 
MAGs and 7,066 SAGs), NCBI RefSeq (release 93; 151,730 isolates), GenBank 
(29,127 MAGs and 1,555 SAGs) and human-associated MAGs from three recent 
studies (307,530)4–6. CheckM was applied to all references and we selected those 
meeting the same minimum quality criteria applied to the GEM dataset (>50% 
completeness, <5% contamination and a quality score of >50). This resulted in 
a final set of 524,046 references from IMG/M (56,884 isolates, 6,146 MAGs and 
1,475 SAGs), NCBI RefSeq (release 93; 150,245 isolates), GenBank (23,162 MAGs 

and 717 SAGs) and human-associated MAGs from three recent studies (285,417). 
We first used Mash (v2.0)75 with a sketch size of 10,000 to find the most similar 
reference genome to each of the 18,028 OTUs; and second, we used MUMmer 
(v4.0.0) with default parameters to estimate ANI between genome pairs. Based 
on this analysis, we found that 12,556 OTUs (69.4% of total) failed to match any 
reference genome at >95% ANI over >30% of the genome. Next, we identified 
OTUs represented only by reference genomes. First, we assigned 364,602 reference 
genomes to one of the 5,472 reference OTUs from the GEM dataset based on >95% 
ANI over >30% of the genome. The remaining 159,444 reference genomes were 
clustered into 27,571 additional OTUs based on 95% ANI using MUMmer. This 
resulted in a final dataset of 45,599 OTUs representing all GEMs and reference 
genomes.

Constructing a phylogeny of nonredundant MAGs and reference genomes. 
We constructed a multimarker gene tree of the 45,599 OTUs based on a subset 
of 30 genes from the PhyEco database76 that were single copied in >99% of 
genomes searched (Supplementary Table 8). HMMER (v3.1b2)77 was used to 
identify homologs of the marker genes in the genomes of each OTU using 
marker-gene-specific bit-score thresholds. To mitigate missing data in incomplete 
genomes, we pooled homologs across genomes from the same OTU (using a 
maximum of ten genomes, selected on the basis of CheckM quality) for each of 
the 30 marker genes. We then picked the centroid gene for each marker gene in 
each OTU, which represents the gene with the highest similarity to other members 
of the same OTU. Multiple sequence alignments of the centroids were created 
for each marker gene using FAMSA (v1.2.5) with default parameters78. Columns 
with >10% gaps were trimmed with trimAl (v1.4; option --gt 0.90)79, individual 
marker-gene alignments were concatenated together, and sequences with >70% 
gaps were removed. Concatenated multiple sequence alignments contained 
4,689 columns and 43,979 sequences. FastTree (v2.1.10)80 was used to build an 
approximate maximum likelihood tree using the WAG + GAMMA models.

The phylogenetic tree was used to further cluster the 45,599 OTUs into 
monophyletic groups at the genus, family, order, class and phylum levels using a 
recently described method30. Briefly, the tree was rooted between the bacteria and 
archaea, and a subclade was extracted for each domain. OTUs were clustered into 
monophyletic groups with bootstrap support values of >0.7 on the basis of their 
RED. Rank-specific RED cutoffs were identified to maximize similarity to the 
GTDB taxonomy for OTUs from known clades, where similarity was measured 
using the adjusted mutual information statistic calculated by the ‘scikit-learn’ 
package in Python (v0.21.3)81 (Supplementary Fig. 7 and Supplementary  
Tables 10–12). Monophyletic clades containing only GEMs were considered  
newly identified lineages, including those represented by a single GEM.

Secondary metabolism. Secondary-metabolite BGCs and regions were identified 
using AntiSMASH (v5.1)51 with default settings, ignoring contigs with lengths 
shorter than 5 kb. BGCs were compared to those in the NCBI nucleotide database 
(downloaded 07 Oct 2019) using the command ‘blastn’ within the NCBI BLAST+ 
package (v2.9)82 with an E-value cutoff of 1 × 10−1. Results were parsed to evaluate 
top hits, and we considered redundant clusters (that is, those seen in previous 
sequencing efforts) to be BGC sequences matching 80% or more of the BGC query 
length averaging 75% or more sequence identity against a database hit. For the 
purpose of counting BGC biochemistry, the 46 AntiSMASH-generated specific 
BGC families were categorized into one of six broader groups: ‘PKS’, ‘NRPS’, 
‘terpene’, ‘RiPP’, ‘AAmodifier’ and ‘other’, based on categories suggested by the 
BiG-SCAPE software package83.

Connecting MAGs to viruses identified from IMG/VR and VirSorter. MAGs 
were used to predict hosts for 81,449 viral genomes from IMG/VR56 using a 
combination of CRISPR-spacer matches and sequence similarity between viruses 
and MAGs. CRISPR arrays were identified on contigs longer than 10 kb in MAGs 
using a combination of CRT81 and PILER-CR84. To minimize spurious predictions, 
we dropped arrays with fewer than three spacers, those with nonconserved repeats 
(<97% average identity to consensus repeat) or those in MAGs containing fewer 
than four CRISPR-associated proteins. This resulted in identification of 567,316 
CRISPR spacers longer than 25 bp in 23,851 arrays in 13,540 MAGs. Protospacers 
were identified by aligning spacers to 760,453 IMG/VR genomes with blastn and 
identifying near-perfect matches (up to one mismatch covering at least 95% of 
the spacer length). Additionally, MAG contigs were aligned to IMG/VR genomes 
with blastn to identify integrated phage sequences. An IMG/VR genome was 
determined to be integrated in a MAG if it aligned by >90% identity over >500 bp 
on a contig that was >1.5 times the length of the IMG/VR genome. Contigs that 
were <1.5 times the length of the IMG/VR genome were considered a ‘full viral 
sequence’ and were discarded due to a lack of host information and the potential 
for inaccurate binning (that is, binning based on the virus genome characteristics 
rather than the host).

To maximize the number of prophages identified in MAGs, we used VirSorter 
(v1.0.3)58 to perform de novo prediction, retaining all predictions of categories 4 
and 5. To exclude possible decayed prophages, that is, integrated virus genomes 
which are now inactive and progressively removed from the host genome, all 
predictions for which 30% or more of the genes displaying a best hit to Pfam 
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were excluded (thresholds: hmmsearch score ≥ 50 and E ≤ 0.001). These hits were 
further reduced by filtering any contig that displayed >90% DNA identity over 
>500 bp to any of the 81,449 previously detected viral genomes from IMG/VR.

Detailed investigation of selected virus groups. Groups of temperate or chronic 
viruses for which MAG-based linkages were further investigated included 
the DJR capsid viruses (double-stranded DNA temperate bacteriophages and 
archaeoviruses), inoviruses (single-stranded DNA viruses with a chronic infection 
cycle) and Microviridae (single-stranded DNA viruses, lytic or lysogenic cycle). 
DJR sequences were specifically identified by searching the predicted proteins from 
metagenome contigs for a Hidden Markov Model built from known DJR major 
capsid proteins, based on the sequences from Kauffman et al.59. The search was 
computed with hmmsearch from the HMMER (v3.1b2) suite, selecting hits with 
a hmmsearch score ≥ 50 and an E ≤ 0.001. An additional 81 DJR sequences were 
collected which had initially been predicted by VirSorter with lower confidence 
(category 6). Additionally, inoviruses were identified in MAGs based on a custom 
approach recently developed to identify inovirus-like sequences in the same 
metagenome assemblies before genome binning85.

For DJR and Microviridae, phylogenies were built as follows: a multiple 
alignment was computed with MAFFT (v7.407)86 using the ‘einsi’ mode; the 
alignment was automatically trimmed with trimAl (v1.4.rev15) using the 
‘gappyout’ option79; and the tree was built with IQ-TREE (v1.5.5)87 with 1,000 
ultrafast bootstraps and automatic selection of the evolutionary model. Major 
capsid protein sequences were used for the DJR alignment, with references 
obtained from Kauffman et al.59. Similarly, major capsid protein sequences were 
used for the Microviridae alignment, with references obtained from Microviridae 
genomes available in the NCBI RefSeq and GenBank databases (as of October 
2019). In addition, the 20 best blast hits from NCBI RefSeq bacterial genomes 
for each GEM Microviridae sequence were included to incorporate additional 
putative prophages in the tree. For inoviruses, the gene-content-based classification 
previously outlined was used by mapping GEM inovirus sequences to the recently 
described inovirus genome catalog85 using the MUMmer4 function73 with cutoffs 
of 95% ANI and 70% AF.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All available metagenomic data, bins and annotations are available through the 
IMG/M portal (https://img.jgi.doe.gov/). Bulk download for the 52,515 MAGs is 
available at https://genome.jgi.doe.gov/GEMs and https://portal.nersc.gov/GEM. 
Genome-scale metabolic models for the nonredundant, high-quality GEMs are 
summarized at https://doi.org/10.25982/53247.64/1670777 and available in KBase 
(https://narrative.kbase.us/#org/jgimags). IMG/M identifiers of all metagenomes 
binned, including detailed information for each metagenome, are available in 
Supplementary Table 1.

Code availability
The pipeline used to generate the metagenome bins is available at https://bitbucket.
org/berkeleylab/metabat/src/master/.
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