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Abstract 
Nuclear magnetic resonance (NMR) spectroscopy is a versatile analytical technique 
that can be used for identification, characterization, and quantification of various 
compounds. However, many sample types, including most biological samples, are 
mixtures of numerous different compounds with large differences in concentration 
and physico-chemical properties. When such samples are studied with NMR 
spectroscopy, they typically give rise to complicated NMR spectra that are difficult 
to analyse due to large dynamic range and extensive signal overlap. Methods are 
therefore needed that reduce signal overlap and other interferences in NMR spectra 
of complex mixtures so that individual compounds can be characterized and 
quantified. The work in this thesis revolves around two such methods. 

One common form of signal interference is caused by intense, unwanted signals 
that overlap with, and sometimes obscure, signals of interest. Here, an NMR 
experiment was developed that enables selective suppression of the unwanted 
signals so that other signals can be studied. After evaluation and optimization of the 
experiment, it was used in the first complete NMR spectral assignment of the minor 
furanose forms of glucose. 

Broad signals from lipids or macromolecules is another type of interference. 
Such signals are frequently encountered in NMR spectra of metabolomics samples, 
where they prevent accurate quantification of certain metabolites. In this thesis, an 
automated workflow was devised and optimized that first eliminates the interference 
from broad signals and then calculates absolute metabolite concentrations. The entire 
workflow was performed in less than one second per spectrum. 

Keywords: NMR spectroscopy, signal interference, selective NMR experiments, 
metabolomics, baseline correction, automated quantification 
  

Reducing signal interference in complex 
NMR spectra. Characterization and 
quantification of metabolites in mixtures 



Sammanfattning 
Kärnmagnetisk resonansspektroskopi, förkortat NMR-spektroskopi, är en 
mångfasetterad analysteknik som kan användas för identifiering, karakterisering och 
kvantifiering av olika substanser. Ett problem är att många provtyper, däribland de 
flesta biologiska prover, är blandningar av en mängd olika substanser med stora 
skillnader i koncentration och fysikalisk-kemiska egenskaper. När dessa prover 
studeras med NMR-spektroskopi ger de ofta upphov till komplicerade spektra som 
är svåra att analysera på grund av omfattande signalöverlapp och stora 
intensitetsskillnader mellan olika signaler. Det finns därför ett behov av metoder som 
på olika sätt minskar förekomsten av signalöverlapp och andra interferenser i NMR-
spektra av komplexa blandningar så att enskilda substanser kan karakteriseras och 
kvantifieras. Den här avhandlingen handlar om två sådana metoder. 

En vanlig form av signalinterferens orsakas av intensiva, oönskade signaler som 
överlappar med, och ibland helt täcker över, intressanta signaler. Därför utvecklades 
ett NMR-experiment som selektivt kan avlägsna oönskade signaler från NMR-
spektra. Efter att experimentet utvärderats och optimerats användes det för att för 
första gången studera och beskriva alla NMR-signaler från de ovanliga 
furanosformerna av glukos. 

En annan typ av interferens utgörs av breda signaler från lipider eller 
makromolekyler. Sådana signaler förekommer ofta i NMR-spektra som analyseras 
inom metabolomik och är problematiska eftersom de förhindrar absolutkvantifiering 
av vissa metaboliter. Den här avhandlingen beskriver ett automatiskt arbetsflöde som 
först tar bort interferenser från breda signaler och därefter beräknar korrekta 
metabolitkoncentrationer, allt på mindre än en sekund per spektrum. 

Nyckelord: NMR-spektroskopi, signalinterferens, selektiva NMR-experiment, 
metabolomik, baslinjekorrektion, automatisk kvantifiering 
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Nuclear magnetic resonance (NMR) spectroscopy is a powerful, non-
destructive analytical technique that can be used for structural elucidation, 
compound quantification, and to study dynamic processes. Therefore, NMR 
spectroscopy is an indispensable tool in scientific fields such as organic 
chemistry, analytical chemistry, structural biology, and medicine. However, 
the practical utility of the technique is often compromised by signal 
interference, or spectral overlap, that leads to complicated NMR spectra. In 
spectra with a high degree of signal interference, it is difficult to distinguish 
individual signals and thus the information presented by the signals about 
e.g. molecular structure or compound concentration cannot be utilized. The 
problem is frequently encountered when complex mixtures of small 
molecules are studied, and it is further exacerbated by large concentration 
differences between the mixture components. The NMR spectra of most 
biological samples consequently display extensive signal overlap. 

The components of a mixture can be separated physically to reduce the 
sample complexity, but this is both costly and time consuming and affects 
the sample integrity. A more attractive alternative is to reduce the 
interference artificially, for instance by using certain NMR experiments or 
computational methods that remove unwanted signals from NMR spectra so 
that signals of interest can be studied. Two such approaches, one NMR 
experiment and one computational method, were investigated in this thesis. 

The following three chapters aim to build a theoretical framework and to 
summarize previous research relevant to the work in this thesis. After a short 
description of the thesis aims, the research outcomes of papers I-III are 
presented and discussed in three successive chapters, followed by general 
conclusions and future perspectives. 
  

1. Introduction 
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The theory behind NMR spectroscopy is quite complex and can only be fully 
described using quantum mechanics. Here, the principles will be presented 
in a simplified manner based on the vector model. As the work in this thesis 
has been performed using liquid-state 1H and 13C NMR spectroscopy, the 
following text will focus on these techniques. 

2.1 Fundamental theory 
As indicated by its name, NMR spectroscopy is a technique that focuses on 
atomic nuclei. Each type of atomic nucleus, i.e. each elemental isotope, can 
be characterized by a nuclear spin quantum number I that can be either equal 
to zero or a positive multiple of ½. Only nuclei with I greater than zero 
possess nuclear spin and can be observed in NMR spectroscopy, which 
excludes common isotopes such as 12C and 16O. The most studied nuclei in 
organic chemistry are instead 1H, 13C, and 15N that all have I = ½. 

Nuclei with spin (often simply called “spins”) generate small magnetic 
fields, described by a vector called the magnetic moment (µ). Normally, the 
magnetic moments in a sample are randomly oriented due to thermal 
molecular motion. However, inside the NMR magnet the sample is exposed 
to a static, external magnetic field B0, which makes it slightly more 
energetically favourable for the magnetic moments to be aligned in the 
direction of this field. The sample will thereby obtain a net magnetization, 
usually represented as a bulk magnetization vector, parallel to B0. By 
convention, B0 is depicted along the +z-axis in a right-handed Cartesian 
coordinate system. At equilibrium there is no net magnetization in the 
xy‑plane. 

2. Introduction to NMR spectroscopy 
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In the presence of B0, the magnetic moments begin to rotate about the +z‑axis 
in a process called Larmor precession. The precession frequency, called the 
Larmor frequency, is proportional both to the B0 field strength and to the 
magnetogyric (or gyromagnetic) ratio γ, a constant, fundamental property of 
each nucleus. All work in this thesis has been performed with B0 = 14.1 T, 
which corresponds to a Larmor frequency of 600 MHz for 1H and 150 MHz 
for 13C. 

2.1.1 Excitation and detection 
Before an NMR signal can be recorded, the net magnetization needs to be 
excited, i.e. relocated from the +z-axis into the xy-plane where the detector 
is situated. To achieve this, a second magnetic field B1 is applied as a 
radiofrequency (RF) pulse perpendicular to B0. The magnitude of B1 is much 
smaller than B0, but because B1 is oscillating at the Larmor frequency of the 
investigated nucleus, i.e. is resonant with the magnetic moments, it is able to 
shift the magnetization away from equilibrium. Once the magnetization 
moves into the xy‑plane, the bulk magnetization vector as a whole starts to 
precess around the z-axis at the Larmor frequency, which induces a current 
in the detector. After the RF pulse, the magnetization gradually returns to 
equilibrium in a process known as relaxation. The recorded signal thus 
decays with time and is referred to as a time-dependent free induction decay 
(FID), which is the raw NMR data. Interpreting the FID is difficult and the 
data is therefore converted into a frequency-dependent spectrum through 
Fourier transformation, a mathematical process, before analysis. 

2.1.2 Relaxation 
The decay of the NMR signal with time is the result of two distinct relaxation 
processes. The longitudinal, or spin-lattice, relaxation T1 corresponds to the 
restoration of magnetization along the +z‑axis and occurs primarily because 
of interactions with local magnetic fields induced by neighbouring spins, so 
called dipole-dipole relaxation. As a result of the nuclear Overhauser effect 
(NOE), this type of relaxation can enhance the intensity of the signal arising 
from the neighbouring magnetic dipole. 

The transverse, or spin-spin, relaxation T2 describes the loss of net 
magnetization in the xy-plane that occurs due to magnetic field differences 
across the sample, caused either by intra- and intermolecular interactions or 
by inhomogeneities in the static magnetic field. For small molecules, T1 and 
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T2 are equally long whereas for large molecules T2 is often much shorter than 
T1. Because the signal line width is inversely proportional to T2, NMR signals 
belonging to large molecules are broader than signals from small molecules. 

2.1.3 Sensitivity 
The intensity of the NMR response is influenced by several factors, including 
the nuclear spin quantum number, the magnetogyric ratio, and the natural 
abundance of the isotope in question. The magnitude of B0 also influences 
the response, with a higher field strength resulting in both higher sensitivity 
and signal resolution. However, even with the highest field strengths 
available, the excess of magnetic moments aligned with B0 is very small and 
NMR is therefore much less sensitive than most other spectroscopic 
methods. 

The proton (1H) is undoubtedly the most important nucleus in organic 
chemistry NMR studies as it is ubiquitously present in organic molecules, 
has a high γ, and a natural abundance of 99.99 %. In contrast, the NMR active 
isotope of carbon, 13C, has a natural abundance of just 1.07 % and its γ is 
almost four times lower than that of 1H. Therefore, 13C NMR is far less 
sensitive than 1H NMR. Nevertheless, 13C data is required in most studies 
and different strategies are available to increase the sensitivity of 13C NMR 
experiments. Molecules can be enriched in 13C since a higher abundance both 
improves the sensitivity and allows for shorter experiment times. 
Alternatively, experiments can be utilized that detect 13C resonances 
indirectly by taking advantage of the superior sensitivity of 1H. 

2.2 The NMR spectrum 
The frequency-dependent data that is obtained when the FID has been 
Fourier transformed is the actual NMR spectrum (Figure 1). Usually, one 
isotope at a time is studied. The Larmor frequencies of individual atomic 
nuclei of the same isotope can differ slightly if the nuclei are situated in 
different local electrochemical environments, and therefore there is usually 
more than one signal in a spectrum even if only one compound is analysed. 
Nuclei surrounded by dense electron clouds are said to be shielded and 
resonate at a lower frequency than nuclei located next to electron 
withdrawing groups, because the latter nuclei are more exposed to the static 
magnetic field. These different nuclei are then observed as separate signals 
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in the NMR spectrum. Nuclei that resonate at identical frequencies cannot be 
distinguished from each other and are observed as one single signal. The area 
under each signal, the integral, is proportional to the number of nuclei giving 
rise to the signal and NMR spectroscopy can therefore be used for 
quantification purposes. 

 

 
Figure 1. NMR analysis of butanoic acid in CDCl3. Top: Illustration of an NMR magnet 
(left) and FID from the 1H NMR analysis (right). Middle: 1D-1H NMR spectrum. The 
insets display the splitting pattern and integral of each signal. Bottom: 1D-13C NMR 
spectrum, acquired with proton decoupling and NOE enhancement. 
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In NMR spectroscopy, frequency differences between nuclei are of interest, 
rather than the actual frequencies. The signal positions, called chemical shifts 
(δ), are therefore reported in ppm (parts per million) as the frequency 
difference relative to a reference nucleus (Harris et al. 2001): 

 
𝛿𝛿 =

𝜈𝜈𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝜈𝜈𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟
𝜈𝜈𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟

 

where ν is the frequency in hertz. Tetramethylsilane (TMS) has been defined 
as the primary reference compound for calculating chemical shifts, with an 
assigned chemical shift of 0 ppm for both 1H and 13C (Harris et al. 2001). In 
aqueous solutions, sodium 3-(trimethylsilyl)propane-1-sulfonate (DSS) or 
3‑(trimethylsilyl)propanoic acid (TSP) are commonly used instead due to the 
limited solubility of TMS (although the chemical shift of TSP is sensitive to 
pH (De Marco 1977)). Expressing the results in ppm enables comparison 
between spectrometers with different field strengths because the position of 
a certain signal in ppm will be the same despite the difference in actual 
frequency. 1H NMR chemical shifts typically range between 0 and 12 ppm 
whereas the corresponding range for 13C NMR signals is about 0‑220 ppm. 

NMR signals have different shapes, called splitting pattern, depending on 
their neighbouring spins. J-coupling, also called scalar or spin-spin coupling, 
is mediated through covalent chemical bonds and induces a splitting in the 
observed signal. The J-coupling can typically be observed over one, two, and 
three bonds, but more long-range couplings also exist. The size of the 
splitting, the coupling constant, is reported in hertz and is independent of the 
magnetic field strength. Coupling constants, chemical shifts, and signal 
integrals are all important indicators of the structure of a molecule. Both 
chemical shifts and coupling constants can often be read directly from an 
NMR spectrum with reasonable accuracy. However, to obtain the exact 
values it might be necessary to use computational line-shape analysis tools, 
especially for signals with complex splitting patterns or when signals overlap 
with each other.  

To maximize sensitivity and take advantage of the NOE from 
neighbouring protons, 13C NMR spectra are usually recorded with proton 
decoupling. As a consequence, 13C signals typically appear as singlets and 
cannot be reliably integrated unless the spectra were recorded without NOE 
enhancement. 
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2.3 NMR experiments 
During an NMR experiment, one or more RF pulses are applied to a sample 
to manipulate its magnetization in different ways. The number of RF pulses, 
as well as their respective amplitudes and durations, affect what type of 
information that can be obtained from the resulting NMR spectrum. Most 
NMR experiments also include time delays, the lengths of which further 
influence the outcome. Additionally, it is possible to apply magnetic field 
gradients during NMR experiments to create spatial differences in B0 across 
the sample. A specific combination of RF pulses, time delays, and gradients 
is called a pulse sequence. 

The simplest NMR experiment was described in section 2.1.1 and 
consists of a 90° pulse, i.e. an RF pulse that shifts the net magnetization from 
the +z-axis onto the xy-plane, followed by a delay during which the decaying 
signal is recorded (Figure 2). Many pulse sequences also contain 180° pulses, 
which invert the orientation of the magnetization (e.g. from the +y-axis to 
the -y-axis). 

 
Figure 2. The basic NMR experiment. A) At equilibrium, the bulk magnetization is 
aligned with the +z-axis. B) After the RF pulse, the magnetization is located in the 
xy‑plane and then gradually returns to equilibrium. C) Schematic illustration of the pulse 
sequence, which includes a relaxation delay, a 90° excitation pulse, and an acquisition 
time during which the decaying signal is recorded. 

Because the NMR signal is quite weak, an NMR experiment is usually 
repeated several times and the FIDs summed together before Fourier 
transformation. This improves the signal-to-noise ratio (S/N) since the 
signals add up proportionally whilst the noise, because it is random, is not 
amplified as much. A relaxation delay in-between each repetition of the 
experiment allows the magnetization to return to its equilibrium position 
along the z-axis before the next round of excitation. 
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2.3.1 Hard and soft pulses 
As described in section 2.2, individual nuclei of the same isotope have 
slightly different Larmor frequencies depending on their local electronic 
environment. It is therefore not possible to set the RF frequency to be exactly 
on resonance with all the spins in a sample. However, if the RF field is strong 
enough, a single RF pulse can still be used to excite all resonances in a 
sample simultaneously. Such a high-power RF pulse is called a “hard”, or 
non-selective, pulse and these are the most commonly utilized pulses in 
NMR experiments. 

The difference between a spin’s Larmor frequency and the frequency of 
the RF field is called offset. When the RF field strength is much larger than 
the offset, the latter becomes negligible and the spin is excited just as if the 
pulse was on resonance. On the contrary, if the RF field strength is 
comparable to the size of the offset, the pulse will only excite signals over a 
limited frequency range. The weaker the RF field is, the narrower the 
excitation range becomes; it is thus possible to select what range of 
frequencies to excite by adjusting the RF field strength. RF pulses that act on 
a limited frequency span are called “soft”, or selective, pulses. Soft pulses 
that target a range of frequencies, as opposed to a narrow span, are called 
band-selective. 

The angle by which the magnetization vector is tipped away from the 
z‑axis, the flip angle ϴ, depends on both the power and the duration (tp) of 
the RF pulse: 

ϴ = 360 × γ × B1 × tp degrees 

A low-power pulse thus needs to be longer than a high-power pulse to 
achieve the same flip angle. Consequently, soft pulses are much longer than 
hard pulses, typically being in the range of milliseconds and microseconds, 
respectively. From the equation above it can also be inferred that if the field 
strength is kept constant but the pulse length is increased, the flip angle will 
increase proportionally. Thus, a 180° pulse is twice as long as a 90° pulse 
with the same excitation profile. 

Hard pulses are rectangular in their time-domain profile, meaning that the 
RF power is abruptly turned on and off when the pulse is applied. Selective 
pulses, on the other hand, are usually more elaborately shaped. There are 
numerous different types of shaped pulses with different excitation profiles. 
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Two examples are shown in Figure 3. The Gaussian shaped pulse (Bauer et 
al. 1984) has a narrow excitation profile and is therefore suitable for targeting 
small spectral regions. However, due to its broad tails, it will partly excite 
any resonances situated near the targeted region. Additionally, phase errors 
often appear in the resulting spectrum. There are other shaped pulses 
specifically designed to produce a “top-hat” excitation profile, with uniform, 
pure-phase excitation inside the selected region and negligible impact on the 
rest of the frequency range. One such example is the BURP (band-selective, 
uniform response, pure-phase) pulse family (Geen & Freeman 1991), 
illustrated in Figure 3 with the inversion variant I-BURP-2. The shapes of 
this kind of pulses are more intricate than the Gaussian pulse and so the 
pulses often need to be longer to selectively target a given bandwidth 
(Figure 3). Therefore, they are mostly used in band-selective applications as 
they can get excessively long when applied to narrow frequency ranges. 

 

Figure 3. The pulse time domain profiles (top) and resulting magnetization inversion 
profiles (bottom) of a Gaussian and an I-BURP-2 selective inversion pulse, respectively. 
The length of both pulses is 1 ms. Note the difference in the inversion bandwidth obtained 
using the two pulses. 
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2.3.2 The spin echo 
One of the most common building blocks in NMR pulse sequences is the 
spin echo, depicted in Figure 4. The spin echo contains a central 180° pulse 
surrounded by two time delays τ of equal length. Magnetization that is 
defocused during the first delay, due to frequency offset or B0 
inhomogeneities, is inverted by the 180° pulse and refocused by the end of 
the second delay. 

 
Figure 4. The spin echo pulse sequence, which can be performed without (A) or with 
PFGs (B) (trace labelled GZ). The inversion pulse can be either hard (black rectangle) or 
soft (shaped white bar). 

Spin echoes can be combined with pulsed field gradients (PFGs) for better 
performance and a wider field of application (Figure 4B). PFG spin echoes 
are commonly used e.g. for efficient selection of specific signals, in which 
case the 180° pulse usually is selective for the spectral region of interest, or 
to measure molecular diffusion. The two gradient pulses in a PFG spin echo 
are typically of equal amplitude and polarity, as in Figure 4B. For spins 
inverted by the 180° pulse, the defocusing in phase caused by the first 
gradient pulse is effectively reversed by the second gradient pulse and 
refocused by the end of the sequence. Remaining spins will experience the 
cumulative defocusing effect of both gradient pulses and will thus not appear 
in the resulting spectrum. 

The PFG spin echo sequence can be further improved by the introduction 
of a second spin echo that uses a different gradient strength but where the 
sequence is otherwise the same (Figure 5). A double PFG spin echo 
(DPFGSE), or excitation sculpting, sequence results in spectra with 
significantly better phase properties than with a single echo (Hwang & Shaka 
1995). In one common version of the DPFGSE sequence, the refocusing 
element consists of a soft and a hard 180° pulse in conjunction (Figure 5). 
The frequencies that are targeted by the selective pulse experience both 180° 
pulses, i.e. execute no net rotation, and therefore become defocused by the 
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gradient pulses. Remaining signals are refocused in the spin echoes and thus 
appear in the resulting spectrum. This approach thus enables selective 
suppression of unwanted signals and the pulse sequence is commonly used 
for solvent suppression, especially to suppress the signal from water. 

 
Figure 5. The DPFGSE sequence used for selective signal suppression (Hwang & Shaka 
1995). Black rectangles represent hard pulses and shaped white bars represent selective 
pulses. PFGs are denoted GZ. 

2.3.3 Two-dimensional NMR experiments 
NMR experiments can be further extended by the introduction of a second, 
indirect, frequency dimension. Thereby, connections between different 
nuclei are revealed, something that is essential in molecular structure 
elucidation. Many different 2D NMR experiments have been developed, 
making it possible to detect correlations through chemical bonds or through 
space, either between nuclei of the same isotope (homonuclear experiments) 
or between different types of nuclei (heteronuclear experiments). An 
additional benefit of 2D NMR spectra is that the signals are more dispersed 
than in the corresponding 1D spectra, thus problems with spectral overlap 
are less frequent. 

One common 2D experiment is the total correlation spectroscopy 
(TOCSY) experiment (Braunschweiler & Ernst 1983), which is a 
homonuclear 1H NMR method used to reveal connections between all 
protons in a spin system. TOCSY includes a mixing scheme, also called spin-
lock, during which magnetization is transferred throughout a chain of 
J‑coupled spins, thereby generating cross-peaks even between spins that are 
not directly coupled to each other. 

The heteronuclear single quantum coherence (HSQC) experiment 
(Bodenhausen & Ruben 1980) displays one-bond connections between 1H 
and 13C (or 15N) atoms. In HSQC, 1H is the observed nucleus whilst the 13C 
signals are detected indirectly. The indirect detection improves the 13C 
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sensitivity substantially compared to when 13C is detected directly, which it 
is in a 1D-13C spectrum. Two- and three-bond 1H-13C connections can be 
detected with the heteronuclear multiple-bond correlation (HMBC) 
experiment (Bax & Summers 1986) which also uses indirect detection of 13C. 

Most 2D NMR experiments can be transformed into analogous 1D 
experiments that are faster to record and have higher digital resolution. The 
selective 1D-TOCSY experiment (Davis & Bax 1985) starts by exciting one 
signal of interest using a selective pulse. During the subsequent spin-lock, 
magnetization is transferred from the excited signal to its coupled neighbours 
until the magnetization has been propagated to the entire spin system. After 
Fourier transformation, only signals that have received magnetization from 
the initially excited spin will be visible in the spectrum. The length of the 
mixing scheme affects how far the magnetization is transferred from the 
excited spin. Thereby, 1D-TOCSY can be used for step-wise assignment of 
a spin system by recording a series of spectra with incremented mixing time. 

2.4 Quantitative NMR spectroscopy  
It is often stated that NMR spectroscopy is an inherently quantitative 
technique; the intensity of the response is directly proportional to the number 
of underlying nuclei. While this is in principle correct, in reality the 
quantitative quality is often compromised by the pulse sequences and 
parameters used for spectra acquisition. For a spectrum to be truly 
quantitative, a number of criteria need to be fulfilled. The 90° pulse has to 
be calibrated prior to acquisition to ensure uniform excitation throughout the 
spectral frequency range. During data collection, the relaxation delay must 
be sufficiently long for the magnetization to relax fully between each 
repetition of the experiment. Ideally, the relaxation delay should be at least 
five times longer than the T1 of the slowest relaxing nucleus in the sample. 
Furthermore, the spectrum needs to be collected with a sufficient digital 
resolution and S/N so that signals can be reliably integrated. The latter is 
usually improved by increasing the number of experiment transients. 

Because of its high sensitivity, 1D-1H NMR is used in the vast majority 
of quantitative NMR studies. As mentioned in section 2.2, 13C NMR spectra 
are usually not quantitative due to the desirable NOE enhancement achieved 
by proton decoupling. Quantitative 13C NMR spectra can be obtained if the 
NOE is eliminated, for example by using inverse-gated decoupling where the 
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decoupling is applied only during the acquisition time. However, the low 
sensitivity of 13C NMR makes this isotope much less suitable than 1H for 
quantitative applications. 2D NMR experiments can also be used and a 
number of pulse sequences for e.g. quantitative HSQC have been developed 
(Heikkinen et al. 2003; Peterson & Loening 2007; Hu et al. 2011). Because 
peak intensities in 2D spectra are dependent not only on the number of nuclei 
but also on spin-specific coupling constants and T2 relaxation times, 
calibration with each quantified compound as a pure reference needs to be 
performed for absolute quantification based on 2D spectra. Furthermore, 2D 
spectra take longer to acquire and analyse than the corresponding 1D spectra. 
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3.1 Introduction to metabolomics 
The entire set of metabolites, i.e. molecules of low molecular weight, present 
in a particular cell, tissue, or organism at a certain time is called metabolome 
(Oliver et al. 1998; Tweeddale et al. 1998). The research field aimed at 
studying the metabolome is consequently termed metabolomics (Raamsdonk 
et al. 2001) or, in certain instances, metabonomics (Nicholson et al. 1999). 
The number of metabolites is known to vary widely between different 
organisms, although no metabolome has yet been fully characterized. Plant 
metabolomes are especially complex with numerous different metabolites, 
both primary and secondary (also called specialized), and large variations in 
chemical structures and molar concentrations amongst the metabolites 
(Deborde et al. 2017). 

Compared to the genome or proteome, the metabolome is more closely 
connected to the biochemical activity and thus the current state of a cell or 
an organism. Because the metabolome is dynamic, i.e. its set-up varies as a 
result of internal processes and external influences, metabolomics is a useful 
tool for as diverse applications as drug toxicity assessment (Nicholson et al. 
1999), disease risk biomarker discovery (Holmes et al. 2008), and plant 
breeding (Razzaq et al. 2022). The samples analysed in metabolomics consist 
of various types of biofluids and tissues, although the most commonly 
studied sample types are human blood and urine. 

There are two main analytical approaches in metabolomics, commonly 
called targeted and untargeted, respectively. Targeted metabolomics refers 
to the quantification of a number of preselected metabolites, whereas the aim 
of untargeted metabolomics is to investigate as many metabolites as possible 
without prior identification. The analytical techniques predominantly used in 

3. NMR-based metabolomics 
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the metabolomics field are NMR spectroscopy and mass spectrometry (MS), 
the latter typically preceded by liquid or gas chromatography. Most studies 
use only one of these techniques, although NMR and MS are often 
considered complimentary due to their respective strengths and weaknesses. 
Whilst NMR spectroscopy is non-destructive and highly reproducible, MS is 
more sensitive and able to detect a higher number of metabolites in a given 
sample. In an NMR spectrum recorded under quantitative conditions, signals 
belonging to different compounds are scaled according to their molar 
concentrations. Therefore, NMR spectroscopy is particularly suitable for 
quantitative metabolomics. 

3.2 Data generation 
There is currently no unified convention in the NMR-based metabolomics 
field regarding sample preparation, acquisition parameters, or spectral 
processing, although standardized protocols have been proposed (Beckonert 
et al. 2007; Kim et al. 2010; Emwas et al. 2016, 2018; Deborde et al. 2019). 
Common practices are described in the following sections. 

3.2.1 Sample preparation 
One major advantage of NMR spectroscopy as an analytical technique in 
metabolomics is that it can be applied after very little sample preparation. 
Many biofluids are prepared by the addition of a buffer solution, to control 
the pH of the samples, and possibly an internal standard for chemical shift 
referencing. When tissues are analysed with solution-state NMR 
spectroscopy, it is usually necessary to extract metabolites from the tissue 
using different solvents (Beckonert et al. 2007; Kim et al. 2010). Samples 
are generally kept cold (‑80 °C) before analysis. 

In addition to metabolites, many sample types also contain compounds 
such as proteins, lipids, polysaccharides, and nucleic acids. These 
compounds give rise to broad signals in NMR spectra and may also 
physically interact both with certain metabolites and with internal standard 
compounds. The presence of lipids and macromolecules is thus problematic 
for metabolite quantification. Macromolecules can be physically removed 
from a sample before NMR analysis using either ultrafiltration or 
precipitation with organic solvents (Daykin et al. 2002; Nagana Gowda & 
Raftery 2014). These techniques are routinely applied to blood samples, 
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although results are inconclusive regarding their effect on sample metabolite 
composition (Daykin et al. 2002; Tiziani et al. 2008; Nagana Gowda & 
Raftery 2014; Madrid-Gambin et al. 2023). 

3.2.2 Quantification references 
Calibration with a reference with known concentration is necessary for 
accurate absolute quantification. In NMR spectroscopy, as opposed to MS, a 
single reference compound can be used to quantify all other compounds in a 
spectrum. The reference can be an external standard compound (Burton et 
al. 2005; Wider & Dreier 2006) or even an electronically generated signal 
(Barantin et al. 1997; Akoka et al. 1999), but internal standards are the most 
common in metabolomics. 

Over the years, a number of different substances have been used as 
internal standards in quantitative NMR analyses. A good reference 
compound should give rise to an isolated NMR signal, preferably a singlet, 
that can be used for quantification. Furthermore, the reference compound 
should not have other signals that overlap with metabolite signals, and the 
compound itself must not interact with any components of the sample. 

The most commonly used internal standard compounds in NMR-based 
metabolomics are the chemical shift references DSS and TSP. The partially 
deuterated forms of DSS and TSP both produce a single, relatively intense, 
singlet at 0 ppm. However, both DSS and TSP are known to interact with 
certain aromatic compounds and can therefore not be used for reliable 
quantification in samples that contain e.g. macromolecules (Hand & Cohen 
1965; Lam & Kotowycz 1977; Bell et al. 1989; Shimizu et al. 1994). Other 
reference compounds have been proposed, including 4,4-dimethyl-4-
silapentane-1-ammonium trifluoroacetate (Nowick et al. 2003; Alum et al. 
2008) and the naturally occurring metabolites formic acid (Kriat et al. 1992), 
fumaric acid, and maleic acid (Rundlöf et al. 2010; Nagana Gowda et al. 
2021), but these are not broadly used in quantitative NMR-based 
metabolomics. 

3.2.3 Spectra acquisition 
The most commonly analysed data in NMR-based metabolomics is 1D-1H 
NMR spectra, although other nuclei as well as 2D NMR experiments have 
been used in some studies. Most sample types are aqueous solutions and 
therefore require the use of water suppression schemes for the metabolites to 
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be observable in the NMR spectra. The most frequently used NMR 
experiment is the 1D NOE spectroscopy (NOESY) presaturation sequence 
since it offers good water suppression while still being relatively robust and 
easy to set up. Broad signals from lipids or macromolecules can be 
spectroscopically filtered away using the Carr-Purcell-Meiboom-Gill 
experiment (CPMG) (Carr & Purcell 1954; Meiboom & Gill 1958) or 1D 
diffusion-edited experiments (see Chapter 4), but these approaches are not 
necessarily quantitative and may increase the experiment time. 

Metabolomics data sets often contain hundreds or even thousands of 
samples. To enable high sample throughput, the experiments are kept short 
and are extensively automated. The limit of detection and limit of 
quantification are often defined as 3 × S/N and 10 × S/N, respectively, hence 
the number of experimental transients needs to be high enough to ensure 
sufficient sensitivity. Normally, at least 64 transients are recorded in each 
experiment, although this needs to be adjusted for each sample type (Emwas 
et al. 2016). Currently, both the limit of detection and limit of quantification 
of NMR spectroscopy are in the micromolar range (Wishart et al. 2022). 

For an NMR spectrum to be quantitative, the relaxation delay needs to be 
at least 5 × T1 for all metabolite signals. Adhering to this criterion results in 
very long experiments since most metabolites have T1 values of several 
seconds. The common metabolite formic acid, for example, has a 1H T1 of 
around 8 seconds at 600 MHz (Saude et al. 2006), meaning that the delay 
must be over 40 seconds for it to relax fully. To reduce the experimental 
time, shorter relaxation delays are usually used after which a T1 correction 
factor is applied before calculating the concentrations (Saude et al. 2006; 
Bharti et al. 2008). Alternatively, the T1 times can be shortened by the 
addition of a paramagnetic relaxation agent to the sample (Mulder et al. 
2019). 

3.2.4 Spectral processing 
In addition to Fourier transformation, a number of processing steps need to 
be applied to the NMR data before it can be analysed. The processing 
procedure usually includes zero filling to increase the number of data points, 
exponential line broadening for improved S/N, phase correction, baseline 
correction, and chemical shift referencing. Spectral processing is most often 
carried out in a semi-automated manner, although the entire workflow can 
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be automated to save time and avoid user bias (Ravanbakhsh et al. 2015; 
Rout et al. 2023). 

Correct phase and a flat spectral baseline are prerequisites for accurate 
quantification. Unfortunately, both phase correction and baseline correction 
can be difficult to execute properly, especially for complex spectra. 
Automatic phase correction is commonly used but is often followed by 
manual fine-tuning (Emwas et al. 2018). Similarly, the starting points for 
baseline correction are usually set manually by defining signal-free regions 
that can be used to calculate the fitted baseline. Several automatic baseline 
correction functions have been proposed (Golotvin & Williams 2000; Cobas 
et al. 2006; Zhang et al. 2010; Bao et al. 2012; Wang et al. 2013; Liu et al. 
2014), most of which are based on smoothing algorithms such as the 
Whittaker smoother (Whittaker 1922; Eilers 2003). Automated baseline 
correction methods tend to perform well when applied to spectra of limited 
complexity but might be less accurate for complicated spectra. Since manual 
baseline correction is not straightforward either in the case of highly complex 
spectra, the best solution can be to combine automated baseline correction 
with subsequent manual inspection and fine-tuning, or to use a semi-
automated approach (Emwas et al. 2018). 

3.3 Metabolite identification 
Metabolite identification can be a challenging task. For unambiguous 
compound identification, it is necessary to perform at least two orthogonal 
analyses (e.g. both 1H and 13C NMR) and compare the results with an 
authentic standard analysed the same way (Sumner et al. 2007). Rigorous 
standardized reporting criteria have been proposed (Sumner et al. 2007; 
Joesten & Kennedy 2019) but are not universally applied. Often, metabolites 
are assigned based on reference chemical shifts, coupling constants, and 
signal intensities found in various databases such as the Human Metabolome 
Database (Wishart et al. 2007), the Biological Magnetic Resonance Data 
Bank (Ulrich et al. 2008), or the commercial Chenomx library (Weljie et al. 
2006). However, no database is complete and there are substantial 
discrepancies between different databases that may affect the assignment 
accuracy (Ross et al. 2023). For sample types that have been thoroughly 
characterized in previous studies, it might not be necessary to perform de 
novo identification on each new data set. For instance, the majority of signals 
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in 1H NMR spectra of human blood samples have been assigned in several 
studies (Psychogios et al. 2011; Nagana Gowda et al. 2022). 

3.4 Metabolite quantification 
Metabolomics NMR spectra are typically complicated with numerous 
signals, extensive signal overlap, and large dynamic range. To accurately 
quantify metabolites based on overlapped signals it is necessary to perform 
peak fitting or spectral deconvolution, in which the spectrum is decomposed 
into the individual underlying metabolite signals, before quantification 
(Figure 6). Manual peak fitting (Weljie et al. 2006) is still the most common 
approach in metabolomics, although numerous automated spectral 
deconvolution methods exist, including recent deep neural network-based 
approaches (Li et al. 2023; Schmid et al. 2023). To obtain absolute 
concentrations, the splitting pattern of each metabolite signal must be known 
as well as the number of nuclei contributing to the signal. This information 
is usually collected from a database. Concentrations can thereafter be 
calculated based on the metabolite signal intensities relative to the intensity 
of the quantification reference signal. 

 
Figure 6. Illustration of spectral deconvolution. The observed spectrum (A) is the sum 
of three overlapping NMR signals (B) that can be resolved by spectral deconvolution. 

Manual metabolite identification and quantification is time consuming and 
the results can be operator dependent (Tredwell et al. 2011; Canlet et al. 
2023). Therefore, several automated methods have been developed that 
quantify metabolites based on 1D-1H NMR spectra (Zheng et al. 2011; Hao 
et al. 2012; Ravanbakhsh et al. 2015; Tardivel et al. 2017; Röhnisch et al. 
2018; Lefort et al. 2019; Häckl et al. 2021; Rout et al. 2023), typically using 
predefined spectral libraries. Some of these methods also perform automated 
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compound identification (Zheng et al. 2011; Hao et al. 2012; Ravanbakhsh 
et al. 2015; Tardivel et al. 2017; Lefort et al. 2019; Rout et al. 2023). Most 
automated methods are based on curve fitting and thus they use all 
experimental signals as input to estimate metabolite concentrations. As a 
result, the computational time increases considerably with spectral 
complexity as well as with the number of experimental spectra. In contrast, 
the automated quantification algorithm (AQuA) (Röhnisch et al. 2018, 2021) 
employs a unique data reduction strategy that reduces the computational time 
and workload substantially. AQuA calculates metabolite concentrations 
based on the height of one single signal apex per metabolite, while still 
accounting for signal interferences and variations in signal positions between 
different spectra. For this to be possible, AQuA collects information about 
signal positions, relative signal intensities, and metabolite concentrations 
from a spectral library and uses this as a basis to model signal interferences 
and subsequently compute accurate concentration estimates (Figure 7). 

 
Figure 7. The principle of AQuA. A) AQuA uses a spectral library to model metabolite 
signals and their interferences. Thereby, the height of individual metabolite signals (x) 
can be calculated from the experimental signal heights (y). B) The experimental spectrum 
is reduced to the height x of one selected signal apex per metabolite, based on which 
absolute concentrations are calculated. 

Most automated quantification methods, including AQuA, are intended for a 
specific type of sample and cannot be applied to other sample types without 
further method development and optimization. Furthermore, the chemical 
shifts and linewidths of many metabolite signals are sensitive to changes in 
pH, temperature, concentration, and ionic strength, which might impair 
automated assignments and quantification if not properly corrected for 
(Bhinderwala et al. 2022). 
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As has been touched upon in the previous chapters, signal interferences, or 
overlap, is a common issue in NMR spectroscopy. The level of interference 
typically increases with the complexity of the sample, due to the large 
number of electrochemically different nuclei present, and becomes more 
problematic when the concentration differences within the sample is large, 
especially when low-concentration compounds are of interest. Because 
signal interference is most likely to occur when the degree of signal splitting 
is high and the possible range of chemical shifts is small, it is most frequently 
encountered in 1H NMR spectra, particularly 1D spectra. 

Spectral overlap can obstruct both identification and quantification of 
affected compounds. Therefore, considerable effort has been made to reduce 
or resolve problematic interferences. The most common strategies are 
summarized in this chapter. 

4.1 Physical removal of interfering compounds 
Perhaps the most apparent way of reducing signal interference is to remove 
the interfering compound or compounds from the sample altogether. Two 
such approaches have been mentioned already, namely ultrafiltration and 
protein precipitation that are both commonly employed to remove 
macromolecules from metabolomics samples. Other physical methodologies 
include liquid-liquid extraction, where compounds are separated based on 
their relative solubility in different liquids, and various types of 
chromatography where the affinity of a compound for a stationary phase 
compared to a mobile phase is used as the basis for separation. A more 
destructive approach is to chemically degrade unwanted compounds, as can 

4. Reduction of signal interference in NMR 
spectra 
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be done with carbohydrates using the oxidative agent sodium periodate 
(Yuan et al. 2018). 

Because physical methods can be very efficient for reducing spectral 
overlap and improving dynamic range, they are indispensable in many 
studies. However, the techniques all disrupt the sample integrity, often 
irreversibly, and are more or less laborious to perform. Sample alteration is 
often undesirable, especially in quantitative studies, as it is difficult to ensure 
complete reproducibility and that other compounds are unaffected by the 
procedure. Thus, these methods should be used with caution when the aim is 
absolute quantification or complete sample characterization. 

4.2 NMR experiments to reduce signal interferences 

4.2.1 Reducing interference by enhancing resolution 
A common way to avoid signal interferences in NMR spectra is to utilize 
certain NMR experiments that improve the spectral resolution. The most 
straightforward approach is to increase the spectral width so that the signals 
become more dispersed, e.g. by analysing 13C instead of 1H or by recording 
2D spectra instead of 1D spectra. However, some of the information 
contained in a 1D-1H NMR spectrum, such as signal integrals and coupling 
constants, is often lost with these approaches. Furthermore, the lower 
sensitivity of both 2D NMR spectra and heteronuclear 1D NMR spectra 
necessitates longer experiments than when 1D-1H NMR spectra are 
recorded. 

Removal of signal splitting also improves the spectral resolution. This is 
achieved using certain decoupling schemes. As already mentioned, 13C NMR 
spectra are routinely acquired with heteronuclear proton decoupling to 
eliminate the effect of 1H-13C couplings. In 1H NMR spectra, the effects of 
1H-1H couplings can be avoided using a homonuclear broadband decoupling 
scheme that condenses all signals into singlets (Zangger & Sterk 1997; 
Foroozandeh et al. 2014). The resulting “pure shift” 1H NMR spectra have 
very high resolution but relatively poor sensitivity. 

4.2.2 Spectral editing based on relaxation and diffusion 
In many cases, especially when dealing with biological samples, broad 
signals from macromolecules is a problematic form of interference. Certain 
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NMR experiments have been developed that remove these interferences 
based on size-dependent molecular properties. 

The transverse relaxation time T2 is usually significantly shorter in large 
molecules than in small molecules. If the durations of the experimental 
transients are sufficiently long the resulting spectrum will thus only contain 
signals from small molecules (Campbell et al. 1975). This type of T2-filtering 
is often achieved using the CPMG sequence (Carr & Purcell 1954; Meiboom 
& Gill 1958), which is a 1D NMR experiment consisting of a loop of spin 
echoes, and can be very useful in e.g. metabolomics studies (Liu et al. 1996). 
However, the approach might not be suitable for absolute quantification due 
to frequent signal intensity modulations in CPMG spectra. 

The molecular diffusion rate is also related to the molecular size, with 
small molecules diffusing faster than larger molecules, and this is the 
fundament of diffusion-ordered spectroscopy (DOSY) NMR experiments 
(Morris & Johnson 1992). By recording several 1D spectra with a varying 
gradient strength, or a varying delay to allow diffusion, a “pseudo-2D” 
spectrum is obtained where one axis displays the chemical shifts and the 
other axis separates signals based on the diffusion coefficients of their parent 
molecules. Diffusion can also be used as a spectral editing tool in 1D spectra, 
provided that there are pronounced differences in diffusion rate among the 
sample components. When the gradient is strong enough, or the diffusion 
delay long enough, the resulting spectrum will consist solely of signals from 
slowly diffusing species. By subtracting this diffusion-edited spectrum from 
a conventional 1D spectrum, a spectrum without signals from large 
molecules is obtained. This technique, although not innately quantitative, has 
been used in metabolomics to analyse protein-containing plasma samples 
(Liu et al. 1996; de Graaf & Behar 2003; Bliziotis et al. 2020). 

4.2.3 Selective NMR experiments for improved resolution 
Issues with both signal interferences and spectral dynamic range can be 
reduced considerably by using different kinds of selective NMR 
experiments, in which a spectral region containing one or several signals is 
selectively excited. The selective pulse can be incorporated into other pulse 
sequences, e.g. TOCSY, to visualize signals that are connected to the initially 
excited signal. Selective experiments are thus very useful for identifying and 
characterizing individual chemical species in highly overlapped spectra. 
Because the remaining spectrum is left untargeted, selective experiments can 
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also improve the sensitivity and visibility of minor signals substantially. The 
experimental time can therefore often be reduced compared to analogous 
non-selective experiments. It should be noted, however, that selective NMR 
experiments are typically not suitable for absolute quantification because the 
relative signal intensities are often distorted compared to non-selective 
spectra. 

Numerous selective NMR experiments exist, including different versions 
of the 1D-TOCSY experiment. The classic 1D-TOCSY approach is to excite 
one isolated signal of interest to observe the other signals in the spin system. 
This strategy has for example been used for detection and relative 
quantification of different amino acids in honey, despite them being about 
1000 times less abundant than the dominating sugars glucose and fructose 
(Sandusky & Raftery 2005). Even better performance of the 1D-TOCSY 
experiment, in terms of selectivity and signal line shapes, is obtained when 
a DPFGSE is used for excitation (Xu & Evans 1996). 

The degree of selectivity can be adjusted depending on the research 
objective and the spectral properties. In cases where there are no isolated 
signals for a compound of interest, “ultra-selective” excitation of desired 
signals can be achieved using a chemical shift selective filter (Hall & 
Norwood 1988; Kiraly et al. 2021). The combination of chemical shift 
selective filters and 1D-TOCSY enabled visualization of individual low-
concentration sugars in honey, despite extensive spectral overlap in the non-
selective spectrum (Schievano et al. 2017). In other cases, when the overlap 
is less severe and several compounds are of interest, band-selective 
approaches can be more efficient. For instance, band-selective 2D DPFGSE-
TOCSY and DPFGSE-NOESY experiments have been used to analyse 
minor components in mango juice, honey, and sake (Koda et al. 2011). 

Band-selective DPFGSE-TOCSY for selective signal suppression 
In 1999, an NMR experiment was presented that combines a DPFGSE 
sequence (Figure 5) with a TOCSY spin-lock to enable suppression of 
undesirable NMR signals while retaining other signals that reside in the same 
spectral region (Figure 8) (Rutherford et al. 1999). In this experiment, the 
DPFGSE selective 180° pulse is set to target the spectral region containing 
the unwanted signals, so that all signals in this region initially become 
defocused by the gradient pulses. Signals in remaining parts of the spectrum 
are refocused in the spin echo. During the subsequent TOCSY spin-lock, 
defocused signals that are J‑coupled to at least one other signal not affected 
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by the selective pulse are reintroduced to the spectrum by magnetization 
transfer (Figure 8). Signals without any neighbours outside of the suppressed 
frequency range remain defocused and do not appear in the resulting 
spectrum. Obviously, all signals belonging to the same spin system as the 
unwanted signals need to be targeted by the selective pulse for the unwanted 
signals to be removed from the spectrum. 

 
Figure 8. Illustration of the effect of the DPFGSE-TOCSY experiment on an imaginary 
spectrum containing signals of interest (grey) obscured by intense, unwanted signals. The 
entire region containing unwanted signals is initially suppressed, after which signals are 
reintroduced by through-bond magnetization transfer from non-suppressed spins. 

This DPFGSE-TOCSY experiment was originally developed to suppress 
signals from a benzyl ether protecting group, which allowed observation of 
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previously obscured anomeric carbohydrate signals (Rutherford et al. 1999). 
Two-dimensional extensions of the pulse sequence were later published, 
including HSQC and TOCSY, for the same application (Kövér et al. 2000). 
Seemingly independent of these studies, analogous pulse sequences have 
been used to reveal signals otherwise covered by intense signal from water 
(Liu et al. 2001) or polyethylene glycol (Prosa et al. 2013). Apart from these 
examples the approach has been very sparsely used, despite its potential 
versatility. 

4.3 Computational approaches 
A third major strategy is to reduce or resolve signal interferences 
computationally, after the spectrum has been acquired. Compared to physical 
and spectroscopic methods, computational approaches are often faster and 
more suitable for automation, thus they enable higher sample throughput. 

In targeted metabolomics, spectral deconvolution is the most common 
way to resolve signal interferences (introduced in section 3.4). The aim of 
spectral fitting, also called targeted profiling (Weljie et al. 2006), is to 
combine reference spectra of individual compounds to get a model spectrum 
highly similar to the experimental spectrum. Spectral fitting is suitable for 
both identification and quantification of compounds with overlapped signals 
and the approach is widely used in metabolomics. Unknown metabolite 
signals or signals from macromolecules that interfere with signals of interest 
can be modelled using e.g. wavelets (Hao et al. 2012) or Lorentzians (de 
Graaf et al. 2015) to enable absolute metabolite quantification. Alternatively, 
broad background signals can be regarded as a form of baseline distortion, 
thus they can be modelled using baseline correction functions (Zheng et al. 
2011; Jacob et al. 2017). 

The small molecule enhancement spectroscopy (SMolESY) method 
(Takis et al. 2020) uses a totally different approach to reduce signal 
interferences. By calculating the derivative of the imaginary part of the NMR 
data, broad signals are selectively suppressed whilst the line widths of other 
signals are significantly reduced. As a result, most interferences are 
eliminated in a SMolESY spectrum. 
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The overarching aim of this thesis was to design, optimize, and implement 
methods for reduction of different types of signal interferences in NMR 
spectra of complex mixtures. In particular, the methods should be 
computationally straightforward and require minimal sample preparation 
and manipulation. The resulting simplification of the spectra could greatly 
facilitate compound identification, characterization, or quantification. 
 
The specific aims of the thesis were as follows: 

 
 Develop an NMR approach for suppression of unwanted signals in NMR 

spectra of complex mixtures (paper I) 
 

 Complete 1H and 13C NMR spectral assignment and signal 
characterization of the minor furanose forms of D-glucose, with the help 
of NMR experiments developed in paper I (paper II) 
 

 Develop a workflow for automated metabolite quantification in highly 
complex 1D-1H NMR spectra from plant root exudates (paper III) 

  

5. Thesis aims 
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Paper I of this thesis introduces a band-selective DPFGSE-TOCSY NMR 
experiment called SUN (suppression of unwanted signals). SUN was 
intended as a tool for identifying and characterizing minor components of 
complex mixtures, specifically when signals from one or a few abundant 
compounds cause severe overlap in a limited spectral region. For example, 
biological samples often contain large amounts of sugar, whose signals can 
completely dominate the region 3-4 ppm in 1H NMR spectra. With SUN, it 
is possible to selectively suppress unwanted signals and uncover other, 
previously obscured, signals in crowded spectral regions. The performance 
of SUN was demonstrated on different samples that contained large amounts 
of sugars such as glucose and fructose. 

6.1 SUN pulse sequences 
The general SUN pulse sequence, which is based on earlier DPFGSE-
TOCSY sequences (Rutherford et al. 1999; Kövér et al. 2000), is shown in 
Figure 9. Depending on the sample type and research question at hand it 
might be more appropriate to employ band-selective excitation instead of 
suppression, i.e. to select a spectral region of interest rather than focusing on 
the signals to be suppressed (Figure 10). Two versions of SUN were 
therefore developed utilizing the two different strategies; the only difference 
is whether the DPFGSE contains a hard 180° pulse or not. 

6. Suppression of unwanted signals 
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Figure 9. The SUN pulse sequence with (A) band-selective suppression and (B) band-
selective excitation. Black rectangles represent hard pulses and shaped white bars 
represent selective pulses. By default the selective pulses are I-BURP-2 shapes (Geen & 
Freeman 1991), although other shapes may be used instead. PFGs are denoted GZ. White 
trapezoids with arrows represent swept-frequency 180° pulses that together with the two 
surrounding 90° pulses and the gradient pulses G0 and G3 constitute the z-filter 
(Thrippleton & Keeler 2003). The inclusion of a solvent presaturation step is optional. 
The pulse sequences may be extended into analogous 2D experiments. 

 
Figure 10. The distribution of unwanted signals (here, the intense signals) determines 
which version of the SUN experiment that is more appropriate to use in order to remove 
these signals. A) When the unwanted signals are located in a limited region of the 
spectrum (here 3‑5 ppm) they can easily be removed using band-selective suppression. 
B) When the unwanted signals are spread out across the spectrum, it is difficult to target 
them all with a selective pulse. Here, it is better to use the opposite strategy and 
selectively excite a spectral region containing only signals of interest (e.g. 4‑5 ppm). 

In the SUN pulse sequences, the MLEV‑17 spin-lock (Bax & Davis 1985) 
previously used for TOCSY transfer has been exchanged to a DIPSI‑2 
isotropic mixing scheme (Rucker & Shaka 1989). Before and after the 
TOCSY step, an efficient “z‑filter” (Thrippleton & Keeler 2003) has been 
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introduced to suppress zero-quantum coherences, i.e. unwanted 
z‑magnetization that would otherwise cause anti-phase distortions in the 
spectrum. The combination of the z‑filter and DIPSI‑2 mixing scheme led to 
improved line shapes in the SUN spectra. 

The selective pulses are I-BURP-2 shapes (Geen & Freeman 1991) by 
default, for both suppression and excitation, but they can be exchanged to 
other shapes if desired. Furthermore, these pulses may be tuned to target two 
or more parts of the spectrum simultaneously if the unwanted (or wanted in 
the case of excitation) signals are not all localized to one spectral region. A 
solvent presaturation step can also be included if necessary. 

In addition to the 1D experiments, several 2D and pseudo-2D extensions 
of SUN were developed, namely TOCSY, HSQC, HMBC, DOSY, and 
J‑resolved spectroscopy. With these experiments, the interference from 
unwanted signals can be further reduced by dispersing the signals in two 
dimensions. 

Finally, it should be noted that it is possible to replace the TOCSY mixing 
scheme with a NOESY sequence to retain signals based on their spatial 
proximity, rather than through-bond connectivity, to non-suppressed signals. 
This mechanism for magnetization transfer is less efficient than the TOCSY 
type, at least for small molecules, and was not explored in paper I. However, 
the approach might be useful in certain cases and it has been successfully 
implemented before using a different pulse sequence (Liu et al. 2001). 

6.2 Application to complex mixtures 
The SUN experiments were applied to a number of complex mixtures to 
evaluate the performance of the approach. All mixtures contained high 
concentrations of sugar that caused more or less severe spectral overlap and 
dynamic range problems in the non-selective NMR spectra. The sugar 
signals were reduced substantially in the SUN spectra, which increased the 
visibility of other signals. 

6.2.1 Orange juice 
Orange juice is a sample consisting mainly of water (~90 %) and the sugars 
sucrose, glucose, and fructose (Figure 11A). Additionally, it contains other 
metabolites such as amino acids and organic acids. Using either version of 
the 1D SUN experiment, the sugar ring proton signals could be completely 
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eliminated from the orange juice spectrum which revealed other, previously 
obscured, metabolite signals in the region 3.2-4.3 ppm (Figure 11B). No 
apparent difference in sugar suppression or retention of other signals was 
observed between the spectra obtained using band-selective suppression of 
the sugar region (3.0-5.5 ppm) and the spectra obtained by exciting the 
regions surrounding the sugar signals (here -0.1-2.7 ppm and 6.0-8.8 ppm). 
2D SUN‑TOCSY experiments were also conducted, with analogous sugar 
suppression as with the 1D versions. 

 
Figure 11. NMR spectra of orange juice mixed with 10 % D2O. A) 1D‑1H spectrum, 
recorded using excitation sculpting for water suppression. B) 1D SUN spectrum with 
band-selective suppression of the region 3.0-5.5 ppm (highlighted in red). DMP = 
dimethylproline. 
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6.2.2 Artificial mixtures 
To evaluate the performance of SUN when applied to even more challenging 
samples, artificial mixtures were prepared. All mixtures were dissolved in 
D2O and contained 1 mM each of ascorbic acid, choline, citric acid, γ‑amino-
butyric acid (GABA), histidine, isoleucine, leucine, malic acid, phenyl-
alanine, proline, and valine. Some of the mixtures also contained 1 mM 
sinigrin or 1 mM DSS‑d6. When DSS was included, its signal was used as a 
chemical shift reference, signal shape indicator, and to normalize spectra for 
intensity comparisons. Additionally, an excess of glucose was added to the 
mixtures, resulting in glucose concentrations of 10 mM, 100 mM, and 
1000 mM, respectively. The vast span in glucose content and dynamic range 
among the mixtures is visualized in Figure 12A-C. For reference a mixture 
without glucose, but otherwise identical to the other samples, is also included 
(Figure 12D). In the SUN spectrum recorded with band-selective 
suppression of the glucose region, the glucose signals are almost entirely 
suppressed and the spectral dynamic range is dramatically improved 
compared to the non-selective spectrum (Figure 12E and F). As evidenced 
by the similar signal intensities in Figure 12D and F, the spectrum was 
largely unaffected by the SUN pulse sequence outside of the targeted region. 

Three different SUN approaches (see below) were evaluated on each 
artificial mixture. In all experiments, the glucose signals were treated as 
unwanted. Different experiments were executed for each SUN approach but 
because the glucose suppression was highly similar in analogous 1D and 2D 
experiments, only 1D spectra are shown here for simplicity. 

Band-selective suppression of the entire glucose region (3.1-5.5 ppm) 
efficiently suppressed the glucose signals but, unsurprisingly, caused the loss 
of certain metabolite signals that were not recovered in the TOCSY step 
(Figure 13). Utilizing the opposite approach, i.e. selective excitation of the 
regions upfield and downfield from glucose, produced very similar spectra. 
Interestingly, the suppression efficiency of the glucose signals was the same 
for all three mixtures (≥ 99 %) but because of the larger concentration ratios 
in the 100 and 1000 mM glucose samples, the remnants of the glucose signals 
are more prominent in these SUN spectra, compared to the other metabolite 
signals, than they are in the spectrum of the 10 mM glucose mixture 
(Figure 13). Accordingly, compound identification became increasingly 
difficult with increasing concentration differences due to more severe 
interference from residual glucose signals. 
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Figure 12. 1D-1H NMR spectra of artificial mixtures containing glucose in different 
concentrations and 1 mM each of ascorbic acid, choline, citric acid, GABA, histidine, 
isoleucine, leucine, malic acid, phenylalanine, proline, valine, and DSS-d6. Each sample 
was prepared in D2O. Spectra A-D are non-selective whereas E and F show a SUN 
spectrum acquired with band-selective suppression of the spectral region 3.1-5.5 ppm. 
The intensities of all spectra were normalized to the DSS signal. Spectra D and F have 
been magnified 30 times compared to the other spectra to enhance the visibility of the 
low-intensity signals. 
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Figure 13. 1D-1H NMR spectra of artificial mixtures containing glucose in different 
concentrations and 1 mM each of a number of other compounds (1: ascorbic acid, 
2: choline, 3: citric acid, 4: GABA, 5: histidine, 6: isoleucine, 7: leucine, 8: malic acid, 
9: phenylalanine, 10: proline, 11: valine, and DSS-d6). Spectra A and E are non-selective 
whereas B, C, and D show SUN spectra acquired with band-selective suppression of the 
spectral region 3.1-5.5 ppm (highlighted in red) and a TOCSY mixing time of 50 ms. 
Compared to the displayed intensity of spectrum A, the vertical scale has been magnified 
500 times in spectra B-D and 250 times in spectrum E for better visualization. 

In another SUN experiment, the two major glucose signal regions (i.e. the 
regions containing the anomeric signals and the ring proton signals, 
respectively) were targeted separately to obtain a more specific suppression 
of the glucose signals (Figure 14). All non-glucose signals were then retained 
and could easily be identified in the spectra recorded on the 10 mM and 
100 mM glucose mixtures (Figure 14C and D). Due to the very large 
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concentration differences in the 1000 mM glucose sample, the traces of the 
glucose signals in this spectrum obscured several of the other signals despite 
the fact that the glucose suppression was again ≥ 99 % (Figure 14B). The 
residual glucose is actually not the only source of interference in Figure 14B; 
there are also a number of other, relatively intense, signals present that 
neither correspond to glucopyranose (the six-membered ring forms that 
account for > 99 % of glucose molecules) nor to any other compound added 
to the mixture. These signals were later assigned to the furanose forms of 
glucose and were thoroughly investigated in paper II (discussed in Chapter 
7). As can be seen in Figure 14, the glucopyranose residues in the SUN 
spectra displayed more pronounced phase distortions when two regions were 
targeted compared to when one single region was suppressed as in Figure 13. 

As could be expected, the restored signals in the SUN spectra are 
generally less intense than the signals outside of the suppressed region. This 
is especially apparent when the spectra are compared with the non-selective 
spectrum of the mixture without glucose (Figures 12-14). Both the number 
of chemical bonds over which the magnetization needs to be transferred and 
the size of the coupling constants between a suppressed signal and its non-
suppressed neighbours influence the intensity of the reintroduced signals. 
The TOCSY mixing time also determines what signals are reintroduced, as 
well as their intensity. Consequently, the SUN experiments are not directly 
quantitative. 

6.3 Optimizing SUN 
The SUN experiments were relatively straightforward to set up. Ideally, it 
should be sufficient to specify the spectral region or regions that contain 
unwanted signals (or wanted signals in the case of the band-selective 
excitation version) before executing an experiment. In most cases, however, 
the experimental parameters needed to be optimized to a greater or lesser 
extent before satisfactory suppression of the unwanted signals was achieved. 
In general, it became more crucial to optimize the settings the more intense 
the unwanted signals were compared to the signals of interest. 
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Figure 14. 1D-1H NMR spectra of artificial mixtures containing glucose in different 
concentrations and 1 mM each of a number of other compounds (1: ascorbic acid, 
2: choline, 3: citric acid, 4: GABA, 5: histidine, 6: isoleucine, 7: leucine, 8: malic acid, 
9: phenylalanine, 10: proline, 11: valine, and DSS-d6). Asterisks indicate glucofuranose 
signals. Spectra A and E are non-selective whereas B, C, and D show SUN spectra 
acquired with band-selective suppression of the spectral regions 3.15-3.95 ppm and 4.50-
5.30 ppm (highlighted in red) and a TOCSY mixing time of 80 ms. Compared to the 
displayed intensity of spectrum A, the vertical scale has been magnified 500 times in 
spectra B-D and 250 times in spectrum E for better visualization. 
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The exact spectral region, or regions, to be targeted by the band-selective 
pulse is the most important factor affecting the suppression of the unwanted 
signals. Both the target bandwidth (i.e. the duration of the selective pulse and 
its RF field strength) and the target frequency need to be set appropriately. 
When two spectral regions were targeted, the best results were obtained 
when the regions were equally wide, both in the case of suppression and 
excitation experiments. In the SUN pulse sequences published in paper I 
there is therefore only one option to define the target bandwidth, even if 
several regions are selected. 

In general, the biggest challenge when performing the SUN experiments 
was the phase of residual unwanted signals. Especially when band-selective 
suppression was used, the spectra often suffered from phase distortions that 
became more severe when two spectral regions were suppressed instead of 
one (see Figures 13 and 14). Distorted phase and line shapes of multiplet 
signals, so called J-modulation, is a common artefact in spin echo 
experiments and might be avoided by using “perfect echo” sequences in 
which a central 90° pulse refocuses homonuclear couplings (Takegoshi et al. 
1989; Aguilar et al. 2012). Attempts were made to create a perfect echo 
version of SUN but without success. The phase problems could however be 
reduced by fine-tuning the precise phases of the band-selective pulses. 
Because zero-quantum coherences can also cause phase distortions, 
adjusting the z-filter gradient pulses might improve the phase properties. The 
SUN spectra recorded with band-selective excitation generally had less 
phase distortions and did not require adjustment of the pulse phases.  

The length of the 90° pulse can also affect the quality of the SUN spectra; 
in fact, changing the pulse length with as little as 0.1 µs might influence the 
suppression efficiency as well as the phase of residual unwanted signals. 
However, the difference was only appreciable when the unwanted signals 
were much more intense than the wanted signals, such as in the artificial 
mixtures containing 100 mM and 1000 mM glucose. 

Finally, the TOCSY mixing time affects what signals are reintroduced to 
the spectrum as well as their relative intensity. Thus, this parameter can be 
adjusted depending on what type of information is desired. When the mixing 
time is long, more signals are reintroduced although their intensity may 
decrease somewhat due to relaxation. 
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6.4 Applicability of SUN 
When developing SUN, it was envisioned that the experiments would find 
their use primarily in metabolomics and other research fields that focus on 
complex biological samples. That there is a desire to suppress strong sugar 
signals in spectra of biological samples was confirmed in a recent publication 
by Singh et al. (Singh et al. 2024). However, the focus of the method 
presented there was not to uncover new signals in the sugar region, which is 
the purpose of SUN, but rather to increase the sensitivity in other spectral 
regions by decreasing the overall dynamic range. SUN also reduces the 
spectral dynamic range and improves S/N in non-suppressed spectral 
regions, but this is not its primary merit. Using SUN, previously obscured 
signals can be revealed that might be crucial for compound identification, 
especially when other signals are affected by severe interference. Although 
SUN was used to suppress signals from different sugars in paper I (as well 
as in paper II, which will be discussed in the next chapter), the approach is 
flexible and can be readily adapted to different sample types with varying 
types of interference issues. The major limitation of SUN is that J-couplings 
are required for signal retention, and therefore all singlets as well as certain 
other signals will disappear from the spectrum. This problem can be 
minimized by adequate selection of the spectral region to be suppressed, 
possibly by targeting several regions rather than one, but cannot be avoided 
completely unless another mechanism for magnetization transfer is used. 
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When analysing the NMR spectra of the artificial mixtures, a few signals that 
could not be assigned either to glucose or to any of the other compounds 
added to the mixture were observed both in 1D-1H spectra (Figure 14) and 
in 1H,13C-HSQC spectra. In the samples containing 10 mM and 100 mM 
glucose these signals were of low intensity, but in the sample with 1000 mM 
glucose they were comparable in size to the other metabolite signals. Upon 
reflection, there was two reasonable explanations for the presence of these 
signals: either the glucose used to prepare the artificial mixtures was not 
entirely pure, or the signals belonged to a minor form of glucose. A literature 
search revealed that some of these signals had in fact previously been 
assigned to the glucofuranose anomers. In paper II, all 1H and 13C NMR 
signals of these minor glucose forms were completely characterized, partly 
using SUN experiments. 

7.1 The anomeric forms of D-glucose 
In solution, most reducing sugars do not only have one possible structure but 
instead alternate between different ring and linear forms in an anomeric 
equilibrium. The relative amounts of the different forms vary between 
different sugars and can also shift depending on solvent, temperature, pH, 
and sample concentration. Glucose has six different anomeric forms: two six-
membered rings (pyranoses), two five-membered rings (furanoses), and two 
linear forms (aldehyde and hydrate, respectively) (Figure 15). However, the 
non-pyranose forms of glucose are rarely considered due to their extremely 
low abundance. Over 99 % of glucose molecules assume pyranose forms in 
aqueous solution whereas the relative concentrations of the individual 
furanose and linear forms are estimated to merely be about 0.3 % and 

7. Spectral assignment of D-glucofuranose 
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0.005 %, respectively (Williams & Allerhand 1977; Maple & Allerhand 
1987; Zhu et al. 2001). The relative concentrations of the minor forms of 
glucose increase with increasing temperature but none of them exceed 1 % 
even at 82-87 °C (Maple & Allerhand 1987; Kaufmann et al. 2018). 

 

Figure 15. The anomeric equilibrium of D-glucose in solution. 

7.2 Assignment of the D-glucofuranose 1H and 13C NMR 
signals 

Prior to paper II, a few studies presenting NMR data of the furanose forms 
of D-glucose had been published. Interestingly, only one study contains 1H 
NMR data (Kaufmann et al. 2018) whereas the rest were conducted using 
13C NMR spectroscopy (Williams & Allerhand 1977; Maple & Allerhand 
1987; Zhu et al. 2001). The previous literature data is summarized in Table 1. 
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Table 1. Literature NMR data on the furanose forms of D-glucose. 

Reference Observed 
atoms 

Conc. 
(M) 

Temp. 
(°C) pH/pD 

1H field 
strength 
(MHz) 

Williams & 
Allerhand 1977 

β-C1, β-C2, 
β-C4 2-4 41-43  4.3-4.7 60 

Maple & Allerhand 
1987a α-C1, β-C1 1.4 27-82 4.8, 6.0 200 

Zhu et al. 2001a α-C1, β-C1 2 30 n.d.b 600 
Kaufmann et al. 2018 α-H1, β-H1c 0.2 27-87 2.5 600 

a [1-13C]-glucose was used 
b Not determined 
c Observed when the temperature was 37 °C or more 

The sparse NMR data available might seem to suggest that the glucofuranose 
signals are very difficult to detect in most NMR spectra. This is actually not 
the case; at least with a magnetic field strength of 600 MHz and a reasonably 
concentrated glucose sample (here ≥ 100 mM) they are clearly observable in 
both 1D-1H and HSQC NMR spectra (Figure 16). The lower sensitivity of 
13C NMR spectroscopy makes the glucofuranose signals more difficult to 
detect in 1D-13C spectra, but even then they become visible when enough 
transients are recorded (Figure 16). It was therefore rather surprising to learn 
that the majority of the signals have never been assigned. However, the 
furanose forms of glucose are extremely rare as building blocks in 
biomolecules, which together with their very low abundance might explain 
the limited previous interest in studying them by NMR spectroscopy. 
Furthermore, the much more intense pyranose signals is a severe source of 
interference in non-selective spectra, especially 1H NMR spectra. 

To study the putative glucofuranose NMR signals closer, different NMR 
experiments were performed. First, a 1D-13C NMR spectrum was recorded 
on [1‑13C]-labelled glucose, which confirmed that the signals denoted α1 and 
β1 in Figure 16 indeed belong to two different glucose anomers, in agreement 
with earlier studies (Williams & Allerhand 1977; Maple & Allerhand 1987; 
Zhu et al. 2001). The intensity of these signals compared to the pyranose 
anomeric signals is within the previously reported glucose furanose/pyranose 
ratios. This, together with the experimental results described below, meant 
that it could be concluded beyond doubt that all the minor signals indicated 
in Figure 16 belong to the furanose forms of glucose. 
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Figure 16. 1D-1H, 1D-13C, and 1H,13C-HSQC NMR spectra of D-glucose (1 M in D2O, 
pD 7.0) at 25 °C. Previously identified glucofuranose signals (Williams & Allerhand 
1977; Maple & Allerhand 1987; Kaufmann et al. 2018) are assigned whereas the arrows 
indicate other probable glucofuranose signals. 13C-satellites in the 1D-1H spectrum are 
marked with asterisks. 

The three isolated glucofuranose signals in the 1D-1H NMR spectrum, i.e. 
the ones at 5.49 ppm (previously identified as α-furanose H1 (Kaufmann et 
al. 2018)), 4.31 ppm, and 4.24 ppm, respectively, were excited in separate 
selective 1D-TOCSY experiments. The pulse sequence used was the 
excitation version of SUN but with a Gaussian selective pulse, instead of the 
I-BURP-2 normally used for band-selective excitation, to allow excitation of 
a single signal. The experiments revealed two different spin systems that 
each contained seven signals (Figure 17A and B). 
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Figure 17. Assignment of all glucofuranose 1H and 13C NMR signals. A) 1D-1H NMR 
spectrum of α-glucofuranose, recorded using a 1D-TOCSY experiment where the signal 
at 4.31 ppm (H3) was selectively excited. B) 1D-1H NMR spectrum of β-glucofuranose, 
recorded using a 1D-TOCSY experiment where the signal at 4.24 ppm (H3) was 
selectively excited. C) Non-selective 1D-13C NMR spectrum of glucose with the visible 
furanose signals assigned. The cropped unassigned signals are from the pyranose 
anomers. D) Multiplicity-edited SUN-HSQC spectrum of glucose obtained by band-
selective excitation of the 1H region 4.10-4.40 ppm. Blue signals indicate CH carbons 
whereas green indicate CH2 carbons. The glucofuranose signals are assigned. Unassigned 
cross-peaks are mainly remnants or artefacts from the pyranose signals. The TOCSY 
mixing time was 100 ms in A), B), and D). The sample used was a 1 M solution of 
D‑glucose in D2O (pD 7.0) and the temperature was 25 °C in all experiments. 

The relative order of the signals in the glucofuranose spin systems was 
established by performing series of selective 1D-TOCSY experiments with 
different mixing times (20-120 ms). The coupling constants of the anomeric 
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1H signals were used to assign one spin system to the α-anomer and the other 
to the β-anomer of glucofuranose, based on previous observations on similar 
molecules (Angyal & Pickles 1972; Kiely & Benzing Nguyen 1975; 
Hayward & Angyal 1977; Lubineau & Fischer 1991; Kaufmann et al. 2018). 
The complete 1H NMR signal assignment is shown in Figure 17A and B. 

The 13C NMR signals of both glucofuranose spin systems were visualized 
in a SUN-HSQC spectrum recorded with band-selective excitation of the 1H 
region 4.10-4.40 ppm, i.e. signals H2, H3, and H4 from each furanose 
anomer. In the SUN-HSQC spectrum, all signals from the two spin systems 
are clearly visible without interference from the pyranose signals 
(Figure 17D). The 13C NMR signals were then assigned based on the 1H 
signal assignment (Figure 17C and D). It is worth pointing out that the signal 
previously ascribed to β‑furanose C2 (Williams & Allerhand 1977) actually 
corresponds to β-C4, and vice versa. 

7.3 Relative quantification of glucopyranose and 
glucofuranose 

Relative quantification of the pyranose and furanose glucose anomers at 
25 °C was performed using 1D-1H and 1D-13C NMR spectra recorded under 
quantitative conditions. The glucofuranose T1 values were not measured but 
were assumed to be similar to those of glucopyranose, i.e. 1-2 s for both 1H 
and 13C (Williams & Allerhand 1977; Mulder et al. 2019). In both 
experiments, the magnetization flip angle was 30° and long relaxation delays 
(20 s for 1H and 40 s for 13C) were used to ensure complete relaxation. 

In the 13C NMR experiment, [1‑13C]-glucose was used and all glucose 
forms were quantified based on their respective anomeric signals. In the 1H 
NMR spectrum, the anomeric signals of both β‑pyranose and β-furanose are 
affected by signal interference and the quantification was therefore based on 
the following signals: α-pyranose H1 or H2, α-furanose H1 or H3, 
β‑pyranose H2 or H6a, and β-furanose H3. It was found that the α-pyranose 
anomer accounted for 37.5 % and the β‑pyranose for 62.2-62.3 % of the total 
glucose, which agrees well with previous findings (Williams & Allerhand 
1977; Maple & Allerhand 1987; Zhu et al. 2001; Roslund et al. 2008; 
Maebayashi et al. 2017). The concentrations obtained for the furanose forms 
were around 0.12 % for both α- and β-furanose. In the 1H NMR spectrum, 
β‑furanose appeared to be slightly more abundant (0.13 % compared to 
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0.12 % for α-furanose) but no difference was found in the 13C NMR 
spectrum. The proportions are comparable with results from most of the 
previous studies (Williams & Allerhand 1977; Maple & Allerhand 1987; 
Kaufmann et al. 2018). It should be noted that the anomeric equilibrium 
proportions of glucose are affected by e.g. temperature (Maple & Allerhand 
1987; Kaufmann et al. 2018), sample concentration (Williams & Allerhand 
1977; Maebayashi et al. 2017), buffer concentration (Los et al. 1956), pH, 
and solvent (Hyvönen et al. 1977). Therefore, the results presented here 
(acquired at 25 °C on 1 M D‑glucose dissolved in a D2O-based phosphate 
buffer with pD 7.0) might not be directly transferrable to other studies where 
different conditions were used. 

7.4 Determination of chemical shifts and coupling 
constants 

The 13C NMR chemical shifts of the glucofuranoses are reported in Table 2. 
If possible, the chemical shifts were collected from a 1D-13C NMR spectrum. 
Due to interference from the pyranose signals, the C2 signal of α-furanose 
and the C5 signal of β-furanose are obscured in the 1D spectrum and their 
chemical shifts were instead read from an HSQC spectrum. Due to the lower 
resolution of the HSQC spectrum compared to the 1D-13C spectrum, the 
uncertainty of the reported α-C2 and β-C5 shifts is higher than for the other 
signals. Because previous studies used TMS as a chemical shift reference, 
the shifts were referenced both to DSS and to TMS. The obtained chemical 
shifts agree well with previous findings for both glucofuranose (Williams & 
Allerhand 1977; Zhu et al. 2001) and the corresponding methyl 
glucofuranosides (Ritchie et al. 1975). Table 2 also lists one-bond 13C-1H 
coupling constants for the glucofuranoses, determined by extracting 1D 
traces from a high-resolution SUN-HSQC spectrum recorded without carbon 
decoupling. The sensitivity, i.e. S/N, of this SUN-HSQC spectrum was lower 
than in the spectrum shown in Figure 17D and it also, naturally, decreased 
with increasing signal splitting. Furthermore, as previously discussed 
(section 6.2.2), the intensity of signals reintroduced via TOCSY transfer is 
lower than that of the other signals. As a result, Jα-C5,α-H5 could not be 
determined and the uncertainty of all JC6,H6 values was relatively high due to 
the splitting pattern and spectral location of these signals. 
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Table 2. 13C NMR chemical shifts (δ, ppm)a and 1JC,H coupling constants (Hz)b of α- and 
β-glucofuranose in D2O (25 °C, pD 7.0). 

  C1 C2 C3 C4 C5 C6 

α 

δDSS 

δTMS 

(1JC,H) 

99.43 
97.64 

(172.6) 

78.49c 

76.69c 
(152.6) 

78.16 
76.36 

(153.1) 

80.51 
78.71 

(146.3) 

71.92 
70.12 
(n.d.)d 

65.95 
64.15 

(6a: 143.3) 
(6b: 142.7) 

β 

δDSS 

δTMS 

(1JC,H) 

104.98 
103.18 
(172.7) 

82.98 
81.18 

(154.5) 

77.38 
75.58 

(153.1) 

83.40 
81.60 

(147.8) 

72.27c 
70.47c 
(146.8) 

66.08 
64.28 

(6a: 143.3) 
(6b: 142.7) 

a Relative to DSS-d6 or TMS at 0 ppm, as indicated in the table 
b Standard error ≈ 0.1 Hz, except for the C6/H6 couplings where the error was ≈ 0.5 Hz 
c Determined from an HSQC spectrum and the uncertainty is therefore around 0.01 ppm 
d Not determined 

Determination of the 1H NMR chemical shifts and coupling constants was a 
little less straightforward. Although approximate values could be read 
directly from the 1D-spectra, spin simulations were needed to get more exact 
estimates, especially of the coupling constants. The approximate values from 
the experimental spectra were used as starting point for the simulations, after 
which the chemical shifts, J-values, and signal line widths were optimized in 
an iterative manner until the simulated spectra highly resembled the 
experimental spectra, as judged by visual evaluation. The determined 
chemical shifts and coupling constants are listed in Table 3 and the simulated 
spectra are shown in Figures 18 and 19. 

Table 3. 1H NMR chemical shifts (δ, ppm)a and JH,H coupling constants (Hz)b of α- and 
β-glucofuranose in D2O (25 °C, pD 7.0). 

 δH1 
(3J1,2) 

δH2 
(3J2,3) 

δH3 
(3J3,4) 

δH4 
(3J4,5) 

δH5 
(3J5,6a, 3J5,6b) 

δH6a 
(2J6a,6b) 

δH6b 

α 
5.486 
(3.96) 

4.108 
(2.42) 

4.306 
(3.85) 

4.119 
(8.50) 

3.850 
(2.87c, 6.22) 

3.790 
((-)12.00) 

3.642 

β 
5.213 
(< 1)d 

4.104 
(≈ 1.2)d 

4.238 
(4.19) 

4.098 
(9.00) 

4.009 
(2.75, 6.05) 

3.838 
((-)11.99) 

3.679 

a Relative to DSS-d6 at 0 ppm 
b Standard error ≤ 0.05 Hz if not stated otherwise 
c Standard error ≈ 0.1 Hz 
d Standard error > 0.1 Hz 
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Figure 18. Experimental (A and B) and calculated (C) 1H NMR spectra of the α- and β-
glucofuranose ring proton signals. A non-selective experimental 1D spectrum (A) was 
used as input to simulate the H2, H3, and H4 signals, whereas remaining signals were 
simulated based on a 1D-SUN spectrum recorded with band-selective excitation of the 
region 4.10-4.40 ppm and a TOCSY mixing time of 100 ms (B). The regions of the 
experimental spectra that were used for the simulations are marked in red. Asterisks in 
A) denote glucopyranose 13C satellites. 

Because both signal line shapes and relative signal intensities may be 
distorted in selective spectra, the simulations were based on a non-selective 
spectrum whenever it was possible (i.e. for α-furanose H1-H4 and β-furanose 
H2-H4) (Figure 18A). For remaining signals, selective spectra had to be used 
as input due to overlap with the pyranose signals in the non-selective 
spectrum. Primarily, a band-selective SUN spectrum displaying both α- and 
β-furanose signals was used (Figure 18B) because the intensities and line 
shapes in this spectrum were generally better preserved compared to more 
selective spectra. However, selective spectra containing only signals from 
α‑furanose or β-furanose were also used when determining the coupling 
constants (Figure 19). As can be seen in Figures 18 and 19, the simulated 
spectra agree well with the experimental spectra, hence the estimated 
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chemical shifts and coupling constants reported here are not far from their 
actual values. In an analogous investigation of the glucopyranose tautomers, 
long-range 1H-1H couplings were identified in addition to two- and three-
bond couplings (Roslund et al. 2008). No glucofuranose long-range 
couplings were resolved in the spectra analysed here and so they are probably 
small in size if present at all. The variation of the 1H NMR chemical shifts 
with temperature has previously been investigated for the anomeric signals 
of glucofuranose and was found to be around 0.01 ppm, relative to 
β‑pyranose, in the temperature range 37-87 °C (Kaufmann et al. 2018). The 
chemical shifts reported here are based on spectra recorded at 25 °C; some 
deviation from these values is thus to be expected in spectra recorded at 
different temperatures. 

 

 
Figure 19. Experimental (exp.) and calculated (sim.) 1H NMR spectra of the signals H2, 
H4, H5, H6a, and H6b from α-glucofuranose and β-glucofuranose, respectively. The 
experimental spectra are 1D-TOCSY spectra obtained by selective excitation of the 
respective H3 signals and a mixing time of 100 ms. 
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7.5 Relevance 
The furanose forms of D-glucose are neglected in most studies due to their 
low abundance and the fact that they are practically absent in nature as 
biomolecular building blocks. Nevertheless, values of the glucofuranose 
chemical shifts and coupling constants can be useful when studying complex 
mixtures that contain large amounts of glucose, where the glucofuranose 
signals might be comparable in intensity to other minor compounds. The data 
can also be relevant when molecules that are similar to glucofuranose are 
studied. In fact, the data reported in paper II has already been used to 
characterize products from organic synthesis (Porter et al. 2023) and a fungal 
polysaccharide (Lamon et al. 2023). Furthermore, the furanose forms have 
been shown to be very important for the total reactivity of glucose 
(Kaufmann et al. 2018), something which could be further explored using 
the data presented here. 

Another significant feature of paper II is that it again demonstrates how 
powerful selective and band-selective NMR experiments are for studying 
minor components of complex NMR spectra. The pyranose forms of glucose 
are 300-500 times more abundant than the furanose forms and their signals 
obscure the majority of the furanose signals in non-selective 1H NMR 
spectra. In the SUN spectra, the pyranose signals were almost entirely 
suppressed which allowed the furanose chemical shifts and coupling 
constants to be determined with high precision. 
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The majority of targeted NMR-based metabolomics studies are performed 
on the biofluids blood plasma, blood serum, or urine. Consequently, most 
quantification methods to date have been developed specifically for these 
sample types and practically all signals in their NMR spectra can be assigned 
based on literature data (Psychogios et al. 2011; Bouatra et al. 2013; Nagana 
Gowda et al. 2022). Analysis of many other types of samples remains more 
challenging due to their higher complexity and the limited reference data 
available. This was certainly the case for the system under investigation in 
paper III, namely plant root exudates. The root exudate 1D-1H NMR spectra 
contained numerous metabolite signals and were further complicated by the 
presence of broad background signals. To enable metabolite quantification, 
a fully automated workflow was developed that first removes the 
interference from broad signals and then uses AQuA (Röhnisch et al. 2018) 
to compute accurate metabolite concentrations. The developed workflow, 
called extended AQuA, is a fast, accurate, and general approach that is 
applied to NMR spectra post-acquisition. 

8.1 Plant root exudates studied by NMR spectroscopy 
Plant roots continuously release a wide variety of compounds into the 
rhizosphere. This process is called exudation and has several functions, 
including mobilization of soil nutrients and mediation of plant-plant and 
plant-microbe interactions. The resulting root exudates are highly complex 
mixtures that contain primary metabolites such as sugars, amino acids, and 

8. Automated removal of broad background 
signals for accurate metabolite 
quantification  
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organic acids, as well as secondary metabolites and other compounds (Vives-
Peris et al. 2020). 

Although root exudates are important indicators of plant status, they are 
not well studied by NMR spectroscopy. The few existing studies have been 
performed using as diverse plant species as barley (Fan et al. 1997, 2001), 
wheat (Fan et al. 2001), rice (Fan et al. 2001), Gladiolus (Taddei et al. 2002), 
tomato (Escudero et al. 2014), cucumber (Zhao et al. 2016), pea (Fortier et 
al. 2023), and faba bean (Fortier et al. 2023). In paper III, root exudates from 
hydroponically grown oilseed rape (Brassica napus subsp. napus) seedlings 
were investigated. Figure 20 shows a 1D-1H NMR spectrum of a rapeseed 
root exudate sample, freeze-dried and dissolved in D2O (pD 7.0) without 
further treatment. The spectra were very crowded and contained no signal-
free regions at all between ~0.5 ppm and ~8 ppm (although many signals 
were of very low intensity), which made it difficult to correct the spectral 
baseline. Furthermore, the spectra contained several broad signals, especially 
around 4 ppm (Figure 20B) and around 1 ppm (Figure 20C). 

Metabolites were identified in the rapeseed root exudate NMR spectra 
based on literature data (Vives-Peris et al. 2020) and by manual spectral 
fitting using the Chenomx software and its inbuilt spectral library (version 
8.6, Chenomx Inc., Edmonton, Canada). All assignments were verified by 
2D NMR experiments and the 13C NMR chemical shifts from HSQC spectra 
were compared with reference values from the Biological Magnetic 
Resonance Data Bank (Ulrich et al. 2008). Chenomx is primarily intended 
for biofluids and therefore it was not possible to assign all signals using this 
software. However, one aim of paper III was to investigate the accuracy of 
quantifying a subset of the metabolites present in a spectrum, and therefore 
it was decided to only target primary metabolites. All targeted metabolites 
are assigned in Figure 20. Figure 20A also shows the sum of the fitted 
reference spectra. One signal per metabolite was selected for quantification 
with AQuA, as indicated in Figure 20. However, the broad background 
signals had to be taken care of before AQuA could be executed. 
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Figure 20. 1D-1H NMR spectrum of a typical oilseed rape root exudate sample studied 
in paper III, with the signals apices that were used for quantification with AQuA 
assigned. Note that some targeted metabolites are below the limit of quantification in this 
particular sample. A) Experimental (Exp.) and fitted spectrum (Lib.). B) Region 1.7-
4.8 ppm of the experimental spectrum. C) Region 0.70-1.65 ppm of the experimental 
spectrum. 
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8.2 Suppression of broad signals in root exudate NMR 
spectra 

As described in chapters 3 and 4, it is common in NMR-based metabolomics 
to use different techniques for prevention or suppression of broad signals in 
the NMR spectra. However, such methods have not previously been used 
when preparing root exudates for NMR analysis and it appears that the broad 
signals have not been considered problematic in earlier studies (Fan et al. 
1997, 2001; Taddei et al. 2002; Escudero et al. 2014; Zhao et al. 2016; Fortier 
et al. 2023). In the previous studies, the sample preparation has typically only 
involved freeze-drying of the collected root exudate, dissolution in water, 
and possibly centrifugation or filtration to remove microorganisms and root 
residues. This type of workflow, hereafter referred to as minimal sample 
preparation, was used when preparing the sample shown in Figure 20. In two 
publications, the samples were additionally treated with a cation-exchange 
resin to remove paramagnetic ions (Fan et al. 1997, 2001) but this was not 
considered necessary for the samples analysed in paper III as the signal line 
widths were sufficiently narrow even without this procedure (the full width 
at half maximum of the DSS signal was ≤ 1.20 Hz). 

Different procedures for suppression or modelling of the broad signals in 
root exudate 1D-1H NMR spectra were evaluated. The broad signals were 
not identified, although they are likely caused by lipids (Taddei et al. 2002). 
Because AQuA has previously only been applied to ultrafiltered blood 
plasma, the root exudate samples were first passed through a 3 kDa filter. 
However, the broad signals were not affected by this treatment (Figure 21). 
Solid phase extraction (SPE) was more efficient but not all broad signals 
were eliminated and the procedure affected certain metabolite signals as well 
(Figure 21). Since neither ultrafiltration nor SPE could remove the broad 
signals entirely, it was concluded that they originate from molecules that are 
smaller than 3 kDa and have limited hydrophobic properties. 

Two NMR spectroscopic methods for suppression of broad signals – 
CPMG and 1D-diffusion-edited NMR – were also evaluated. Different 
settings for the T2 filter and the diffusion filter, respectively, were tested but 
it was not possible to find parameters that selectively targeted the broad 
signals. Instead, both experiments caused intensity modulations amongst the 
metabolite signals and the removal of broad signals was incomplete 
(Figure 21). Thus, there was no clear difference in T2 or diffusion coefficients 
between the metabolites and the compounds giving rise to the broad signals. 
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Figure 21. Evaluation of two experimental methods (ultrafiltration and SPE) and two 
NMR methods (CPMG and 1D-diffusion-edited NMR) for suppression of broad signals 
in the 1D-1H NMR spectrum of an oilseed rape root exudate sample. All spectra (black) 
are displayed overlaid with a 1D-NOESY presaturation spectrum recorded on the intact 
sample (grey) and a baseline at zero intensity (dashed). The 1D-diffusion difference 
spectrum is the result of subtracting a 1D-diffusion-edited spectrum recorded with high 
gradient strength (to defocus fast-diffusing compounds) from the 1D-NOESY spectrum. 

Two computational approaches were also evaluated. SMolESY (Takis et al. 
2020, 2021) is an interesting strategy that mathematically suppresses broad 
signals whilst preserving the quantitative quality of the remaining spectrum. 
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After applying SMolESY to the NMR spectrum of a root exudate, the broad 
signals were completely suppressed and the other signals were significantly 
narrower than in the original spectrum (Figure 22). However, despite the 
improved resolution, there were still signal interferences in the SMolESY 
spectrum and due to the unusual shape of the SMolESY signals, there is no 
spectral library available that can model these interferences. Hence, it would 
be challenging to apply AQuA to SMolESY spectra with the purpose of 
obtaining absolute concentrations. 

 
Figure 22. Evaluation of two computational methods (SMolESY and the baseline 
correction method airPLS, respectively) for suppression of broad signals in an oilseed 
rape root exudate 1D-1H NMR spectrum. The computationally treated spectra (black) are 
displayed overlaid with the original 1D-NOESY presaturation spectrum (grey) and a 
baseline at zero intensity (dashed). The airPLS spectrum was obtained by subtracting the 
airPLS-generated baseline from the experimental spectrum. 

Several studies have used a different approach, where broad signals are 
modelled using baseline correction functions (Provencher 1993; Zheng et al. 
2011; Jacob et al. 2017). When one such method, the adaptive iteratively 
reweighted penalized least squares (airPLS) algorithm (Zhang et al. 2010), 
was applied to a root exudate spectrum, the broad signals could be efficiently 
suppressed without any pronounced visible impact on the metabolite signals 
(Figure 22). This strategy thus emerged as the most suitable option for 
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implementation in an AQuA workflow, especially since the method is fast, 
non-destructive, and automatable. 

8.2.1 The airPLS algorithm 
The airPLS algorithm (Zhang et al. 2010) is an automatic baseline correction 
function that is centred around the Whittaker smoother (Whittaker 1922; 
Eilers 2003) and approximates a baseline by iterated fitting. This particular 
algorithm was selected in paper III both because it is one of the most widely 
used methods for automatic baseline correction and because the code is 
available in MATLAB format, which made it straightforward to combine it 
with AQuA. 

The smoothness of the baseline obtained with the airPLS algorithm is 
determined by the smoothing factor λ that can be set to any value between 
1 and 1 × 109 (Figure 23). Although optimization of λ can be automated to 
some extent, manual supervision is usually necessary (Eilers 2003; Zhang et 
al. 2010). In the spectral processing tool NMRProcFlow, which uses the 
airPLS algorithm for local baseline corrections in regions with broad 
background signals, the number of λ values has been reduced to just six 
options where 1 results in “soft” correction and 6 leads to “high” correction 
(Jacob et al. 2017). In paper III a similar approach was adopted since it was 
found that it did not make much difference to the fitted baseline when λ was 
changed with less than a factor of 10. Optimizing the algorithm by visual 
inspection was thereby relatively fast and straightforward. 

8.3 The extended AQuA workflow 
The airPLS algorithm was combined with AQuA into an automated 
MATLAB-based workflow for calculation of absolute metabolite 
concentrations from 1D-1H NMR spectra with broad background signals and 
baseline distortions. The workflow is illustrated in Figure 24. First, the 
airPLS algorithm is used to model broad signals and other baseline 
irregularities. The fitted baseline generated by the airPLS algorithm is then 
subtracted from the experimental spectrum to eliminate the broad signals. 
The resulting calculated spectrum is subjected to AQuA to compute 
metabolite concentrations. For the spectra analysed in paper III, the entire 
workflow targeting 24 metabolites could be performed in less than 1 second 
per spectrum. 
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Figure 23. Illustration of the effect of the λ value on the baseline correction obtained 
using the airPLS algorithm. The figures include the region 1.255-1.365 ppm of an 
experimental root exudate spectrum (black), the fitted baselines (dashed red), the 
experimental spectrum after subtracting the fitted baselines (grey), and a reference 
baseline at zero intensity (dashed black). 
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Figure 24. The extended AQuA workflow. An automatic baseline correction function 
(the airPLS algorithm) is used to model broad background signals. The fitted baseline is 
then subtracted from the experimental spectrum to generate a spectrum without broad 
signals. AQuA resolves remaining signal interferences and calculates absolute 
concentrations based on the height of one selected signal apex per metabolite. 

8.4 Evaluation of the extended AQuA 
Since AQuA has already been validated (Röhnisch et al. 2018, 2021), 
evaluation of the extended AQuA focused on the airPLS step. The idea of 
modelling broad signals as a baseline is not new, however the approach is 
often not evaluated separately other than by visual inspection. More common 
is that the model as a whole (i.e. the sum of all metabolite signals and broad 
signals) is evaluated based on its fit with the experimental spectrum 
(Provencher 1993; Zheng et al. 2011). In paper III, the absolute accuracy of 
the approach was investigated using simulations and spectra from a spike-in 
experiment. In both data sets, the rationale was to create pairs of matching 
spectra that have equal intensities of narrow metabolite signals, but where 
one of the spectra also contains broad background signals to be removed with 
the airPLS algorithm. The accuracy of the baseline correction could then be 
assessed by comparing the absolute signal intensities in the two spectra. If 
the airPLS algorithm suppressed the broad signals completely, without 
affecting the metabolite signals, the intensities in the spectra would be 
exactly the same. Higher signal intensities in the airPLS-corrected spectrum 
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than in the matching spectrum would be the result of incomplete broad signal 
suppression, whereas lower intensities would indicate that the algorithm 
suppressed both the broad signals and parts of the metabolite signals, i.e. that 
the fitted baseline was too flexible (see e.g. λ = 10 in Figure 23). 

8.4.1 Simulations 
To construct the simulated data set, reference NMR spectra of 24 different 
metabolites (acetic acid, alanine, asparagine, aspartic acid, choline, formic 
acid, fructose, fumaric acid, GABA, glucose, glyceric acid, isoleucine, lactic 
acid, leucine, maleic acid, malic acid, succinic acid, sucrose, tartaric acid, 
threonine, uracil, uridine, valine, and xylose) were summed together into one 
narrow signal spectrum. This spectrum was scaled into seven intensity levels, 
without changing the intensity ratio between the metabolites, and merged 
with three simulated backgrounds of varying smoothness. In that way, 21 
simulated NMR spectra were generated (Figure 25). 

The data set was evaluated in a high throughput manner. After analysing 
a few spectra to identify suitable λ values, the airPLS algorithm was applied 
three times to each spectrum, using three different λ values (1 × 106, 1 × 107, 
and 1 × 108). No further parameter optimization was performed. The airPLS-
generated baselines were subtracted from the spectra, after which signal 
intensities in the corrected spectra were compared with the intensities of the 
same signals in the corresponding narrow signal spectra using linear 
regression and by calculating percentage differences. The results are 
summarized in Table 4. If the baseline correction worked perfectly, the signal 
intensities in the corrected spectra would be the same as in the narrow signal 
spectra, i.e. the slopes and R2 coefficients would both be close to one whereas 
the intercepts and percentage differences would be close to zero. On average, 
this was indeed the case (Table 4). The roughest background (A in Figure 25) 
was the most difficult to model correctly, hence the relatively large intercepts 
and percentage differences. The choice of λ value typically became more 
important the more complex the spectral background was (Figure 26). 
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Figure 25. Illustration of the procedure for constructing the simulated NMR spectra. 
A simulated spectrum with narrow metabolite signals was scaled into seven different 
intensity levels and added to three spectral background models (A, B, and C), thus 
generating 21 simulated spectra. For clarity, only the spectra of intensity levels 1, 4, and 
7 are shown. 
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Table 4. Median and mean (the latter in parentheses) percentage differences (Diff %)a 
and linear regression outcomes (slope, intercept, and R2 value)b comparing signal 
intensities in airPLS-corrected simulated NMR spectra with intensities in the matching 
narrow signal spectra. The different spectral background models (A, B, and C) were 
evaluated separately using three different λ values. 

Background λ Diff % Slope Interceptc R2 

A 

106 
5.2 

(7.0) 
0.9541 

(0.9496) 
0.0287 

(0.1055) 
0.9999 

(0.9982) 

107 
2.0 

(8.0) 
0.9806 

(0.9584) 
0.1014 

(0.2722) 
0.9999 

(0.9964) 

108 
5.9 

(20.1) 
0.9882 

(0.9723) 
0.2342 

(0.6513) 
0.9999 

(0.9966) 

B 

106 
5.7 

(7.2) 
0.9473 

(0.9366) 
0.0181 

(0.0316) 
1.0000 

(1.0000) 

107 
3.0 

(4.3) 
0.9848 

(0.9726) 
0.0437 

(0.0572) 
1.0000 

(0.9998) 

108 
2.6 

(6.7) 
0.9918 

(0.9818) 
0.0746 

(0.1856) 
1.0000 

(0.9993) 

C 

106 
5.3 

(6.8) 
0.9475 

(0.9367) 
0.0133 

(0.0240) 
1.0000 

(0.9999) 

107 
2.1 

(3.6) 
0.9817 

(0.9700) 
0.0143 

(0.0340) 
0.9999 

(0.9998) 

108 
1.3 

(3.2) 
0.9894 

(0.9818) 
0.0230 

(0.0597) 
0.9999 

(0.9994) 
a Calculated separately for 24 metabolite signals in each pair of matching spectra using the following formula: 
100 × |Intensitynarrow spectrum - Intensitysimulated spectrum| / Intensitynarrow spectrum 
b Linear regression was performed comparing the intensities of 24 signals in the simulated narrow signal spectra 
(summed reference spectra) (x-axis) with the intensities of the same signals in the corresponding airPLS-
corrected simulated spectra (y-axis). This was done separately for each metabolite across seven scaling levels (1, 
2, 3, 4, 5, 6, and 7 arbitrary intensity units, see Figure 25). 
c Absolute values (in arbitrary intensity units) 
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Figure 26. The effect of different λ values on the baseline correction of the formic acid 
region and the lactic acid/threonine region, respectively, of the simulated spectra (black). 
The spectra were created from background A, B, or C, as indicated in the figure, and a 
narrow signal spectrum of medium intensity (level 4 in Figure 25, shown in red for 
reference). 

8.4.2 Spike-in experiment 
Using the simulated NMR spectra, the performance of the airPLS algorithm 
could be evaluated across a wide range of metabolite signal intensities and 
spectral background features. However, in many of the simulated spectra the 
intensity of the background relative to the metabolite signals was much 
higher than what is commonly encountered in metabolomics samples 
(compare the spectra in Figure 25 with the spectrum in Figure 20). A spike-
in experiment was therefore conducted as a complement to the simulations, 
with more representative intensity ratios between metabolite signals and the 
spectral background. 
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Five metabolites (asparagine, GABA, tartaric acid, threonine, and xylose) 
were added to aliquots of a pooled root exudate sample and to aliquots of a 
blank sample, respectively (Figure 27). These metabolites were selected 
because they have signals of different multiplicities that are located in 
different spectral regions, with varying degree of interference from other 
metabolite signals or the spectral background. In contrast to the simulations, 
the concentrations of the spiked-in metabolites were varied in a Latin square 
fashion so that each blank-sample pair had a unique concentration ratio 
between the different metabolites. Furthermore, the actual concentration 
ranges varied between the different metabolites to reflect biological 
variation. Importantly, none of the spiked-in metabolites was originally 
present in the root exudate sample, which again made it possible to evaluate 
the absolute accuracy of the broad signal suppression. 

The spiked root exudate spectra contained both broad signals and signals 
from other metabolites and were therefore subjected to the airPLS algorithm. 
Here, the λ value was optimized individually for all metabolite signals (1-5 
in Figure 27) in each spectrum, based on visual inspection. It was found that 
the same λ value (1 × 107) could be used for the regions of asparagine, tartaric 
acid, and xylose, regardless of concentration. Because the signal of GABA 
is relatively broad, it was necessary to use a higher λ value in this spectral 
region to avoid that the algorithm subtracted a part of the signal. Conversely, 
the threonine region contained a broad signal for which a lower λ value was 
needed. Remaining parts of the spectra were not considered in the 
optimization procedure but were corrected using λ = 1 × 107. 

AQuA was used to compute concentrations in both the blank spectra and 
the corrected root exudate spectra based on the signals indicated in Figure 27. 
The calculated concentrations are reported in Table 5. Here, the blank spectra 
were used as the references for assessing the accuracy of the baseline 
correction performed on the root exudate spectra. Although the spectra were 
recorded on different samples, the calculated concentrations were overall 
very similar (Table 5). As could be expected, the broad signal in the 
threonine region was the most difficult to suppress, but even then the 
difference between the sample and the blank was less than 10 % for four out 
of five samples. Tartaric acid has been excluded from the table due to an 
experimental error that resulted in too much compound being added to the 
root exudate samples. 
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Figure 27. 1D-1H NMR spectra from the spike-in experiment. Upper panel: the pooled 
blank sample and matched pooled root exudate sample before (grey) and after (black) 
addition of the spike-in metabolites. The target signals (one per metabolite) used by 
AQuA to compute metabolite concentrations are marked in blue. Lower panel: 
Magnifications of the target signal regions, with the target signals indicated (arrows). 
Shown are the pooled root exudate sample without added metabolites (grey), the spiked 
root exudate sample with the smallest amount of the respective metabolites added 
(black), and the respective library signals (blue). Additionally, the library signals of 
acetic acid and lactic acid are shown (green) because of their overlap with the signals of 
GABA and threonine, respectively. 



80 

Table 5. Calculated concentrations in the spiked blank samplesa and in the spiked root 
exudate samplesb. 

Metabolite 
λ 

sample 

Conc. 
sample 
(µM) 

Conc. 
blank 
(µM) 

Diff % 
blank-

samplec 

Mean 
diff % 

Asparagine 

1 × 107 128 133 3.8 

2.7 
1 × 107 251 257 2.4 
1 × 107 507 522 2.8 
1 × 107 1021 1042 2.1 
1 × 107 2057 2110 2.5 

GABA 

1 × 108 25 27 6.4 

4.0 
1 × 108 51 55 8.0 
1 × 108 104 107 3.3 
1 × 108 206 209 1.7 
1 × 108 415 418 0.7 

Threonine 

1 × 105 15 13 15.4 

6.2 
1 × 105 27 26 2.2 
5 × 105 56 51 9.0 
1 × 106 102 99 3.2 
1 × 106 200 198 1.4 

Xylose 

1 × 107 207 197 5.2 

1.2 
1 × 107 398 398 0.1 
1 × 107 775 774 0.1 
1 × 107 1539 1535 0.2 
1 × 107 3048 3046 0.1 

a Calculated using an AQuA that included asparagine, GABA, lactic acid, tartaric acid, threonine, and xylose 
b Calculated using an airPLS-extended AQuA that included 24 metabolites (acetic acid, alanine, asparagine, 
aspartic acid, choline, formic acid, fructose, fumaric acid, GABA, glucose, glyceric acid, isoleucine, lactic acid, 
leucine, maleic acid, malic acid, succinic acid, sucrose, tartaric acid, threonine, uracil, uridine, valine, and 
xylose). The λ values that were used are indicated in the table. For remaining spectral regions, λ = 1 × 107 was 
used. 
c Calculated using the following formula: 100 × |Cblank - Csample| / Cblank 
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8.5 Concluding remarks 
The extended AQuA was developed as a fast and quantitative alternative to 
sample preparation procedures and NMR experiments that are used to 
eliminate broad background signals in metabolomics 1D-1H NMR spectra. 
The approach was found to be both linear and accurate and could be applied 
after minimal sample preparation. After a quick and straightforward 
optimization process, the extended AQuA automatically removed 
interferences from broad background signals and quantified absolute 
metabolite concentrations in less than 1 second per spectrum, regardless of 
the number of metabolites that were targeted.  

Evaluation of the extended AQuA was performed by comparing spectra 
that had identical contribution from narrow metabolite signals but differed in 
their broad signal background. This set-up, although somewhat 
unconventional, allowed for a precise evaluation of the method performance. 
New methods are often evaluated primarily based on their performance 
relative to other methods, but that allows only for a relative estimation of the 
accuracy. The outcome of spike-in experiments is usually assessed by 
comparing the calculated concentrations with the actual (weighed) amounts. 
When the spike-in experiment of paper III was evaluated, the actual 
metabolite concentrations were deliberately not considered because that 
would have introduced another possible source of error, namely differences 
in signal shapes or relative intensities between the database and the 
experimental spectra that can affect the accuracy of calculated 
concentrations. Here, any deviations between the corrected spectra and the 
corresponding narrow signal spectra were due to the method performance or, 
in the case of the spike-in experiment, experimental errors, but not by 
discrepancies between the database and the analysed spectra. 

Smoothing algorithms such as the airPLS algorithm are general in nature 
and can be executed regardless of the origin of the broad signals. Therefore, 
the extended AQuA should be readily applicable to NMR spectra from many 
different kinds of samples, both within the metabolomics field and beyond, 
as long as the quantified compounds are unaffected by macromolecular 
interactions. Furthermore, both the airPLS algorithm and AQuA can be 
replaced by alternative methods for baseline correction and quantification, 
respectively, as long as the selected methods are compatible with each other. 
However, this was not explored in paper III. 
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The work in this thesis focused on the development, evaluation, and 
implementation of two distinct strategies for reduction of interference in 
NMR spectra of complex mixtures of small molecules. 

In paper I, a family of 1D and 2D NMR experiments called SUN was 
devised and optimized. SUN is an efficient and straightforward strategy for 
reduction of signal interference and dynamic range issues, and is especially 
suitable for NMR spectra with intense, unwanted signals that are localized to 
one or a few spectral regions. As demonstrated in both paper I and paper II, 
SUN and other selective NMR experiments are very useful for identifying 
and characterizing minor components of complex mixtures. In paper II, the 
SUN experiments enabled the complete spectral assignment of the minor 
furanose forms of D-glucose. 

Future applications of SUN could include the study of trace compounds 
in biological samples that contain large amounts of sugars, such as milk, 
blood, and fruit extracts. However, SUN is not limited to the suppression of 
sugar signals but can be used to reduce interference in spectra from different 
sample types. The 1D SUN experiments could also be used as faster 
alternatives to conventional 2D-1H,1H NMR experiments such as TOCSY, 
especially when the primary aim is to increase signal resolution. Apart from 
finding new applications, future work should investigate whether the 
performance of SUN could be improved by modifying the pulse sequence, 
for instance by using different selective pulses or by incorporating a perfect 
echo element. The catalogue of SUN experiments could also be further 
expanded, for example by creating NOESY versions of the pulse sequences. 

Paper III tackled another type of signal interference, namely that of broad 
background signals and other baseline distortions whose presence prevent 
accurate metabolite quantification. An automated, high-throughput 

9. Conclusions and future perspectives 
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workflow – the extended AQuA – was designed that first removes these 
interferences computationally and then calculates absolute metabolite 
concentrations. The extended AQuA was successfully used to quantify 
metabolites in highly complex 1D-1H NMR spectra from plant root exudates. 
Because the method is purely computational it can potentially be applied to 
quantitative spectra of different origins, even from other analytical 
techniques than solution-state NMR spectroscopy. 
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Nuclear magnetic resonance (NMR) spectroscopy is an important analytical 
technique in several different research fields. The principle behind NMR 
spectroscopy is that certain types of atomic nuclei generate small magnetic 
fields that make them “NMR active”. When these nuclei are placed in a 
strong, external magnetic field, they begin to rotate about their own axis at a 
frequency that is dependent on their local electrochemical environment. For 
example, a hydrogen atom attached to an oxygen atom will rotate at a slightly 
higher frequency than a hydrogen atom attached to a carbon atom. These two 
hydrogen atoms then give rise to two different signals in an NMR spectrum, 
while atomic nuclei located in exactly the same environment are observed as 
a single signal with an intensity proportional to the number of nuclei. This 
means that NMR spectroscopy can be used both to study the structure of 
molecules in detail and to quantify different components in a mixture. 

A common problem in NMR spectroscopy is signal interference, also 
called spectral overlap. Different atomic nuclei that are situated in a similar 
electrochemical environment rotate at approximately the same frequency in 
the external magnetic field and their signals will therefore overlap with each 
other in the resulting NMR spectrum. Interference can make it difficult to 
distinguish individual signals, especially when strong signals overlap with 
weak signals, and it can thus become difficult or even impossible to identify 
and quantify certain molecules. The higher the complexity of a certain 
mixture, i.e. the larger the number of different molecules in the mixture and 
the greater the differences in concentration between the molecules, the 
greater the risk of signal interference. Most biological samples, e.g. plant 
extracts, blood and tissues, are highly complex and their NMR spectra 
consequently display a lot of signal interference. 

Popular science summary 
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Problematic signal interference can be prevented by physically separating 
the different components of a sample before analysis, for example by 
filtering the sample or by using some type of chromatography, but this is 
often both expensive and time consuming and might cause misleading results 
as the sample changes in the process. Another way to reduce signal 
interference is to use certain NMR experiments or mathematical methods. 
These options are considerably faster than a physical separation, especially 
as they can be applied to intact samples. This thesis describes two such 
methods, an NMR experiment and a mathematical workflow, both of which 
are designed to reduce signal interference by removing unwanted signals 
from NMR spectra. 

The NMR experiment described in this thesis is called SUN (suppression 
of unwanted signals) and is used to reduce specific unwanted signals so that 
other, low-intensity signals can be studied. To evaluate and optimize the 
SUN experiment, it was applied to various samples, including orange juice 
and three artificial mixtures containing high amounts of sugar. SUN, in 
combination with other selective NMR experiments, was also used to 
describe and characterize all NMR signals from the minor furanose forms of 
glucose, even though these forms only make up about 0.2% of all glucose in 
water solution. 

The second method presented in this thesis is an extension of the 
quantification method AQuA (automated quantification algorithm) and 
enables absolute quantification of metabolites from complicated NMR 
spectra with interference from both narrow and broad signals. The new, fully 
automated, workflow first performs an automatic baseline correction to 
specifically remove broad signals from NMR spectra and then uses AQuA 
to calculate accurate concentrations. The extended AQuA method was 
evaluated using simulations and by adding known amounts of a few different 
substances to a plant sample. The entire workflow took less than one second 
per spectrum when 24 metabolites were quantified. 
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Kärnmagnetisk resonansspektroskopi, förkortat NMR (från engelskans 
nuclear magnetic resonance), är en viktig analytisk teknik inom flera olika 
forskningsfält. Principen bakom NMR-spektroskopi är att vissa typer av 
atomkärnor genererar små magnetfält som gör dem ”NMR-aktiva”. När 
dessa atomkärnor placeras i ett starkt, yttre magnetfält börjar de att rotera 
runt sin egen axel med en frekvens som är beroende av deras lokala 
elektrokemiska miljö. En väteatom som är bunden till en syreatom kommer 
till exempel att rotera med en lite högre frekvens än en väteatom som är 
bunden till en kolatom. Dessa två väteatomer ger sedan upphov till två olika 
signaler i ett NMR-spektrum, medan atomkärnor som befinner sig i exakt 
samma miljö observeras som en enda signal med en intensitet som är 
proportionell till antalet kärnor. Detta gör att NMR-spektroskopi kan 
användas både för att detaljstudera molekylers struktur och för att kvantifiera 
olika komponenter i en blandning. 

Ett vanligt förekommande problem inom NMR-spektroskopi är 
signalinterferens, även kallat överlapp. Olika atomkärnor som befinner sig i 
liknande elektrokemisk miljö roterar med ungefär samma frekvens i det yttre 
magnetfältet och deras signaler kommer därför att överlappa med varandra i 
det resulterande NMR-spektrumet. Interferens gör att det kan vara svårt att 
urskilja enskilda signaler, speciellt när starka signaler överlappar med svaga 
signaler, och det kan därför bli svårt eller rentav omöjligt att identifiera och 
kvantifiera vissa molekyler. Ju komplexare en blandning är, d.v.s. ju fler 
olika molekyler blandningen innehåller och ju större skillnader i 
koncentration mellan molekylerna, desto större är risken för signal-
interferens. De flesta biologiska prover, t.ex. växtextrakt, blod och vävnader, 
är väldigt komplexa och deras NMR-spektra uppvisar följaktligen mycket 
signalinterferens. 

Populärvetenskaplig sammanfattning 
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Problem med signalinterferens kan förhindras genom att fysiskt dela upp 
ett provs olika komponenter innan analys, till exempel genom att filtrera 
provet eller genom att använda någon typ av kromatografi, men detta är ofta 
både dyrt och tidskrävande och riskerar dessutom att ge missvisande resultat 
eftersom provet förändras i processen. Ett annat sätt att minska 
signalinterferens är att använda särskilda NMR-experiment eller 
matematiska metoder. Dessa alternativ är betydligt snabbare än en fysisk 
separation, särskilt som de kan appliceras på intakta prover. Denna 
avhandling handlar om två sådana metoder, ett NMR-experiment och ett 
matematiskt arbetsflöde, som båda är framtagna för att reducera 
signalinterferens genom att ta bort oönskade signaler från NMR-spektra. 

NMR-experimentet som beskrivs i denna avhandling kallas SUN 
(suppression of unwanted signals) och används för att reducera specifika 
oönskade signaler så att andra signaler med lägre intensitet blir synliga och 
kan studeras. För att utvärdera och optimera SUN-experimentet applicerades 
det på olika prover, bland annat apelsinjuice och tre konstgjorda blandningar 
som innehöll stora mängder socker. SUN, i kombination med andra selektiva 
NMR-experiment, användes även för att beskriva och karakterisera alla 
NMR-signaler från de ovanliga furanosformerna av glukos, trots att dessa 
former bara utgör ca 0,2 % av all glukos i vattenlösning. 

Den andra metoden som presenteras i denna avhandling är en utvidgning 
av kvantifieringsmetoden AQuA (automated quantification algorithm) och 
möjliggör absolutkvantifiering av metaboliter från komplicerade NMR-
spektra med interferens från både smala och breda signaler. Det nya, helt 
automatiserade, arbetsflödet utför först korrigering av baslinjen för att 
specifikt ta bort breda signaler från NMR-spektra och använder därefter 
AQuA för att beräkna korrekta koncentrationer. Den utökade AQuA-
metoden utvärderades med hjälp av simuleringar och genom att spetsa ett 
växtprov med kända halter av några olika ämnen. Hela arbetsflödet tog 
mindre än en sekund per spektrum när 24 metaboliter kvantifierades. 
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Band-selective NMR experiments for suppression
of unwanted signals in complex mixtures†

Elin Alexandersson, Corine Sandström, Lena C. E. Lundqvist and Gustav Nestor *

Band-selective NMR experiments are presented that allow selective suppression of unwanted signals (SUN)

from the spectra of complex metabolite mixtures. As a result, spectral overlap and dynamic range problems

are substantially reduced and low-intensity signals normally covered by dominant signals can be observed.

The usefulness of the experiments is exemplified with selective suppression of sugar signals from the NMR

spectra of fruit juice and a plant sample. Other possible applications include blood, milk, and wine samples.

Introduction

Biological samples typically contain numerous different
metabolites with large variations in concentration, where
certain compounds are present in considerably higher
concentration than others. This complexity causes severe
spectral overlap and dynamic range problems when the samples
are analysed by NMR spectroscopy. For instance, NMR spectra
of plant extracts, fruit juices, blood, milk, and tissues are typi-
cally dominated by sugars such as glucose, fructose, sucrose,
and lactose, meaning that other metabolite signals in the
spectral region �3–5 ppm are obscured by the sugar signals.
Sample pre-treatment, e.g. chromatography, is therefore oen
needed before the NMR analysis to enable low-abundant
metabolites to be studied. Alternative ways to study complex
mixtures by NMR have been developed. Onemethod is to record
a second spectrum of the sample where an extra amount of the
abundant metabolite has been added and then calculate the
difference between the two spectra.1 However, this requires
sample manipulation, highly stable conditions, and extensive
spectral tting. Another way to remove carbohydrates is to
chemically degrade them by adding an oxidative agent to the
sample before analysis.2 Although allegedly efficient, this
strategy is irreversible and might break down certain non-
carbohydrate molecules as well. Other approaches include
methods based on band-selective excitation of the spectral area
of interest3,4 (oen combined with statistical analyses5),
computational methods,6 and selective experiments utilizing
differences in relaxation, diffusion, and J-coupling, combined
with mathematical modelling.7,8

Most of the cited strategies require statistical and compu-
tational analyses and/or that the sample is altered in some way.

Our aim was to develop an NMR-based approach requiring
minimal sample manipulation and computational work that
still gives information about as many compounds in a mixture
as possible. In 1999, Rutherford et al. suggested an NMR
experiment for selective removal of benzylic methylene signals
from the spectra of benzyl ether-protected carbohydrates.9 The
method is based on the excitation sculpting pulse sequence10

and uses band-selective pulses to defocus all signals in
a selected region of the spectrum. This rst step is followed by
a TOCSY spin-lock that restores any signal in the selected region
that is J-coupled to a signal not affected by the excitation
sculpting sequence. 2D extensions of this method were later
developed for the same purpose11 and the principle, albeit with
a different pulse sequence, has also been employed to selec-
tively suppress signals from water12 and polyethylene glycol.13

We show here that modied versions of the original pulse
sequences9,11 can efficiently be used to selectively remove
signals from dominant compounds, e.g. sugars, in the spectra of
complex metabolite mixtures. Thereby, signals that are other-
wise hidden by the dominant signals can be observed. We call
the approach SUN, Suppression of UNwanted signals. The
experiments can be applied to any type of sample where certain
compounds are present in excess and cause spectral overlap
and/or dynamic range problems.

Results and discussion

An overview of the pulse sequences used in this work is shown
in Fig. 1. The rst one (Fig. 1A) is a modied version of the
methods described above.9,11 The second pulse sequence
(Fig. 1B) utilizes the opposite strategy, i.e. band-selective exci-
tation of the regions of the spectrum that do not contain the
metabolite(s) to be suppressed. The double-pulsed eld
gradient spin-echo (DPFGSE) suppression or excitation is fol-
lowed by a TOCSY spin-lock, here DIPSI-2 14 with zero-quantum
coherence suppression.15 As indicated in the gure, the pulse
sequences can be used in conjunction with e.g. TOCSY, HSQC,
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or HMBC to obtain various 2D experiments with band-selective
suppression or excitation. If desired, the band-selective inver-
sion pulse can be designed to target several regions of the
spectrum at the same time. It is crucial that all signals from the
dominant compound(s) are suppressed in the DPFGSE step;
otherwise they will also be restored during the spin-lock.

The performance of the SUN approach was evaluated using
an articial mixture containing twelve common plant metabo-
lites (proline, leucine, isoleucine, valine, histidine, phenylala-
nine, g-aminobutyric acid, choline, malic acid, citric acid,
ascorbic acid, and sinigrin) in equal concentrations and glucose
in higher concentration. The ratio between glucose and the
other metabolites was varied between 10 : 1 and 1000 : 1. Using
SUN with band-selective suppression, it was possible to
suppress the glucose signals almost entirely ($98%) (Fig. 2).
Several other signals in the area were retained, including the
alpha protons of proline, valine, leucine, and isoleucine, of
which the latter two were previously buried under the glucose
signals (Fig. 2B).

When band-selective excitation was used, almost identical
results were obtained in terms of glucose suppression, resolu-
tion, and signal-to-noise ratio (Fig. 3A and B) (note that Fig. 2
shows a mixture with the proportion 100 : 1 whereas it is
1000 : 1 in Fig. 3). However, the performance of this pulse
sequence appeared to be more sensitive to the exact positioning
of the selective pulse than the version with band-selective
suppression. Thus, both the width of the spectral regions
chosen for excitation and their location relative to each other
highly inuenced the suppression efficiency. The best
suppression of glucose signals was obtained when the two
spectral regions excited simultaneously were of the same width.

Although spectral overlap is less of a problem in two-
dimensional spectra, abundant compounds can still prevent
identication of other compounds present in lower concentra-
tion. Therefore, 2D analogues of the SUN pulse sequences were
developed, including TOCSY, HSQC, HMBC, DOSY, and J-
resolved spectroscopy with band-selective suppression or

excitation. The performance of the 2D experiments is illustrated
with 2D-SUN-TOCSY applied to the 1000 : 1 articial mixture,
carried out using band-selective excitation to selectively remove
glucose (Fig. 3C and D). An HSQC version was evaluated as well
(see Fig. S2†). It is apparent that the glucose suppression ob-
tained in the 2D experiments highly resembles that of their 1D
counterparts. Apart from the possibility of detecting analytes in
the glucose region, the improved receiver gain achieved both in
the 1D and 2D experiments when suppressing the glucose
signals signicantly improves identication of low-
concentration analytes throughout the spectra.

As expected, the length of the TOCSY spin-lock and the size
of the J-coupling between the suppressed signals and their non-
suppressed neighbours determine to what extent signals are
recovered in the TOCSY step. Since signal intensity is also
inuenced by the relaxation rate of the individual spins,
a compromise might be needed so that the mixing time is long
enough for TOCSY transfer to take place, but sufficiently short
to avoid signal attenuation due to relaxation. In the examples
presented here, the intensity of the recovered signals did not
accurately reect the actual concentration of the compounds,
meaning that quantitative analyses may require calibration
curves to determine the correlation between concentration and
signal intensity.

Since only signals that are J-coupled to another signal
located outside the targeted area can be reintroduced by the
TOCSY step, some non-glucose signals are missing from the
band-selective spectra presented in Fig. 2 and 3. For instance,

Fig. 1 General overview of the SUN pulse sequences used for (A)
band-selective suppression and (B) band-selective excitation. The
difference between the two versions is marked in red. Narrow black
rectangles denote 90� hard pulses while wide black rectangles denote
180� hard pulses. Shaped white bars represent band-selective inver-
sion pulses. White trapezoids with arrows denote chirp pulses aimed
for suppression of zero-quantum coherences.15 DIPSI-2 is used for
isotropic mixing.14

Fig. 2 SUN applied to an artificial mixture containing 100 mM D-
glucose and 1 mM of proline, leucine, isoleucine, valine, histidine,
phenylalanine, g-aminobutyric acid, choline, malic acid, citric acid,
ascorbic acid, and sinigrin. (A) 1D-1H spectrum where the region tar-
geted for band-selective suppression is highlighted in red, (B) 1D-SUN
with suppression of the region 3.0–5.5 ppm. The inset shows an
expansion of the region targeted by the band-selective pulse.
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the non-aromatic protons of histidine and phenylalanine were
not restored during the spin-lock. To obtain a more specic
suppression of glucose with minimal impact on the other
compounds, a band-selective inversion pulse targeting two

separate areas of the spectrum – 3.1–3.9 ppm (the glucose ring
protons) and 4.5–5.3 ppm (the anomeric protons) – was used.
Thereby, additional signals were retained, both in the area in-
between the glucose regions and directly underneath the

Fig. 3 SUN applied to an artificial mixture containing 100 mM D-glucose and 0.1 mM of proline, leucine, isoleucine, valine, histidine, phenyl-
alanine, g-aminobutyric acid, choline, malic acid, citric acid, ascorbic acid, and sinigrin. (A) 1D-1H spectrum, (B) 1D-SUN with excitation of the
spectral regions 5.8–8.6 ppm and�0.2-2.6 ppm, (C) 2D-TOCSY, (D) 2D-SUN-TOCSY with excitation of the same regions as in (B) and remaining
glucose signals coloured red.

Fig. 4 SUN applied to orange juice (left) and a rice root extract (right). (A) 1D-1H spectrum of orange juice recorded using excitation sculpting to
suppress the water signal. (B) 1D-1H spectrum of a rice root extract recorded using water presaturation. (C) 1D-SUN spectrum of orange juice
with band-selective suppression of the region 3.0–5.5 ppm (highlighted in red). The inset shows an expansion of the sugar ring proton region
3.0–4.3 ppm. DMP ¼ dimethylproline. (D) 1D-SUN spectrum of the rice root extract with band-selective suppression of the region 3.5–4.2 ppm
(highlighted in red). The inset shows an expansion of the fructose region 3.45–4.35 ppm.
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glucose signals (see Fig. S3†). Non-aromatic protons belonging
to histidine and phenylalanine could then be identied, as well
as the methylene protons from choline. Unfortunately, sup-
pressing two separate areas produced more severe phase
distortions, mainly affecting glucose, than with only one area
targeted. Both the suppression efficiency and the phase
distortions were affected by the width and position of the
selective pulse, as well as the pulse phase. Similar to when band-
selective excitation was used, the best results were obtained
when the two targeted regions were of equal size.

The SUN experiments were also applied to two authentic
samples: orange juice and a root extract from rice (Fig. 4). Fruit
juices are complex, sugar-rich mixtures that are oen analysed
by NMR for quality control reasons.16,17 As can be seen in Fig. 4A,
the orange juice spectrum was dominated by sucrose, fructose,
and glucose. The sugar signals could be completely suppressed
using the SUN pulse sequences which enabled identication of
other metabolites in the sugar region, including ethanol, argi-
nine, and dimethylproline (Fig. 4C). These metabolites were
identied based on 1D and 2D experiments (see Fig. S4†) as well
as already published orange juice signal assignments.17–19 It is
also worth noting that the water signal was highly reduced in
the band-selective experiment, even though no additional water
suppression was used.

The other sample had been collected from the soil
surrounding a rice plant root. Plant roots excrete a wide array of
different compounds into the soil, including sugars, organic
acids, and amino acids.20 In the spectra of the sample used here,
the sugar region was dominated by fructose (Fig. 4B). Although
not present in large excess, the fructose signals obstructed iden-
tication of other metabolites in the region 3.4–4.0 ppm. Since
the fructose signals are all concentrated to a narrow part of the
spectrum, a selective pulse targeting only this region was used in
the SUN experiment. The water signal is residing outside of this
region, and therefore a presaturation step was added to the pulse
sequence for water suppression. The resulting spectrum is shown
in Fig. 4D. With fructose removed, the signals belonging to the
alanine and valine alpha protons became clearly visible (Fig. 4D).
Two-dimensional TOCSY was performed for signal assignment,
with similar fructose suppression as in the 1D experiment.

Conclusions

Here we have presented two NMR experiments that are prom-
ising for suppression of unwanted signals in the spectra of
complex mixtures. Using the SUN approach, the intensity of
dominant signals can be dramatically reduced or completely
suppressed while other signals in the targeted spectral regions
are retained via J-coupling. Thus, problems caused by spectral
overlap and a too large concentration range can be solved
without physically altering the sample. In the most favourable
cases, the approach can be used to identify compounds whose
signals outside of the suppressed area are highly overlapped.
The experiments are fast and easy to use and can be readily
applied to practically any sample that contains high-intensity
signals localized to just one or a few regions of the NMR spec-
trum. Samples where this approach would be advantageous

include blood plasma, fruit juices, and different plant extracts.
Both SUN versions work well to suppress sugar signals and the
choice of which one to use depends on the experimental aim
and sample type. We believe that both versions can become
valuable tools in the study of complex mixtures.

Experimental
Sample preparation

Articial mixtures. The mixtures were prepared with the
following compounds (all purchased fromMerck): D-glucose, DL-
proline, L-leucine, L-isoleucine, L-valine, L-phenylalanine, L-
histidine, g-aminobutyric acid, choline chloride, malic acid,
citric acid, ascorbic acid, and sinigrin hydrate. The concentra-
tion of D-glucose was either 100 mM or 1000 mM while the
concentration of the other compounds was 10 mM, 1 mM, or
0.1 mM. All samples were prepared in D2O with a nal volume
of 600 ml.

Orange juice. Orange juice (1 ml) bought at a local super-
market was centrifuged at 13 500 rpm for 5 minutes. 540 ml of
the supernatant was thenmixed with 60 ml D2O in an NMR tube.

Rice root sample. The root from an eight-week old rice plant
was removed from the soil and vortexed for 1 min in 30 ml
MilliQ water, aer which the solution was freeze-dried. 100 mg
of the freeze-dried material was ultra-sonicated together with
8 ml methanol for 10 min and then centrifuged for 10 min at
5000 rpm. The supernatant was freeze-dried, aer which 380 ml
MilliQ water was added. Aer vortexing, the sample was ultra-
sonicated for 10 min and then centrifuged for 10 min at
5000 rpm. 350 ml of the supernatant was then mixed with 50 ml
D2O, 20 ml MilliQ water, 150 ml 0.4 M phosphate buffer (pH 7),
and 30 ml TSP internal standard (5.8 mM). To concentrate the
sample further, two identical samples prepared as described
above were pooled together, freeze-dried, and then dissolved in
150 ml D2O for NMR analysis.

NMR experiments

All spectra were acquired on a Bruker Avance III 600 MHz
spectrometer with a 5 mm 1H/13C/15N/31P inverse detection
cryoprobe equipped with a z gradient with a maximum nominal
gradient strength of 48.1 G cm�1. Spectra were recorded at 25 �C
and were processed with TopSpin 4.0.6. The 1H spectral window
was set to 9 ppm or 12 ppm and the 13C spectral window was set
to 110–122 ppm (HSQC). The carrier frequency was placed on
the water signal (4.70 ppm). Further details about the NMR
experiments are provided in the ESI.†
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S2 
 

1. Pulse sequences 

The pulse sequences for the 1D SUN experiments are shown in Fig. S1a and S1b. Narrow black 
rectangles denote 90° hard pulses while wide black rectangles denote 180° hard pulses. Shaped white 
bars represent band-selective inversion or excitation 180° pulses. IBURP-2 shapes were used for both 
suppression and excitation experiments. Typically, a 3.5 ms IBURP pulse centred in the middle of the 
glucose region yields a bandwidth of 1500 Hz, which is enough for suppression of glucose. The Bruker 
WaveMaker tool was used for construction of shaped pulses targeting more than one region of the 
spectrum. TOCSY transfer is achieved by using the DIPSI-2 mixing scheme with a mixing time of 10-
150 ms depending on the spin system (here, 100 ms was used for the rice root sample whereas 50 ms 
was used for the orange juice and the artificial mixtures). White trapezoids with arrows denote low-
power 180° chirp pulses of 20 kHz bandwidth aimed for suppression of zero-quantum coherences. Their 
durations were set to 20 and 15 ms before and after the DIPSI-2 mixing, respectively. All gradient 
pulses except for G0 have a duration of 1 ms. G1 and G2 (amplitude of 14.9 and 5.3 G cm-1, respectively) 
are used to eliminate magnetization of signals within the bandwidth of the selective pulse (band-
selective suppression, Fig S1a) or outside of the bandwidth of the selective pulse (band-selective 
excitation, Fig. S1b). G3 is a spoil gradient pulse with an amplitude of 3.4 G cm-1. G0 (amplitude of ca. 
2.4 and 3.2 G cm-1 before and after the DIPSI-2 mixing, respectively) is a weak pulsed field gradient 
applied simultaneously with the chirp pulses to suppress zero quantum coherence. All gradient pulses 
are followed by a recovery delay of 200 μs. The phase cycle is given in Table S1. 

To achieve optimal suppression of unwanted signals, it might be necessary to adjust the 90° pulse length 
and the precise phases of the band-selective pulses (by phase corrections). The TOCSY mixing time 
might also need some optimization in order to obtain the best recovery of remaining signals. 

The 2D TOCSY and HSQC versions of the SUN experiments are shown in Fig. S1c and S1d. The 2D 
SUN-TOCSY experiment has two TOCSY transfers, where the first is applied to restore signals in the 
sugar region of the spectrum and the second is applied to yield TOCSY correlations in the f1 dimension. 
The two TOCSY steps could be used with different mixing times, but for the examples herein, the same 
mixing time was used. The 2D TOCSY was run in the States-TPPI manner, with phases presented in 
Table S1. 

The HSQC step of the 2D SUN-HSQC experiment is almost identical to the Bruker pulse program 
hsqcedetgpsisp.2, which is a multiplicity-edited HSQC with PEP sensitivity enhancement and adiabatic 
inversion and refocusing pulses. Chirp pulses of 20 kHz bandwidth and 500 us duration were utilized 
for 180° 13C inversion and composite chirp pulses of 2 ms duration for 180° 13C refocusing. Delays 
were set to τ = 1.7 ms, Δ = 3.45 ms, Δ′ = 862 μs, and δ = 1.2 ms. G4 and G5 amplitudes were set to 38.5 
and 9.7 G cm-1, respectively, with a duration of 1 ms, followed by a recovery delay of 200 μs. 13C 
decoupling was obtained with the GARP-4 decoupling scheme. The experiment was run in the echo-
antiecho mode, with gradient selection obtained by the reversal of the G4 gradient pulse. The phase 
cycle is given in Table S1. 



S3 
 

 

Fig. S1. Pulse sequences of (a) 1D SUN with band-selective suppression, (b) 1D SUN with band-
selective excitation, (c) 2D SUN-TOCSY with band-selective suppression, (d) 2D SUN-HSQC with 
band-selective suppression. Phases are listed in Table S1. Unless indicated otherwise, pulses are applied 
along the x-axis. Band-selective excitation versions of the SUN-TOCSY and SUN-HSQC versions are 
obtained by eliminating the φ2 and φ4 180° 1H pulses. 
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Table S1. Phase cycling of pulse sequences in Fig S1 (A-D). 

 A B Ca Db 
φ1 x, y, -x, -y x, y, -x, -y x, y, -x, -y x, y, -x, -y 
φ2 -x, -y, x, y - (-x, -y, x, y)c (-x, -y, x, y)c 
φ3 x4, y4, (-x)4, (-y)4 x4, y4, (-x)4, (-y)4 x4, y4, (-x)4, (-y)4 x4, y4, (-x)4, (-y)4 
φ4 (-x)4, (-y)4, x4, y4 - ((-x)4, (-y)4, x4, y4)c ((-x)4, (-y)4, x4, y4)c 
φ5 - - x, -x x2, (-x)2 
φ6 - - - x 
φ7 - - - x8, (-x)8 
φ8 - - - x2, (-x)2 
φ9 - - - y2, (-y)2 
φR (x, -x)2, (-x, x)2 (x, -x)2, (-x, x)2 x4, (-x)4 (-x), x2, (-x), (x, (-x)2, 

x)2, (-x), x2, (-x) 
a Quadrature in the t1 dimension is obtained by incrementing φ5 with 90°. b Quadrature in the t1 dimension is obtained by incrementing φ6, φ7, 
φ9, and φR with 180°. c For band-selective suppression.  
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2. Supplementary spectra 

 
 

 
Fig. S2. (a) HSQC of the artificial mixture containing 100 mM glucose and 1 mM of the other 
metabolites, (b) SUN-HSQC with band-selective excitation of the spectral regions 5.8-8.6 ppm and 
-0.2-2.6 ppm. Data were recorded with 64 scans, 1024 data points in t2 and 256 increments in t1, 
with an experimental time of 7 hours in a) and 6.5 hours in b). The data were zero-filled before 
applying a π/2 shifted sine-squared bell function in both dimensions. 
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Fig. S3. 1D SUN spectra with band-selective suppression targeting two spectral regions, 4.45-5.25 
ppm and 3.08-3.88 ppm. (a) 1D-1H spectrum with the regions targeted for band-selective 
suppression highlighted in red, (b) 1D-SUN spectrum with band-selective suppression, (c) 
enlargement of the region 3.0-5.3 ppm in b). Data were recorded with 128 scans and 64k points, 
with an experimental time of 13 minutes. The data were zero-filled before applying an exponential 
function with 0.3 Hz line broadening. 
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Fig. S4. 2D-TOCSY of orange juice. (a) 2D-TOCSY, (b) 2D-SUN-TOCSY with band-selective 
suppression of the spectral region 3.0-5.5 ppm. Data were recorded with 32 scans, 2048 data points 
in t2 and 256 increments in t1, with an experimental time of 3.5 hours. The data were zero-filled 
before applying a π/2 shifted sine-squared bell function in both dimensions. 
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3. Pulse Sequence (Bruker format) 
 

Quick guide for starting-up 
 

1. Copy the pulse program from this document to a text file, save it as “SUN1d” and put it in the 
folder named Bruker\Topspin(X.X)\exp\stan\nmr\lists\pp\user. 

2. Run a 1H NMR experiment and decide whether band-selective suppression or excitation will 
be used. 

3. Define peak(s) in the middle of the desired region(s) for band-selective suppression or 
excitation. 

4. Make a copy of the 1H NMR experiment and change the pulse program to “SUN1d”. 
5. Set probe/solvent dependent parameters with the command “getprosol” and fill in acquisition 

parameters that are not automatically adjusted, such as gradient files and gradient strengths. 
The correct settings are provided in the pulse program. 

6. Copy the peak list from the 1H NMR experiment to the SUN experiment. This can be done with 
AU programs such as copyPL or getPL (can be found at the Bruker web library). 

7. The default setting is band-selective suppression without water presaturation. To use band-
selective excitation instead, add “-DEXCIT” in the ZGOPTNS field. For water presaturation, 
add “-DPRESAT” in the ZGOPTNS field. If both excitation and water presaturation are 
desired, add both (“-DEXCIT -DPRESAT”) in the ZGOPTNS field. 

8. Define the shape function as userA1, for instance iburp2. (For Topspin versions older than 3.6, 
the shape function must be defined in the pulse program. In this case, change “userA1” to the 
desired shape function on the line starting with “sp2:wvm”.) 

9. Define the bandwidth (in ppm) of the band-selective suppression or excitation region(s) as 
cnst18. The bandwidth is equal to the width of the selected region(s) and must be the same if 
more than one region is selected with the peak list. 

10. Define the TOCSY mixing time (d9). Typically 50-100 ms gives efficient TOCSY transfer. 
11. Run “wvm –a” to calculate the selective pulse and to add the result into the current experiment 

set-up. 
12. Check the receiver gain with rga and start the experiment with zg. 
13. If signals that should be suppressed still appear, the bandwidth for band-selective suppression 

(cnst18) may need to be increased to allow defocusing of the entire spin system, or the band-
width for band-selective excitation (cnst18) may need to be decreased to avoid excitation of the 
unwanted spin system(s). In band-selective excitation, the region for excitation can also be 
moved away from the unwanted signals by adjusting the peak list. Adjusting p1 can also 
improve the suppression of unwanted signals. 

14. To optimize the phase of signals in the suppressed region, if necessary, phase corrections of 
ph2 and ph4 may be added with the “phcor” command. Try out small changes from zero to 
obtain optimized phase and suppression. Also p1 can be changed to optimize the phase of the 
spectra. In addition, gpz0 can be adjusted to optimize the suppression of zero-quantum 
coherences. 

 
For further instructions on how to use WaveMaker, we refer to the Bruker WaveMaker User Manual. 
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1D SUN with band-selective suppression/excitation 

;sun1d 
; 
;1D suppression of unwanted signals (SUN) 
;   using band-selective suppression or excitation 
;   using DIPSI2 sequence for TOCSY transfer 
;   with presaturation during relaxation delay (optional) 
; 
;Use WaveMaker for definition of shaped pulses 
;Define offset(s) for shaped pulses with a peak list (PL) 
;The peak list must be copied from another experiment with a macro (getPL or copyPL) 
; 
;Band-selective suppression without water presaturation is default 
;For band-selective excitation: Use ZGOPTNS = -DEXCIT 
;For presaturation during relaxation delay: Use ZGOPTNS = -DPRESAT 
; 
;Modified 24/06/2020 
; 
; Elin Alexandersson, Corine Sandström, Lena Lundqvist and Gustav Nestor 
; Swedish University of Agricultural Sciences 
; 
;Avance III version 
; 
;$CLASS=HighRes 
;$DIM=1D 
;$TYPE= 
;$SUBTYPE= 
;$COMMENT= 
 
 
#include <Avance.incl> 
#include <Grad.incl> 
#include <Delay.incl> 
 
 
"p2=p1*2" 
"d12=20u" 
 
"spoff29=0" 
 
"FACTOR1=(d9/(p6*115.112))/2" 
"l1=FACTOR1*2" 
 
"d2=cnst18*p1/4" 
 
"acqt0=-p1*2/PI" 
 
 
1 ze 
2 30m 
  d12 BLKGRAD 
  d2 
 
#   ifdef PRESAT 
  d12 pl9:f1 
  d1 cw:f1 ph1 
  4u do:f1 
#   else 
  d1 
#   endif /*PRESAT*/ 
 
  d12 pl1:f1 
  50u UNBLKGRAD 
  (p1 ph1):f1 
  3u 
  p16:gp1 
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  d16 pl0:f1 
  p12:sp2:f1 ph2:r 
 
#   ifdef EXCIT 
  3u 
  d12 
#   else 
  3u 
  d12 pl1:f1 
  p2 ph3 
  3u 
#   endif /*EXCIT*/ 
 
  p16:gp1 
  d16  
  3u 
  p16:gp2 
  d16 pl0:f1 
  p12:sp2:f1 ph4:r 
 
#   ifdef EXCIT 
  3u 
  d12 pl1:f1 
#   else 
  3u 
  d12 pl1:f1 
  p2 ph5 
  3u 
#   endif /*EXCIT*/ 
 
  p16:gp2 
  d16 
  p1 ph1 
  3u 
  3u pl0:f1 
  10u gron0 
  (p32:sp29 ph1):f1 
  20u groff 
  d16 pl10:f1 
 
      ;begin DIPSI2 
3 p6*3.556 ph23 
  p6*4.556 ph25 
  p6*3.222 ph23 
  p6*3.167 ph25 
  p6*0.333 ph23 
  p6*2.722 ph25 
  p6*4.167 ph23 
  p6*2.944 ph25 
  p6*4.111 ph23 
   
  p6*3.556 ph25 
  p6*4.556 ph23 
  p6*3.222 ph25 
  p6*3.167 ph23 
  p6*0.333 ph25 
  p6*2.722 ph23 
  p6*4.167 ph25 
  p6*2.944 ph23 
  p6*4.111 ph25 
 
  p6*3.556 ph25 
  p6*4.556 ph23 
  p6*3.222 ph25 
  p6*3.167 ph23 
  p6*0.333 ph25 
  p6*2.722 ph23 
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  p6*4.167 ph25 
  p6*2.944 ph23 
  p6*4.111 ph25 
 
  p6*3.556 ph23 
  p6*4.556 ph25 
  p6*3.222 ph23 
  p6*3.167 ph25 
  p6*0.333 ph23 
  p6*2.722 ph25 
  p6*4.167 ph23 
  p6*2.944 ph25 
  p6*4.111 ph23 
  lo to 3 times l1 
      ;end DIPSI2 
 
  p16:gp3 
  d16 pl0:f1 
  10u gron0*1.333 
  (p32*0.75:sp29 ph1):f1 
  20u groff 
 
  d16 pl1:f1 
  p1 ph1 
 
  go=2 ph31 
  30m mc #0 to 2 F0(zd) 
  20u BLKGRAD 
exit 
 
 
ph1=0   
ph2=0 1 2 3 
ph3=2 3 0 1 
ph4=0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 
ph5=2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1 
ph23=3 
ph25=1 
ph31=0 2 0 2 2 0 2 0 
 
 
;pl0 : 0W 
;pl1 : f1 channel - power level for pulse (default) 
;pl9 : f1 channel - power level for presaturation 
;pl10: f1 channel - power level for TOCSY-spinlock 
;sp2:wvm: userA1(cnst18 ppm, PL; PA=1.0) np=1000 
;sp29: f1 channel - shaped pulse (adiabatic) 
;p1 : f1 channel -  90 degree high power pulse 
;p2 : f1 channel - 180 degree high power pulse 
;p6 : f1 channel -  90 degree low power pulse 
;p12: f1 channel - 180 degree shaped pulse 
;p16: homospoil/gradient pulse                            [1 msec] 
;p32: f1 channel - 180 degree shaped pulse (adiabatic)    [20 msec] 
;     smoothed chirp (sweepwidth, 20% smoothing, 10000 points) 
;d1 : relaxation delay; 1-5 * T1 
;d9 : TOCSY mixing time 
;d12: delay for power switching                           [20 usec] 
;d16: delay for homospoil/gradient recovery 
;l1: loop for DIPSI cycle: ((p6*115.112) * l1) = mixing time 
;NS: 8 * n 
;DS: 4 
 
;cnst18: effective bandwidth for shaped pulse (ppm) 
;PL: peak list to define offset(s) for shaped pulse 
;userA1: shape function (sp2) 
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;phcor 2 : phase difference between power levels sp2 and pl1 
;phcor 4 : phase difference between power levels sp2 and pl1 
 
;choose p12 and sp2 according to desired selectivity or use WaveMaker 
 
 
 
;for z-only gradients: 
;gpz0: ca. 5% 
;gpz1: 31% 
;gpz2: 11% 
;gpz3: 7% 
 
;use gradient files:    
;gpnam1: SMSQ10.100 
;gpnam2: SMSQ10.100 
;gpnam3: SMSQ10.100 
 
                                          ;preprocessor-flags-start 
;EXCIT: for band-selective excitation start experiment with  
;             option -DEXCIT (eda: ZGOPTNS) 
;PRESAT: for presaturation during relaxation delay start experiment with 
;             option DPRESAT (eda: ZGOPTNS) 
                                          ;preprocessor-flags-end 
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2D SUN-TOCSY with band-selective suppression/excitation 

;suntocsy 
; 
;2D suppression of unwanted signals (SUN-TOCSY) 
;   using band-selective suppression or excitation 
;   using DIPSI2 sequence for TOCSY transfer 
;   with presaturation during relaxation delay (optional) 
; 
;Use WaveMaker for definition of shaped pulses 
;Define offset(s) for shaped pulses with a peak list (PL) 
;The peak list must be copied from another experiment with a macro (getPL or copyPL) 
; 
;Band-selective suppression without water presaturation is default 
;For band-selective excitation: Use ZGOPTNS = -DEXCIT 
;For presaturation during relaxation delay: Use ZGOPTNS = -DPRESAT 
; 
;Modified 18/08/2020 
; 
; Elin Alexandersson, Corine Sandström, Lena Lundqvist and Gustav Nestor 
; Swedish University of Agricultural Sciences 
; 
;Avance III version 
; 
;$CLASS=HighRes 
;$DIM=2D 
;$TYPE= 
;$SUBTYPE= 
;$COMMENT= 
 
 
#include <Avance.incl> 
#include <Grad.incl> 
#include <Delay.incl> 
 
 
"p2=p1*2" 
"spoff29=0" 
 
"in0=inf1" 
 
"d0=in0/2-p1*4/3.1416" 
"d2=cnst18*p1/4" 
"d11=30m" 
"d12=20u" 
 
"FACTOR1=(d9/(p6*115.112))/2" 
"l1=FACTOR1*2" 
"FACTOR2=(d10/(p6*115.112))/2" 
"l2=FACTOR2*2" 
 
"acqt0=-p1*2/3.1416" 
 
 
1 ze 
2 d11 
  d2 
 
#   ifdef PRESAT 
  d12 pl9:f1 
  d1 cw:f1 ph1 
  4u do:f1 
#   else 
  d1 
#   endif /*PRESAT*/ 
 
  d12 pl1:f1 
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  50u UNBLKGRAD 
  (p1 ph1):f1 
  3u 
  p16:gp1 
  d16 pl0:f1 
  p12:sp2:f1 ph2:r 
 
#   ifdef EXCIT 
  3u 
  d12 
#   else 
  3u 
  d12 pl1:f1 
  p2 ph3 
  3u 
#   endif /*EXCIT*/ 
 
  p16:gp1 
  d16  
  3u 
  p16:gp2 
  d16 pl0:f1 
  p12:sp2:f1 ph4:r 
 
#   ifdef EXCIT 
  3u 
  d12 pl1:f1 
#   else 
  3u 
  d12 pl1:f1 
  p2 ph5 
  3u 
#   endif /*EXCIT*/ 
 
  p16:gp2 
  d16 
  p1 ph1 
  3u 
  3u pl0:f1 
  10u gron0 
  (p32:sp29 ph1):f1 
  20u groff 
  d16 pl10:f1 
 
      ;begin DIPSI2 
3 p6*3.556 ph23 
  p6*4.556 ph25 
  p6*3.222 ph23 
  p6*3.167 ph25 
  p6*0.333 ph23 
  p6*2.722 ph25 
  p6*4.167 ph23 
  p6*2.944 ph25 
  p6*4.111 ph23 
   
  p6*3.556 ph25 
  p6*4.556 ph23 
  p6*3.222 ph25 
  p6*3.167 ph23 
  p6*0.333 ph25 
  p6*2.722 ph23 
  p6*4.167 ph25 
  p6*2.944 ph23 
  p6*4.111 ph25 
 
  p6*3.556 ph25 
  p6*4.556 ph23 
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  p6*3.222 ph25 
  p6*3.167 ph23 
  p6*0.333 ph25 
  p6*2.722 ph23 
  p6*4.167 ph25 
  p6*2.944 ph23 
  p6*4.111 ph25 
 
  p6*3.556 ph23 
  p6*4.556 ph25 
  p6*3.222 ph23 
  p6*3.167 ph25 
  p6*0.333 ph23 
  p6*2.722 ph25 
  p6*4.167 ph23 
  p6*2.944 ph25 
  p6*4.111 ph23 
  lo to 3 times l1 
      ;end DIPSI2 
 
  p16:gp3*-1 
  d16 pl0:f1 
  10u gron0*1.333 
  (p32*0.75:sp29 ph1):f1 
  20u groff 
  d16 pl1:f1 
  p1 ph6 
  d0 
  p1 ph1 
  3u 
  3u pl0:f1 
  10u gron0*-1 
  (p32:sp29 ph1):f1 
  20u groff 
  d16 pl10:f1 
 
      ;begin DIPSI2 
4 p6*3.556 ph23 
  p6*4.556 ph25 
  p6*3.222 ph23 
  p6*3.167 ph25 
  p6*0.333 ph23 
  p6*2.722 ph25 
  p6*4.167 ph23 
  p6*2.944 ph25 
  p6*4.111 ph23 
   
  p6*3.556 ph25 
  p6*4.556 ph23 
  p6*3.222 ph25 
  p6*3.167 ph23 
  p6*0.333 ph25 
  p6*2.722 ph23 
  p6*4.167 ph25 
  p6*2.944 ph23 
  p6*4.111 ph25 
 
  p6*3.556 ph25 
  p6*4.556 ph23 
  p6*3.222 ph25 
  p6*3.167 ph23 
  p6*0.333 ph25 
  p6*2.722 ph23 
  p6*4.167 ph25 
  p6*2.944 ph23 
  p6*4.111 ph25 
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  p6*3.556 ph23 
  p6*4.556 ph25 
  p6*3.222 ph23 
  p6*3.167 ph25 
  p6*0.333 ph23 
  p6*2.722 ph25 
  p6*4.167 ph23 
  p6*2.944 ph25 
  p6*4.111 ph23 
  lo to 4 times l2 
      ;end DIPSI2 
 
  p16:gp3 
  d16 pl0:f1 
  10u gron0*-1.333 
  (p32*0.75:sp29 ph1):f1 
  20u groff 
  d16 pl1:f1 
 
  4u BLKGRAD 
  p1 ph1 
  go=2 ph31 
  d11 mc #0 to 2 F1PH(calph(ph6, +90), caldel(d0, +in0)) 
exit 
 
 
ph1=0 
ph2=0 1 2 3 
ph3=2 3 0 1 
ph4=0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 
ph5=2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1 
ph6=0 2 
ph23=3 
ph25=1 
ph31=0 0 0 0 2 2 2 2 
 
 
;pl0 : 0 W 
;pl1 : f1 channel - power level for pulse (default) 
;pl9 : f1 channel - power level for presaturation 
;pl10: f1 channel - power level for TOCSY-spinlock 
;sp2:wvm: userA1(cnst18 ppm, PL; PA=1.0) np=1000 
;sp29: f1 channel - shaped pulse (adiabatic) 
;p1 : f1 channel -  90 degree high power pulse 
;p2 : f1 channel - 180 degree high power pulse 
;p6 : f1 channel -  90 degree low power pulse 
;p12: f1 channel - 180 degree shaped pulse 
;p16: homospoil/gradient pulse                            [1 msec] 
;p32: f1 channel - 180 degree shaped pulse (adiabatic)    [20 msec] 
;     smoothed chirp (sweepwidth, 20% smoothing, 10000 points) 
;d0 : incremented delay (2D)                         [3 usec] 
;d1 : relaxation delay; 1-5 * T1 
;d9 : first TOCSY mixing time (back transfer) 
;d10: second TOCSY mixing time (2D) 
;d16: delay for homospoil/gradient recovery 
;l1: loop for first DIPSI cycle: ((p6*115.112) * l1) = mixing time 
;l2: loop for second DIPSI cycle: ((p6*115.112) * l2) = mixing time 
;inf1: 1/SW = 2 * DW 
;in0: 1/(1 * SW) = 2 * DW 
;nd0: 1 
;NS: 8 * n 
;DS: 16 
;td1: number of experiments 
;FnMODE: States-TPPI, TPPI, States or QSEQ 
 
;cnst18: = effective bandwidth for shaped pulse (ppm) 
;PL: peak list to define offset(s) for shaped pulse 
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;userA1: shape function (sp2) 
 
;phcor 2 and 4: phase difference between power levels sp2 and pl1 
 
;choose p12 and sp2 according to desired selectivity or use WaveMaker 
 
 
;for z-only gradients: 
 
;gpz0: ca. 5% 
;gpz1: 31% 
;gpz2: 11% 
;gpz3: 7% 
 
;use gradient files:    
;gpnam1: SMSQ10.100 
;gpnam2: SMSQ10.100 
;gpnam3: SMSQ10.100 
 

                                          ;preprocessor-flags-start 
;EXCIT: for band-selective excitation start experiment with  
;             option -DEXCIT (eda: ZGOPTNS) 
;PRESAT: for presaturation during relaxation delay start experiment with 
;             option DPRESAT (eda: ZGOPTNS) 
                                          ;preprocessor-flags-end 
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2D SUN-HSQC with band-selective suppression/excitation 

;sunhsqc 
; 
;2D suppression of unwanted signals (SUN-HSQC) 
;   using band-selective suppression or excitation 
;   using DIPSI2 sequence for TOCSY transfer 
;   2D H-1/X correlation via double inept transfer 
;   using sensitivity improvement 
;   phase sensitive using Echo/Antiecho-TPPI gradient selection 
;   with decoupling during acquisition 
;   with multiplicity editing during selection step 
;   using shaped pulses for all 180 degree pulses on f2 - channel 
; 
;Use WaveMaker for definition of shaped pulses 
;Define offset(s) for shaped pulses with a peak list (PL) 
;The peak list must be copied from another experiment with a macro (getPL or copyPL) 
; 
;Band-selective suppression is default 
;For band-selective excitation: Use ZGOPTNS = -DEXCIT 
; 
;Modified 19/08/2020 
; 
; Elin Alexandersson, Corine Sandström, Lena Lundqvist and Gustav Nestor 
; Swedish University of Agricultural Sciences 
; 
;Avance III version 
; 
;$CLASS=HighRes 
;$DIM=2D 
;$TYPE= 
;$SUBTYPE= 
;$COMMENT= 
 
 
#include <Avance.incl> 
#include <Grad.incl> 
#include <Delay.incl> 
 
 
"p2=p1*2" 
"d2=cnst18*p1/4" 
"d4=1s/(cnst2*4)" 
"d11=30m" 
"d12=20u" 
 
"spoff29=0" 
 
"d0=3u" 
 
"in0=inf1/2" 
 
"DELTA=d21-cnst17*p24/2-p16-d16-p2-d0*2" 
"DELTA1=p16+d16-p1*0.78+de+8u" 
"DELTA2=d4-larger(p2,p14)/2" 
"DELTA3=d21-cnst17*p24/2-4u" 
"DELTA4=d24-cnst17*p24/2-4u" 
 
"FACTOR1=(d9/(p6*115.112))/2" 
"l1=FACTOR1*2" 
 
"acqt0=0" 
baseopt_echo 
 
 
1 ze 
  d2 
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  d11 pl12:f2 
2 d1 do:f2 
 
;dpfgse element 
 
  d12 pl1:f1 
  50u UNBLKGRAD 
  (p1 ph1):f1 
  3u 
  p16:gp1 
  d16 pl0:f1 
  p12:sp2:f1 ph2:r 
 
#   ifdef EXCIT 
  3u 
  d12 
#   else 
  3u 
  d12 pl1:f1 
  p2 ph3 
  3u 
#   endif /*EXCIT*/ 
 
  p16:gp1 
  d16 
  3u 
  p16:gp2 
  d16 pl0:f1 
  p12:sp2:f1 ph4:r 
 
#   ifdef EXCIT 
  3u 
  d12 pl1:f1 
#   else 
  3u 
  d12 pl1:f1 
  p2 ph5 
  3u 
#   endif /*EXCIT*/ 
 
  p16:gp2 
  d16 
  p1 ph1 
  3u 
  3u pl0:f1 
  10u gron0 
  (p32:sp29 ph1):f1 
  20u groff 
  d16 pl10:f1 
 
;DIPSI2 element 
 
3 p6*3.556 ph23 
  p6*4.556 ph25 
  p6*3.222 ph23 
  p6*3.167 ph25 
  p6*0.333 ph23 
  p6*2.722 ph25 
  p6*4.167 ph23 
  p6*2.944 ph25 
  p6*4.111 ph23 
   
  p6*3.556 ph25 
  p6*4.556 ph23 
  p6*3.222 ph25 
  p6*3.167 ph23 
  p6*0.333 ph25 
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  p6*2.722 ph23 
  p6*4.167 ph25 
  p6*2.944 ph23 
  p6*4.111 ph25 
 
  p6*3.556 ph25 
  p6*4.556 ph23 
  p6*3.222 ph25 
  p6*3.167 ph23 
  p6*0.333 ph25 
  p6*2.722 ph23 
  p6*4.167 ph25 
  p6*2.944 ph23 
  p6*4.111 ph25 
 
  p6*3.556 ph23 
  p6*4.556 ph25 
  p6*3.222 ph23 
  p6*3.167 ph25 
  p6*0.333 ph23 
  p6*2.722 ph25 
  p6*4.167 ph23 
  p6*2.944 ph25 
  p6*4.111 ph23 
  lo to 3 times l1 
 
  p16:gp3 
  d16 pl0:f1 
  10u gron0*1.333 
  (p32*0.75:sp29 ph1):f1 
  20u groff 
  d16 pl1:f1 
  p1 ph1 
 
;hsqc element 
 
4 DELTA2 pl3:f2 
  (center (p2 ph1) (p14:sp3 ph8):f2 ) 
  4u 
  DELTA2 pl2:f2 
  (p1 ph6) (p3 ph9):f2 
  d0 
  (p2 ph7) 
  d0 
  p16:gp4*EA 
  d16 
  DELTA pl3:f2 
  (center (p2 ph1) (p24:sp7 ph10):f2 ) 
  4u 
  DELTA3 pl2:f2 
  (center (p1 ph1) (p3 ph10):f2 ) 
  4u 
  DELTA4 pl3:f2 
  (center (p2 ph1) (p24:sp7 ph1):f2 ) 
  4u 
  DELTA4 pl2:f2 
  (center (p1 ph6) (p3 ph11):f2 ) 
  DELTA2 pl3:f2 
  (center (p2 ph1) (p14:sp3 ph1):f2 ) 
  DELTA2 
  (p1 ph1) 
  DELTA1 
  (p2 ph1) 
  4u 
  p16:gp5 
  d16 pl12:f2 
  4u BLKGRAD 
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  go=2 ph31 cpd2:f2 
  d1 do:f2 mc #0 to 2  
     F1EA(calgrad(EA) & calph(ph11, +180), caldel(d0, +in0) & calph(ph9, +180) & calph(ph8, +180) & calph(ph31, +180)) 
exit 
    
 
ph1=0  
ph2=0 1 2 3 
ph3=2 3 0 1 
ph4=0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 
ph5=2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1 
ph6=1 
ph7=0 0 2 2 
ph8=0 
ph9=0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 
ph10=0 0 2 2 
ph11=1 1 3 3 
ph23=1 
ph25=3 
ph31=2 0 0 2 0 2 2 0 0 2 2 0 2 0 0 2 
 
 
;pl0 : f1 channel - 0W 
;pl1 : f1 channel - power level for pulse (default) 
;pl2 : f2 channel - power level for pulse (default) 
;pl3 : f2 channel - 0W 
;pl10: f1 channel - power level for TOCSY-spinlock 
;pl12: f2 channel - power level for CPD/BB decoupling 
;sp2:wvm: userA1(cnst18 ppm, PL; PA=1.0) np=1000 
;sp3: f2 channel - shaped pulse (180 degree inversion) 
;spnam3: Crp60,0.5,20.1 
;sp7: f2 channel - shaped pulse (180 degree refocussing) 
;spnam7: Crp60comp.4 
;sp29: f1 channel - shaped pulse (adiabatic) 
;p1 : f1 channel -  90 degree high power pulse 
;p2 : f1 channel - 180 degree high power pulse 
;p3 : f2 channel -  90 degree high power pulse 
;p6 : f1 channel -  90 degree low power pulse 
;p12: f1 channel - 180 degree shaped pulse 
;p14: f2 channel - 180 degree shaped pulse for inversion 
;     = 500 usec for Crp60,0.5,20.1 
;p16: homospoil/gradient pulse 
;p24: f2 channel - 180 degree shaped pulse for refocussing 
;     = 2 msec for Crp60comp.4 
;p32: f1 channel - 180 degree shaped pulse (adiabatic)    [20 msec] 
;     smoothed chirp (sweepwidth, 20% smoothing, 10000 points) 
;d0 : incremented delay (2D)                  [3 usec] 
;d1 : relaxation delay; 1-5 * T1 
;d4 : 1/(4J)XH 
;d9 : TOCSY mixing time 
;d11: delay for disk I/O                             [30 msec] 
;d12: delay for power switching                           [20 usec] 
;d16: delay for homospoil/gradient recovery 
;d21: set d21 according to multiplicity selection 
;        1/(2J(XH))  XH, XH3 positive, XH2 negative 
;d24: 1/(8J)XH for all multiplicities 
;     1/(4J)XH for XH 
;cnst2: = J(XH) 
;cnst17: = -0.5 for Crp60comp.4 
;inf1: 1/SW(X) = 2 * DW(X) 
;in0: 1/(2 * SW(X)) = DW(X) 
;l1: loop for DIPSI cycle: ((p6*115.112) * l1) = mixing time 
;nd0: 2 
;NS: 16 * n 
;DS: >= 16 
;td1: number of experiments 
;FnMODE: echo-antiecho 
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;cpd2: decoupling according to sequence defined by cpdprg2 
;pcpd2: f2 channel - 90 degree pulse for decoupling sequence 
 
;cnst18: effective bandwidth for shaped pulse (ppm) 
;PL: peak list to define offset(s) for shaped pulse 
;userA1: shape function (sp2) 
 
;phcor 2 : phase difference between power levels sp2 and pl1 
;phcor 4 : phase difference between power levels sp2 and pl1 
 
;choose p12 and sp2 according to desired selectivity or use WaveMaker 
 
 
;for z-only gradients: 
;gpz0: ca. 5% 
;gpz1: 31% 
;gpz2: 11% 
;gpz3: 7% 
;gpz4: 80% 
;gpz5: 20.1% for C-13, 8.1% for N-15 
 
;use gradient files:    
;gpnam1: SMSQ10.100 
;gpnam2: SMSQ10.100 
;gpnam3: SMSQ10.100 
;gpnam4: SMSQ10.100 
;gpnam5: SMSQ10.100 
 
 
;cnst17: Factor to compensate for coupling evolution during a pulse 
;       (usually +1). A positive factor indicates that coupling  
;       evolution continues during the pulse, whereas a negative  
;       factor is necessary if the coupling is (partially) refocussed. 
 
                                          ;preprocessor-flags-start 
;EXCIT: for band-selective excitation start experiment with  
;             option -DEXCIT (eda: ZGOPTNS) 
                                          ;preprocessor-flags-end 
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Complete 1H and 13C NMR spectral assignment of D-glucofuranose 
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A B S T R A C T   

Although D-glucose is the most common sugar in nature, only a few NMR studies have focused on its minor 
furanose forms, and they have been limited to the anomeric position. Here, complete 1H and 13C NMR spectral 
analysis of α- and β-D-glucofuranose was performed, including signal assignment, chemical shifts, and coupling 
constants. Selective and non-selective 1D and 2D NMR experiments were used for the analysis, complemented by 
spin simulations and iterative spectral analysis.   

1. Introduction 

D-glucose is a ubiquitous metabolite in biological systems, and is 
thereby commonly encountered and studied in fields such as carbohy-
drate chemistry, metabolomics, and food science. Like many other 
sugars, glucose exists in an equilibrium between different ring forms and 
open chain tautomers in aqueous solution (Fig. 1). Of these structures, 
the α- and β-pyranose forms together account for more than 99% of all 
glucose molecules at ambient temperature, whereas the two furanose 
forms constitute around 0.3–0.4% and the acyclic aldehyde and hydrate 
forms around 0.005% each [1,2]. Despite their low abundance, the 
furanose forms are responsible for about half of the total reactivity of 
D-glucose, at least at high temperature, due to their fast ring opening rate 
compared to the pyranose forms [3]. However, in contrast to gal-
actofuranoses, which are frequently found in plant and bacterial poly-
saccharides [4,5], glucofuranoses are extremely rare as building blocks 
in biomolecules. A few studies have reported glucofuranose residues 
from e.g. a bacterial lipopolysaccharide [6] (although this structure 
might need revision [7]), a plant polysaccharide [8], and as a C-glycosyl 
derivative from Aloe barbadensis [9], but these and other studies with 
glucofuranose assignments appear to be more or less tentative and so it 
is still unclear whether glucofuranose is at all present as a component of 
biomolecules. Furthermore, galactofuranoses are biosynthesized by 
UDP-galactopyranose mutase [4], but there are no known enzymes that 
can produce glucofuranoses for incorporation into biomolecules. 

The pyranose forms of D-glucose have been extensively studied by 
NMR spectroscopy [10–14], but the minor forms are less well charac-
terized. The existing studies on the furanose forms have mainly been 

performed using 13C NMR, often with 13C-labelled glucose, and have 
focused on the anomeric signals [1,2,15]. To the best of our knowledge, 
the only 1H NMR data published on the glucofuranoses are the values 
reported for the anomeric protons [3], meaning that no full NMR 
characterization of these glucose forms has been carried out. This is most 
likely due to their low abundance and the fact that many of their reso-
nances are obscured by pyranose signals, especially in 1H NMR. 

In the NMR spectra of dilute glucose solutions, the glucofuranose 
signals are typically below the limit of detection due to their low in-
tensity compared to the pyranose signals. However, if a sample contains 
large amounts of glucose and small amounts of other compounds, the 
concentration of the glucofuranose forms may be comparable to or even 
higher than that of certain compounds of interest. Such samples may be 
encountered in e.g. food science, in particular food or beverage quality 
control, and knowledge about the glucofuranose NMR signals may 
facilitate the study of low-abundant compounds in these cases. 
Furthermore, if one is unaware of the glucofuranose NMR chemical 
shifts and coupling patterns, these signals may erroneously be taken for 
impurities. 

In this work, all 1H and 13C NMR signals of α- and β-D-glucofuranose 
in D2O are characterized for the first time. Signal assignment, chemical 
shifts, and homo- and heteronuclear coupling constants are reported. 
The results were obtained using a combination of selective and non- 
selective 1D and 2D NMR experiments, as well as spin simulations and 
iterative spectral analysis. 
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2. Results and discussion 

2.1. Assignment of the D-glucofuranose NMR signals 

When inspecting the 1H NMR spectrum of D-glucose, minor signals 
can be observed between 4.07 ppm and 4.32 ppm, i.e. in the area be-
tween the signals from the pyranose ring protons and anomeric protons, 
as well as at 5.49 ppm (Fig. 2a). Additional low-intensity signals, which 
overlap with glucopyranose signals in the 1H but not the 13C dimension, 
are visible in the corresponding 1H,13C-HSQC spectrum (Fig. 2b). All of 
the signals have approximately the same intensity, implying that they 
either belong to the same species or to different species with comparable 
concentration. Analysis of [1–13C]-glucose revealed that the two most 
downfield of the minor HSQC signals are the H1/C1 atoms of two 
glucose tautomers (Figure S1) and based on the intensity of the signals 
relative to the pyranose signals, they most likely belong to the two 
anomeric forms of glucofuranose. The chemical shifts of the signals also 
agree well with previously reported NMR data for the glucofuranose 
anomeric carbons [1,2,15] and protons [3]. 

To further investigate the observed signals, selective 1H NMR ex-
periments were performed. Exciting the proton signals at 5.49 ppm, 
4.31 ppm, and 4.24 ppm in separate 1D-TOCSY experiments revealed 
two different spin systems, each containing seven signals (Fig. 3). The 
signal at 5.49 ppm has previously been assigned to the anomeric proton 
of α-glucofuranose [3] and has a coupling constant of 3.96 Hz, which is 
similar to values observed for the anomeric signal of other furanoid 1, 
2-cis tautomers [16–19]. The other anomeric furanose signal overlaps 
with the anomeric α-glucopyranose signal in the 1H NMR spectrum, but 
is clearly observed in the selective 1D-TOSCY spectrum at 5.21 ppm 
(Fig. 3C). No splitting can be observed for this signal and a small 
coupling constant is expected for the anomeric signal of a furanoid 1, 
2-trans tautomer such as β-glucofuranose [3,16–19]. Adding this to the 
indications described earlier meant that the NMR signals at 5.49 and 
5.21 ppm could be assigned to α- and β-glucofuranose, respectively. The 

remaining furanose signals were then assigned based on series of se-
lective 1D-TOCSY experiments where the mixing time was varied be-
tween 20 and 120 ms (Fig. 3 and S2-S4). 

The 13C resonances were assigned from HSQC spectra based on the 
1H assignments determined above. To observe only the glucofuranoses 
and to avoid spectral overlap with the pyranose resonances, an f2-band- 
selective TOCSY-HSQC pulse sequence [20] was employed. In this 
experiment, a certain part of the 1H spectrum is excited after which a 
TOCSY spin-lock restores all signals that are J-coupled to any of the 
excited spins. Connecting this pulse sequence to an HSQC sequence thus 
enables selected spin systems to be visualized in both the 1H and the 13C 
dimension at the same time. Here, the 1H spectral region 4.10–4.40 ppm 
was selectively excited to observe the two glucofuranose spin systems 
without interference from the pyranose forms (Fig. 4). 

2.2. Chemical shifts and coupling constants of α- and β-D-glucofuranose 

The glucofuranose 13C NMR chemical shifts are listed in Table 1, 
together with previously reported 13C shifts. The chemical shifts were 
collected from a 1D-13C spectrum, apart from α-furanose C2 and 
β-furanose C5 that were read from an HSQC spectrum due to spectral 
overlap in the 1D spectrum. To facilitate comparison with previous 
studies [2,15] the chemical shifts have been referenced to both DSS and 
TMS, since the 13C shifts of these reference compounds differ by about 2 
ppm [21]. The 13C chemical shifts agree well with the previously re-
ported data, although the earlier assignments of β-glucofuranose C2 and 
C4 [15] need to be interchanged. The 13C chemical shifts are also in 
close agreement with those of the corresponding methyl glucofurano-
sides [22], apart from the C1 resonances that are affected by the methyl 
group in the methyl furanosides (Table 1). One-bond 13C–1H coupling 
constants, also listed in Table 1, were determined from an 
f2-band-selective TOCSY-HSQC spectrum recorded without carbon 
decoupling. A previous study on methyl furanosides found that the JC1, 

H1 is 174.0 Hz for methyl α-glucofuranoside and 172.5 Hz for methyl 

Fig. 1. The anomeric equilibrium of D-glucose in aqueous solution, with relative abundances at 25 ◦C and pD 7.  
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β-glucofuranoside [23], which is very close to what was found here for 
the free furanoses. 

Spin simulations and iterative spectral analysis were performed to 

verify the glucofuranose 1H chemical shifts and to determine homonu-
clear two- and three-bond 1H coupling constants (Table 2 and Fig. 5). 
Non-selective 1D-1H spectra were used as input for the simulations when 
possible, however the signals of α- and β-furanose H5, H6a, and H6b, as 
well as β-furanose H1, are covered by pyranose signals and therefore 
selective 1D-1H spectra were used to analyse these signals (see 
Figure S5). Because selective spectra can suffer from distortions in signal 
shape and intensity, zero-quantum coherence suppression was used to 
minimize anti-phase components; however the accuracy of the extracted 
coupling constants may still be compromised. Furthermore, the JH1,H2 
and JH2,H3 of the β anomer are both around 1 Hz in size and difficult to 
determine with high accuracy because of broad, overlapping signals. 
Long-range 1H–1H coupling constants have earlier been observed for the 
pyranose form of α-D-glucose [12] and are likely to be present in the 
furanose forms as well. However, no long-range couplings were resolved 

Fig. 2. A) 1D 1H NMR spectrum of D-glucose in D2O at 25 ◦C. The arrows 
denote minor signals not corresponding to 13C satellites of the glucopyranose 
signals (indicated with asterisks). B) 1H,13C-HSQC spectrum of D-glucose in D2O 
(25 ◦C), with the minor signals encircled. 

Fig. 3. Assignment of the D-glucofuranose 1H NMR signals. A) 1D-1H NMR spectrum of D-glucose with the furanose signals indicated. Glucopyranose 13C satellites are 
marked with asterisks. B) Selective 1D-TOCSY spectrum of α-glucofuranose obtained by exciting the H3 signal at 4.30 ppm. C) Selective 1D-TOCSY spectrum of 
β-glucofuranose obtained by exciting the H3 signal at 4.24 ppm. The mixing time was 100 ms in both B) and C). 

Fig. 4. Multiplicity-edited f2-band-selective 1H,13C-HSQC spectrum of D- 
glucose in D2O (25 ◦C) with assignment of the glucofuranose ring signals. Non- 
assigned cross-peaks are mainly from residual pyranose signals. 
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in the spectra, indicating that they are probably small in size. Comparing 
the coupling constants with previous data shows good agreement; 
Kaufmann et al. [3] reported that α- and β-glucofuranose JH1,H2 are 3.9 
Hz and “less than 1 Hz”, respectively, whereas the corresponding methyl 
glucofuranoside coupling constants are 4.2 Hz and 1.0 Hz, respectively 
[19]. Here, 3.96 Hz and <1 Hz were found for the α- and β-glucofuranose 
JH1,H2, respectively. 

The ring-opening rate of glucofuranose is about 1 s− 1 at 87 ◦C [3], 
which is much faster than that of the pyranose forms (0.004–0.008 s− 1 at 
87 ◦C [3] or 0.001–0.002 s− 1 at 30 ◦C [24]). Chemical exchange can 
affect NMR spectra so that signals are broadened or observed as an 
average between the two exchanging species, but in the case of gluco-
furanose at room temperature no such signal broadening was observed. 
Hence, the ring-opening of the glucofuranose ring is slow on the NMR 
timescale and the reported chemical shifts are thus not considered to be 
affected by chemical exchange. 

2.3. Relative quantification of the D-glucopyranose and furanose anomers 

To determine the relative amounts of the different D-glucose anomers 
at 25 ◦C and pD 7.0, a 1D-1H NMR spectrum was recorded with a long 
relaxation delay (>5 × T1). The α-pyranose was found to account for 
37.5% and the β-pyranose for 62.2% of the total glucose, which is within 
the previously reported α/β ratio [1,2,12,13,15], whereas α-furanose 
made up 0.12% and β-furanose 0.13%. A similar result was obtained 
using quantitative 13C NMR on [1–13C]-glucose: 37.5% α-pyranose, 
62.3% β-pyranose, and 0.11–0.12% of each furanose form. It should be 
noted that the anomeric signals were used for quantification in 13C NMR, 
but other signals had to be used in 1H NMR since the α-pyranose and 
β-furanose anomeric signals overlap with each other and the anomeric 
β-pyranose signal overlaps with the residual water signal (see section 4.2 
for details). For quantitative purposes, 1H NMR is the preferred choice in 
order to minimize the effects of the longer relaxation times of 13C that 
require long recovery delays. Furthermore, the signal to noise ratio is 
often better in 1H NMR spectra, making the integration more reliable 
especially when dealing with low-intensity signals as in this case. The 
results from previous studies are somewhat disparate. One study found 
that the α- and β-furanose, at 27 ◦C and pH 4.7, constitute 0.14% and 
0.15%, respectively [1], which is very similar to the results obtained 
here. Another study, performed at 30 ◦C, found that the amount of 
α-furanose is significantly lower than that of β-furanose: 0.108% and 
0.28%, respectively [2]. Both these studies quantified the anomers using 
13C NMR on [1–13C]-glucose. It is known that the anomeric equilibrium 
of sugars is affected by factors such as sugar concentration [13,15], 

Table 1 
13C NMR chemical shifts (δ, ppm) and 1JC,H coupling constants (Hz) of α- and β-D- 
glucofuranose in D2O (25 ◦C, pD 7.0). Results from previous studies (in paren-
theses) are included as reference.   

C1 C2 C3 C4 C5 C6 

α δDSS 99.43 78.49a 78.16 80.51 71.92 65.95 
δTMS 97.64 76.69a 76.36 78.71 70.12 64.15 
1JC,H

b 172.6 152.6 153.1 146.3 n.d.c 143.3 (6a) 
142.7 (6b) 

δTMS
d [2] (97.6) - - - - - 

δTMS
e [22] (104.0) (77.7) (76.6) (78.8) (70.7) (64.2) 

β δDSS 104.98 82.98 77.38 83.40 72.27a 66.08 
δTMS 103.18 81.18 75.58 81.60 70.47a 64.28 
1JC,H

b 172.7 154.5 153.1 147.8 146.8 143.3 (6a) 
142.7 (6b) 

δTMS
f [15] (103.8) (82.1) - (81.8) - - 

δTMS
d [2] (103.2) - - - - - 

δTMS
e [22] (110.0) (80.6) (75.8) (82.3) (70.7) (64.7)  

a The chemical shift was determined from an HSQC spectrum, with an un-
certainty of around 0.01 ppm. 

b The standard error was estimated to 0.1 Hz, except for the C6/H6 couplings 
where the error was estimated to 0.5 Hz. 

c Not determined. 
d Externally referenced to the chemical shift of C1 in α-D-[1–13C]mannopyr-

anose (95.0 ppm). Recorded at 30 ◦C. 
e Methyl glucofuranoside. 
f Recorded at 41 ◦C. 

Table 2 
1H NMR chemical shifts (δ, ppm) and JH,H coupling constants (Hz) of α- and β-D- 
glucofuranose in D2O (25 ◦C, pD 7.0).   

H1 H2 H3 H4 H5 H6a H6b 

α δDSS 5.486 4.108 4.306 4.119 3.850 3.790 3.642 
JH, 

H
a 

3J1,2 

= 3.96 

3J2,3 

= 2.42 

3J3,4 

= 3.85 

3J4,5 

= 8.50 

3J5,6a 

= 2.87 
3J5,6b 

= 6.22 

2J6a,6b = (− ) 
12.00 

β δDSS 5.213 4.104 4.238 4.098 4.009 3.838 3.679 
JH, 

H
a 

3J1,2 <

1 

3J2,3 ≈

1.2 

3J3,4 

= 4.19 

3J4,5 

= 9.00 

3J5,6a 

= 2.75 
3J5,6b 

= 6.05 

2J6a,6b = (− ) 
11.99  

a Standard errors are 0.05 Hz or less, except for α-furanose 3J5,6a that has an 
uncertainty of 0.1 Hz. 

Fig. 5. Experimental (A and B) and calculated (C) 1H NMR spectra of the glucofuranose ring protons. Due to spectral overlap with the pyranose forms in the right 
part of the 1H NMR spectrum, A) is a standard 1D spectrum whereas B) is a 1D-TOCSY spectrum obtained by band-selective excitation of the spectral region 4.10-4.40 
ppm. See also Figure S5-S7. 
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temperature [1], pH, and buffer concentration [25,26], which may 
explain some of the discrepancy. Here, the glucose concentration was 1 
M and a dilute phosphate buffer was used to keep the pD at 7.0. 

3. Conclusions 

In this study, the complete 1H and 13C NMR chemical shifts of both D- 
glucofuranose anomers are reported for the first time. This new 
knowledge can be utilized e.g. when studying glucofuranose confor-
mation and glucose ring-chain tautomerism. Furthermore, although the 
furanoses constitute less than 1% of the total glucose, knowing their 
chemical shifts can be essential for studies of low-abundant compounds 
in solutions containing high amounts of glucose, where some of the 
furanose signals may interfere with the signals of interest. This study 
also highlights the usefulness of selective and band-selective NMR ex-
periments for characterization of low-abundant compounds when other 
compounds in high concentration cause spectral interference. 

4. Experimental 

4.1. General methods 

Anhydrous D(+)-glucose was purchased from VWR. [1–13C]-glucose 
was purchased from Cambridge Isotope Laboratories, Inc. Glucose so-
lutions (1 M) were prepared using 20 mM KH2PO4 buffer in D2O, pD 7.0 
(apparent pH 6.6), as solvent. DSS-d6 (sodium 3-(trimethylsilyl)pro-
pane-1-sulfonate-d6) was added as a chemical shift reference in a con-
centration of approximately 5 mM. To some of the samples, TMS 
(tetramethylsilane) was added as well. The solutions were equilibrated 
in room temperature for at least 24 h prior to NMR analysis. Before NMR 
acquisition, the pD was checked again and adjusted to 7.0 using NaOH 
dissolved in D2O if necessary. 

4.2. NMR spectroscopy 

NMR analysis was performed on a Bruker Avance III 600 MHz 
spectrometer with a 5 mm 1H/13C/15N/31P inverse detection cryoprobe 
or a 5 mm broadband observe detection SmartProbe, both equipped 
with a z gradient. Spectra were recorded at 25 ◦C and were processed 
with TopSpin 4.0.6. The spectrometer temperature was calibrated in 
connection to the experiments using 4% methanol in methanol-d4. The 
carrier frequency was placed on the HDO signal (4.70 ppm). SUN 
(Suppression of UNwanted signals) pulse sequences [20] (1D-1H, 
1H,1H-TOCSY, and 1H,13C-HSQC) were used for selective excitation 
experiments. As the 180◦ selective excitation pulse, either an IBURP-2 
(25.8 ms) or a Gaussian pulse (80 ms) was used depending on the 
width of the selected area; when only one spin was excited the latter 
pulse was employed due to its narrower excitation profile. The TOCSY 
spin-lock was 100 ms if not stated otherwise. For quantitative 1H NMR, a 
relaxation delay of 20 s (including the acquisition time) was used and 
the following signals were integrated: α-pyranose H1 or H2, β-pyranose 
H2 or H6a, α-furanose H1 or H3, and β-furanose H3. For quantitative 1D 
13C NMR, the inverse-gated decoupled Bruker pulse sequence zgig30 was 
used, with a relaxation delay of 40 s. Before quantitation, spectral 
baseline points were defined after which the baseline was corrected 
using cubic spline. The number of data points collected in HSQC was 
1024 or 2048, apart from the HSQC without decoupling where 8192 
data points were collected. 

4.3. Spin simulations 

Spin simulations and iterative spectral analysis were performed 
using the Daisy module in TopSpin. Proton chemical shifts and coupling 
constants that could be extracted directly from the spectra (both selec-
tive and non-selective) were used as starting values for the simulations. 
Thereafter, the J-value, chemical shift, and line width for each spin were 

iterated until the best possible fit was achieved, judged by visual 
evaluation. 
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1H and 13C chemical shifts and JH,H coupling constants in NMR spectra of d- 
glucopyranose and all d-glucopyranosyl-d-glucopyranosides, Carbohydr. Res. 343 
(2008) 101–112, https://doi.org/10.1016/j.carres.2007.10.008. 

[13] M. Maebayashi, M. Ohba, T. Takeuchi, Anomeric proportions of d-glucopyranose at 
the equilibrium determined from 1H-NMR spectra I. Investigation of experimental 
conditions and concentration dependence at 25.0 ◦C, J. Mol. Liq. 232 (2017) 
408–415, https://doi.org/10.1016/j.molliq.2017.02.062. 

[14] A.S. Perlin, B. Casu, H.J. Koch, Configurational and conformational influences on 
the carbon-13 chemical shifts of some carbohydrates, Can. J. Chem. 48 (1970) 
2596–2606, https://doi.org/10.1139/v70-435. 

[15] C. Williams, A. Allerhand, Detection of β-d-glucofuranose in aqueous solutions of d- 
glucose. Application of carbon-13 fourier-transform n.m.r. spectroscopy, 
Carbohydr. Res. 56 (1977) 173–179, https://doi.org/10.1016/S0008-6215(00) 
84250-0. 

[16] S.J. Angyal, V.A. Pickles, Equilibria between pyranoses and furanoses. II. Aldoses, 
Aust. J. Chem. 25 (1972) 1695–1710, https://doi.org/10.1071/CH9721695. 

[17] D.E. Kiely, L. Benzing-Nguyen, Oxidation of carbohydrates with chromic acid. 
Synthesis of 6-acetamido-6-deoxy-d-xylo-hexos-5-ulose, J. Org. Chem. 40 (1975) 
2630–2634, https://doi.org/10.1021/jo00906a012. 

[18] L.D. Hayward, S.J. Angyal, A symmetry rule for the circular dichroism of reducing 
sugars, and the proportion of carbonyl forms in aqueous solutions thereof, 
Carbohydr. Res. 53 (1977) 13–20, https://doi.org/10.1016/S0008-6215(00) 
85450-6. 

[19] A. Lubineau, J.-C. Fischer, High-yielding one-step conversion of d-Glucose and d- 
galactose to the corresponding α and β methyl-d-glucofuranosides and 
galactofuranosides, Synth. Commun. 21 (1991) 815–818, https://doi.org/ 
10.1080/00397919108019762. 

E. Alexandersson and G. Nestor                                                                                                                                                                                                             



Carbohydrate Research 511 (2022) 108477

6

[20] E. Alexandersson, C. Sandström, L.C.E. Lundqvist, G. Nestor, Band-selective NMR 
experiments for suppression of unwanted signals in complex mixtures, RSC Adv. 10 
(2020) 32511–32515, https://doi.org/10.1039/D0RA06828D. 

[21] R.K. Harris, E.D. Becker, S.M. Cabral de Menezes, R. Goodfellow, P. Granger, NMR 
nomenclature: nuclear spin properties and conventions for chemical shifts (IUPAC 
recommendations 2001), Pure Appl. Chem. 73 (2001) 1795–1818, https://doi.org/ 
10.1351/pac200173111795. 

[22] R.G.S. Ritchie, N. Cyr, B. Korsch, H.J. Koch, A.S. Perlin, Carbon-13 chemical shifts 
of furanosides and cyclopentanols. Configurational and conformational influences, 
Can. J. Chem. 53 (1975) 1424–1433, https://doi.org/10.1139/v75-197. 

[23] N. Cyr, A.S. Perlin, The conformations of furanosides. A 13C nuclear magnetic 
resonance study, Can. J. Chem. 57 (1979) 2504–2511, https://doi.org/10.1139/ 
v79-399. 

[24] B.E. Lewis, N. Choytun, V.L. Schramm, A.J. Bennet, Transition states for 
glucopyranose interconversion, J. Am. Chem. Soc. 128 (2006) 5049–5058, https:// 
doi.org/10.1021/ja0573054. 

[25] J.M. Los, L.B. Simpson, K. Wiesner, The kinetics of mutarotation of d-glucose with 
consideration of an intermediate free-aldehyde form, J. Am. Chem. Soc. 78 (1956) 
1564–1568, https://doi.org/10.1021/ja01589a017. 

[26] S.J. Angyal, The composition of reducing sugars in solution, in: R.S. Tipson, 
D. Horton (Eds.), Advances in Carbohydrate Chemistry and Biochemistry, 
Academic Press, 1984, pp. 15–68. 

E. Alexandersson and G. Nestor                                                                                                                                                                                                             



S1 
 

Electronic supplementary information 

 

Complete 1H and 13C NMR spectral assignment of D-glucofuranose 
 

Elin Alexandersson and Gustav Nestor 
 

Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden 

 

 

 

 

 

 

Figure S1. 1D-13C NMR spectrum of [1-13C]-glucose. 
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Figure S2. 1D-TOCSY with selective excitation of the anomeric signal of α-glucofuranose. 

The mixing time was varied between 20 and 120 ms to enable step-wise assignment of the 

spin system. 

 

 

Figure S3. 1D-TOCSY with selective excitation of the α-glucofuranose H3 signal. The 

mixing time was varied between 20 and 120 ms to enable step-wise assignment of the spin 

system. 
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Figure S4. 1D-TOCSY with selective excitation of the β-glucofuranose H3 signal. The 

mixing time was varied between 20 and 120 ms to enable step-wise assignment of the spin 

system. H1 and H2 have a small coupling constant to H3 and therefore require a relatively 

long mixing time to appear in the spectrum. 
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Figure S5. Experimental 1D-1H spectrum (top), 1D-TOCSY spectrum (middle), and 

calculated spectrum (bottom) of the glucofuranose ring protons. The 1D-TOCSY spectrum 

was obtained by band-selective excitation of the spectral region 4.10-4.40 ppm. The region of 

each experimental spectrum that was used as input for the simulation is marked in red.  
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Figure S6. Experimental 1D-TOCSY spectrum (top) and spin simulation (bottom) of α-

glucofuranose H2 and H4-H6. The experimental spectrum was obtained by exciting the αH3 

signal at 4.30 ppm. 

 

 

 

Figure S7. Experimental 1D-TOCSY spectrum (top) and spin simulation (bottom) of β-

glucofuranose H2 and H4-H6. The experimental spectrum was obtained by exciting the βH3 

signal at 4.24 ppm. 
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Abstract
Introduction The Automated Quantification Algorithm (AQuA) is a rapid and efficient method for targeted NMR-based 
metabolomics, currently optimised for blood plasma. AQuA quantifies metabolites from 1D-1H NMR spectra based on the 
height of only one signal per metabolite, which minimises the computational time and workload of the method without 
compromising the quantification accuracy.
Objectives To develop a fast and computationally efficient extension of AQuA for quantification of selected metabolites in 
highly complex samples, with minimal prior sample preparation. In particular, the method should be capable of handling 
interferences caused by broad background signals.
Methods An automatic baseline correction function was combined with AQuA into an automated workflow, the extended 
AQuA, for quantification of metabolites in plant root exudate NMR spectra that contained broad background signals and 
baseline distortions. The approach was evaluated using simulations as well as a spike-in experiment in which known metabo-
lite amounts were added to a complex sample matrix.
Results The extended AQuA enables accurate quantification of metabolites in 1D-1H NMR spectra with varying complexity. 
The method is very fast (< 1 s per spectrum) and can be fully automated.
Conclusions The extended AQuA is an automated quantification method intended for 1D-1H NMR spectra containing 
broad background signals and baseline distortions. Although the method was developed for plant root exudates, it should be 
readily applicable to any NMR spectra displaying similar issues as it is purely computational and applied to NMR spectra 
post-acquisition.

Keywords Targeted metabolomics · Automated quantification · Baseline correction · AQuA · Root exudate · NMR

1 Introduction

Nuclear magnetic resonance (NMR) spectroscopy is com-
monly used in metabolomics for identification and quantifi-
cation of metabolites in different biological samples (Crook 
& Powers, 2020). NMR has many advantages; it is inher-
ently quantitative, highly reproducible, non-destructive, and 

enables analysis of compounds with different chemical prop-
erties in one single experiment. However, the complex mix-
tures of natural products that are studied in metabolomics 
typically yield complicated 1D-1H NMR spectra with exten-
sive spectral overlap, which can make both identification 
and quantification of individual metabolites challenging. 
Spectral overlap occurs because one metabolite can generate 
several NMR signals, and signals from different compounds 
often appear at similar chemical shifts. The resulting sig-
nal interferences are especially problematic for quantitative 
studies because concentrations of individual metabolites 
will be overestimated unless the interferences are properly 
accounted for. Two-dimensional NMR experiments can be 
used to increase signal dispersion, but 2D spectra typically 
take longer time both to acquire and to analyse than 1D 
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spectra. Furthermore, quantification based on 2D spectra is 
not straightforward since the intensity of individual peaks 
is influenced by their coupling constants and transverse 
relaxation times. Accordingly, calibration with pure refer-
ence compounds, either externally or internally, is required 
for accurate quantification (Crook & Powers, 2020; Mar-
tineau et al., 2020). Therefore, 1D-1H NMR experiments are 
still the most common in high-throughput studies and there 
continues to be a high demand for methods that can accu-
rately quantify metabolites based on 1D-1H spectra. Various 
approaches have been developed, both manual (Weljie et al., 
2006) and automated (Zheng et al., 2011; Hao et al., 2012; 
Ravanbakhsh et al., 2015; Tardivel et al., 2017; Lefort et al., 
2019; Häckl et al., 2021; Rout et al., 2023).

An Automated Quantification Algorithm (AQuA) for tar-
geted metabolomics has previously been developed in our 
group (Röhnisch et al., 2018, 2021). This method quantifies 
metabolites from 1D-1H NMR spectra using only one signal 
per metabolite, which reduces the computational time and 
workload substantially compared to e.g. curve-fitting quan-
tification algorithms (Zheng et al., 2011; Hao et al., 2012; 
Ravanbakhsh et al., 2015; Tardivel et al., 2017). At the same 
time, AQuA corrects for signal interferences between differ-
ent metabolites as well as inter-spectral variation in signal 
position. Currently, AQuA is optimised for ultra-filtered 
human plasma samples but it would be desirable to extend 
its use to other, more heterogeneous, sample types as well, 
preferably without any time-consuming sample preparation.

Whereas human blood plasma and serum are well studied 
by NMR and the majority of signals have been assigned 
(Psychogios et al., 2011; Nagana Gowda et al., 2015), many 
other biological samples are less well characterised. Plant 
samples, for example, are very complex with numerous dif-
ferent metabolites of widely different concentrations, which 
complicates NMR analysis (Deborde et al., 2017). In the 
present study, aqueous oilseed rape (Brassica napus) root 
exudate samples were used as a model system to develop 
the proposed workflow (Fig. 1). Root exudates consist of all 
substances that are excreted by plant roots during growth, 
including sugars, organic acids, and amino acids (Vives-
Peris et al., 2020). In addition, the samples used in this study 
all contained various unknown compounds, likely lipids, that 
gave rise to broad signals in the spectra (Fig. 1b and c). 
Before accurate quantification can be performed, these sig-
nals need to be accounted for in some way. 

In blood plasma and serum, macromolecules giving rise 
to broad signals are routinely removed by ultrafiltration or 
precipitation with organic solvents before NMR analysis 
(Daykin et al., 2002; Nagana Gowda & Raftery, 2014). 
Other options are to use certain NMR experiments that tar-
get broad signals, such as the Carr-Purcell-Meiboom-Gill 
(CPMG) pulse sequence (Carr & Purcell, 1954; Meiboom 
& Gill, 1958) or diffusion-edited experiments (Liu et al., 

1996; de Graaf & Behar, 2003; Bliziotis et al., 2020). 
There are also methods solely based on computations, 
such as the Small Molecule Enhancement Spectroscopy 
(SMolESY) method (Takis et al., 2020, 2021) that utilises 
the first derivative of the imaginary part of the NMR data 
to generate a spectrum devoid of broad signals. SMolESY 
is capable of performing automated relative quantification 
in blood samples, but for more complex spectra remaining 
metabolite signal interferences may appear. Because the 
NMR signals in a SMolESY spectrum are not Lorentz-
ian shaped, standard spectral libraries cannot be used to 
model these interferences to obtain absolute concentra-
tions. Another strategy is to include broad signals in the 
quantification methods, either by modelling them as sig-
nals using e.g. wavelets (Hao et al., 2012) or Lorentzians 
(de Graaf et al., 2015), or by treating them as baseline 
distortions and removing their interference by approximat-
ing a baseline correction function through the broad signal 
(Zheng et al., 2011; Jacob et al., 2017). Most of these 
methods are developed for plasma, but could potentially 

Fig. 1  a  Typical 1H NMR spectrum of oilseed rape root exudate 
dissolved in  D2O, b  Magnification of spectral region 1.7–4.8 ppm, 
c Magnification of spectral region 0.70–1.65 ppm
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also be applied to the plant root exudate samples used as 
test system in the current study.

The aim of the current study was to develop a rapid, 
straightforward, and computationally efficient extension of 
AQuA for absolute quantification of selected metabolites in 
highly complex spectra containing broad background sig-
nals. The method should require minimal sample preparation 
without compromising the quantitative accuracy. Because 
of speed and computational cost, we decided to remove the 
interferences caused by the broad signals before the AQuA 
computation. This was done using an automatic baseline 
correction function; here we employed the widely used 
adaptive iteratively reweighted penalised least squares (air-
PLS) algorithm (Zhang et al., 2010). The combined method, 
called extended AQuA, was evaluated using simulations as 
well as a spike-in experiment performed in a complex sam-
ple matrix. This showed that the approach is both accurate, 
linear, and robust. Furthermore, the proposed workflow is 
fast and flexible and can easily be fine-tuned for individual 
samples.

2  Materials and methods

2.1  Root exudate collection

Seeds of various spring varieties of oilseed rape (Brassica 
napus) were kindly provided by Scandinavian Seed AB and 
Lantmännen Seed AB. All glassware was rinsed extensively 
with MilliQ water and autoclaved before use to minimise 
traces of detergents. Seeds were surface sterilised (10% chlo-
rine bleach for 5 min with mild shaking) and then rinsed 
with autoclaved MilliQ water four times. The seeds were 
germinated on petri dishes containing 0.5× Murashige-
Skoog medium, including vitamins (MS0222, Duchefa 
Biochemie B.V., Haarlem, Netherlands) and 0.6% bacto 
agar, in a growth chamber at 22/20 °C (day/night), 16/8 h 
photoperiod with 110 µE. After three to five days of germi-
nation, when cotyledons and rootlets were expanded, plant-
lets (n = 8) were transferred to sterile plastic nets attached to 
50 ml plastic tubes filled with autoclaved MilliQ water, so 
that the seedling roots were immersed into the water. This 
procedure was done in a sterile laminar flow hood. The sam-
ples were placed in a sterilised transparent plastic box and 
kept for four days with slow agitation in a growth chamber 
at 22/20 °C (day/night), 16/8 h photoperiod with 110 µE. 
Exudates were collected into glass bottles in a sterile laminar 
flow hood, shell frozen and lyophilised in darkness. Aliquots 
of the exudates were spread on plates containing LB agar or 
0.5× Murashige-Skoog agar and stored for 48 h to assess any 
microbial contamination. Blank samples did not contain any 
seedlings but were otherwise treated as described above.

Lyophilised root exudate and blank samples were dis-
solved in a few millilitres of MilliQ water, transferred to 15 
ml plastic tubes, and dried in a vacuum centrifuge. Dried 
samples were stored in a desiccator until use.

2.2  Sample preparation

NMR samples were prepared in a similar fashion to a previ-
ously published protocol (Kim et al., 2010). All experimental 
work was performed at room temperature. 750 µl  KH2PO4 
buffer in  D2O (45 mM, pD 7.0 (apparent pH 6.6) containing 
approximately 0.29 mM DSS-d6 (sodium 3-(trimethylsilyl)
propane-1-sulfonate-d6) was added to each sample. The sam-
ples were vortexed 30 s followed by 10 min ultrasonication. 
This procedure was repeated once. The samples were then 
transferred to 1.5 ml plastic tubes and centrifuged for 10 min 
at 17 000×g. For each sample, 600 µl of the supernatant was 
added to a 5 mm NMR tube.

2.3  NMR spectroscopy and spectral processing

NMR spectra were acquired on a Bruker Avance III 
600 MHz spectrometer with a 5 mm 1H/13C/15N/31P inverse 
detection cryoprobe equipped with a z gradient. 1D-1H 
NMR spectra (256 transients) were recorded at 25 °C using a 
NOESY presaturation pulse sequence (Bruker’s noesypr1d) 
with 1 s relaxation delay, 100 ms mixing time, 4.5 s acqui-
sition time, and 12 ppm spectral width, to enable absolute 
quantification based on the Chenomx library. 65 536 data 
points were collected and the carrier frequency was placed 
on the HDO signal (4.70 ppm). After acquisition, an expo-
nential line broadening of 0.3 Hz was applied and the spec-
tral quality was evaluated by assessing the full width half 
maximum (FWHM) of the DSS signal. If  FWHMDSS was 
greater than 1.20 Hz, a new spectrum was recorded. Spectra 
were processed (zero-filling, line broadening, phase cor-
rection, crude baseline correction) using Chenomx NMR 
Suite Professional Software package (version 8.6, Chenomx 
Inc., Edmonton, Canada). The line-broadening factor was 
adjusted for each spectrum to obtain  FWHMDSS = 1.20 Hz. 
If necessary, a crude baseline correction was applied to 
obtain a flat baseline around the internal standard signal 
before determining  FWHMDSS. The processed spectra were 
subjected to spectral binning (− 0.50 to 4.68 ppm and 4.98 
to 10.00 ppm, 0.0002 ppm/bin, 51 000 bins in total) and 
imported to MATLAB (version R2020a, MathWorks Inc., 
Natick (MA), USA).

To verify metabolite identification, 1H,1H-TOCSY 
(Bruker pulse sequence dipsi2gpphpr) and 1H,13C-HSQC 
(Bruker pulse sequence hsqcedetgpsisp.2) spectra were 
recorded for some of the samples. These spectra were pro-
cessed with TopSpin 4.0.6 (Bruker BioSpin).
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2.4  Metabolite identification and quantification

AQuA does not attempt at automated metabolite identifica-
tion, hence metabolite signals have to be selected prior to 
AQuA computation. Here, identification of metabolites was 
based on previous literature (Vives-Peris et al., 2020) and 
reference NMR spectra included in the Chenomx library. 
The identity of the metabolites was verified with 1H,1H-
TOCSY and 1H,13C-HSQC NMR spectra recorded for some 
of the samples. 13C NMR chemical shifts were compared 
with those available in the Biological Magnetic Resonance 
Data Bank (Ulrich et al., 2008). Only metabolites verified by 
2D NMR experiments, or displaying an excellent fit for sev-
eral signals with the Chenomx library, were included in the 
quantification model. Furthermore, only primary metabolites 
were included since one of the aims was to develop a method 
capable of quantifying only a subset of all metabolites in an 
NMR spectrum.

Binned processed NMR spectra (see Sect.  2.3) were 
imported to MATLAB and subjected to the airPLS algo-
rithm (Zhang et al., 2010) to fine-tune the baseline where 
affected by irregularities or the presence of broad signals. 
As default, the airPLS smoothing factor λ was set to 1 ×  107, 
but a local value was determined for spectral regions where 
the default λ failed to yield a satisfactory baseline correction. 
The values for the other parameters in the airPLS algorithm 
were used as default (order = 2, weight exception propor-
tion = 0.1, asymmetry parameter = 0.05, and maximum itera-
tion time = 20). The airPLS algorithm, using the optimised 
λ values, was incorporated in an automated joint workflow 
with AQuA in MATLAB. This workflow is referred to as the 
extended AQuA. Metabolite quantification using AQuA was 
performed on the corrected spectra according to the strategy 
previously described (Röhnisch et al., 2018), using the Che-
nomx library as a basis to model metabolite signals. In total, 
24 metabolites were targeted for quantification, including 
various amino acids, organic acids, and sugars (Table S1). 
One reporter signal to be used for quantification was selected 
for each metabolite (Table S1). Additionally, a few unknown 
signals were included in the model as Lorentzians generated 
in Chenomx (Fig. S1).

2.5  Simulations

A simple smoothing algorithm developed in-house was 
applied to one root exudate spectrum to model the spectral 
background. The algorithm was built in MATLAB based 
on the ‘smooth’ function. In short, the following steps were 
employed: (1) localisation of narrow high-intensity signals 
(spikes), (2) determination of spike borders, (3) spike deple-
tion by linear regression inside spike borders, and (4) aver-
age-based smoothing of the spike-depleted spectrum (for 
more information and a visual description of the process, 

see Supplementary Information Sect. 3, especially Fig. S5). 
In the final step, three levels of smoothing (low, medium, 
and high) were used to obtain three distinct spectral back-
ground models (referred to as A, B, and C, respectively, see 
Fig. S6). Normalised reference spectra of 24 metabolites 
(Table S1) were summed together and added to each spectral 
background in seven different scaling levels, thus yielding 
21 simulated spectra. The spectra were corrected with the 
airPLS algorithm using three different λ values (1 ×  106, 
1 ×  107, and 1 ×  108) applied to the whole spectra. Peak pick-
ing of one signal per metabolite was performed as previously 
described (Röhnisch et al., 2018) to obtain signal intensities 
in the corrected spectra.

2.6  Spike‑in experiment

Six of the analysed root exudate samples were pooled 
together and then divided into five portions. Five metabolites 
(γ-aminobutyric acid (GABA), dl-asparagine, l(+)-tartaric 
acid, l-threonine, and D-xylose) not present in the pooled 
sample were added to different concentrations. As control, 
five identical blank samples were spiked the same way. The 
chosen metabolites have signals in different spectral regions 
with different multiplicities and differ in how much they are 
affected by broad signals or baseline distortions. The large 
variation in concentration (10 µM-3200 µM) between the 
spiked metabolites reflects the large dynamic range observed 
in the experimental data set, both between different metabo-
lites in the same sample and between the same metabolite in 
different samples. See Supplementary Information, Sect. 4.1, 
for more details about the design of the spike-in experiment.

The spiked root exudate samples were analysed as 
described above, i.e. NMR analysis, spectral processing, and 
metabolite quantification using an airPLS-extended AQuA, 
which had been adjusted to include all spiked metabolites 
(Table S1).

The spectra of the spiked blank spectra were care-
fully baseline corrected in Chenomx. For the analysis of 
these spectra, the airPLS step was omitted and an AQuA that 
only targeted the five spiked metabolites plus lactic acid was 
used to calculate metabolite concentrations.

3  Results and discussion

3.1  Extended AQuA: workflow, parameter 
optimisation, and general considerations

The 1D-1H NMR spectra of oilseed rape root exudates dis-
played baseline irregularities, including broad background 
signals, that would impair metabolite concentration esti-
mates if not properly accounted for (Fig. 1). The broad sig-
nals in the low-frequency part of the spectra were the most 
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problematic distortions, due to their interference with several 
amino acid signals. Different methods for elimination of the 
baseline distortions were evaluated, utilising sample prepa-
ration, spectral editing, and computations, respectively (see 
Supplementary Information, Sect. 2). It was found that an 
automatic baseline correction function such as the airPLS 
algorithm (Zhang et al., 2010) could be employed to yield 
root exudate spectra suitable for targeted metabolomics, 
i.e. with well-preserved metabolite signal line shapes, a 
flat baseline, no pronounced residual broad signals, and no 
severe intensity modulation (see Fig. S2). Manual baseline 
correction was not considered feasible due to the complexity 
of the spectra.

The airPLS algorithm was combined with AQuA into 
a joint automated workflow, i.e. the extended AQuA, for 
quantification of metabolites in experimental 1H NMR spec-
tra of root exudates, acquired with minimal prior sample 
preparation (Fig. 2). The identity of the metabolites was 
confirmed with 1H,1H-TOCSY and 1H,13C-HSQC experi-
ments. Because the AQuA quantification is based on just 
one signal per metabolite, the airPLS algorithm was used 
to obtain a good baseline around these signals only, rather 
than aiming for a perfect baseline in the entire spectrum. 
The spectral library used here was created from Chenomx 
but other sources, e.g. in-house libraries, can be used instead 
if desired.

For the airPLS algorithm to work properly, the smoothing 
factor λ needs to be optimised. This parameter, which can be 
set to any value between 1 and 1 ×  109 (Zhang et al., 2010), 
strongly affects the result of the baseline correction. If λ is 
set too high, the fitted baseline does not include enough of 
the background, whereas if it is set too low, the algorithm 
starts to remove parts of the metabolite signals (Fig. 3). 
Here, due to the non-uniform distribution of broad signals 
and other baseline distortions, a single λ value was not used 
for an entire spectrum; instead, different λ values were used 
for different spectral regions (see Sect. 3.2). Despite the vir-
tually unlimited number of options, it was neither difficult 
nor time-consuming to find suitable λ values. Importantly, 
the optimised λ values could be kept fairly constant through-
out each data set and could thereby be included in the auto-
mated workflow. Before applying the extended AQuA to 
a data set, the result of the baseline correction should be 
assessed carefully on a representative subset of the spec-
tra, although one has to keep in mind that the procedure 
is inevitably an estimation and may not exactly match the 
actual baseline of the spectrum. However, this is true for all 
baseline correction methods, regardless of if they are manual 
or automated.

In addition to baseline distortions, interference can also 
be caused by spectral overlap with narrow unknown signals. 
In the current study, the aim was to quantify a preselected 
subset of metabolites while leaving remaining signals in the 

spectra untargeted. However, other signals that interfere with 
the metabolite signals used in AQuA need to be included in 
the quantification model to avoid overestimating the metab-
olite concentrations. Here, four unknown signals between 
0.93 and 0.97 ppm were added to the quantification model 
as single Lorentzians to obtain a more accurate concentra-
tion estimate of leucine based on the signal at 0.96 ppm 
(Table S1 and Fig. S1).

3.2  Evaluation of the extended AQuA

3.2.1  Simulations

The extended AQuA was first evaluated using simulated 
spectra of root exudates where the contributions of the broad 
signal background and the narrow metabolite signals were 

Fig. 2  Proposed workflow for NMR-based quantification of primary 
metabolites in plant root exudates after minimal sample prepara-
tion (see Materials and methods). The workflow includes the airPLS 
algorithm (Zhang et al., 2010) for removal of broad signals, followed 
by quantification using AQuA (Röhnisch et  al., 2018). The in silico 
library, here created from Chenomx, contains 1D-1H NMR spectra 
of all targeted metabolites. Other compatible methods, e.g. for signal 
alignment, can also be included in the workflow if desired
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exactly known (Fig. 4). To test how well the method can 
handle different types of spectra, three different spectral 
background models (A, B, and C) with varying smoothness 
were created (Figs. S5 and S6) and a simulated narrow sig-
nal spectrum was added to the backgrounds in seven dif-
ferent intensity levels. In total, 21 simulated spectra were 
thus obtained with differences in their spectral backgrounds 
as well as in their ratio between narrow and broad signals 
(Figs. S7–S10 and Table S2). For reference, Fig. 4a depicts 
the simulated spectrum created with the medium-smooth 
background B (Fig. 4b) and an intermediate intensity of the 
narrow signal spectrum (Fig. 4c). The airPLS algorithm was 
applied three times to all spectra, with three different λ val-
ues, to evaluate the robustness of the method. The signal 
heights in the airPLS corrected spectra (Fig. 4d) were com-
pared to those in the corresponding narrow signal spectra 
(Fig. 4c) using linear regression. Thereby, it was possible 
to precisely assess how well the airPLS algorithm could 
remove interferences caused by broad signals and baseline 
irregularities, and to what extent the narrow signal part of 
the spectrum was affected by the procedure.

In general, the agreement between the intensities in the 
baseline corrected spectra and the original narrow signal 
spectra was good for the signals used in AQuA, as indi-
cated by slopes and  R2 coefficients close to one and inter-
cepts close to zero (Fig. 5 and Table S3). This suggests that 

the airPLS feature specifically corrected the baseline and 
removed broad background signals without notably affect-
ing the selected metabolite signals. Percentage differences 
(Table S3) were calculated to condense the accuracy esti-
mate into a single variable. For most metabolites, the differ-
ence was less than 10% with at least one of the λ values. The 
smoother backgrounds B and C were easier to fit than the 
rougher background A, hence the smaller intercepts (Fig. 5b 
and c). Overall, when the airPLS algorithm was applied to 
spectra created using background A the λ value needed to 
be smaller than for spectra based on background B or C. For 
metabolite signals situated in spectral regions without back-
ground interference, e.g. formic acid and fumaric acid, the 
accuracy was good for all spectra regardless of which λ value 
was being used (Fig. 5 and Table S3). In contrast, some 
metabolites had signal intensities in the corrected spectra 
that deviated substantially from their true values. Often, this 
coincided with a pronounced interference from the spectral 
background (see Table S2 and Fig. S10). For example, the 
signals of fructose, glyceric acid, lactic acid, and threonine 
were all highly influenced by the spectral background and so 
the quantification accuracy of these metabolites was strongly 
dependent on the performance of the baseline correction. 
Because of the large variation in signal intensity in the simu-
lated spectra, the results could have been more accurate if 
the λ value had been optimised for each individual spectrum 

Fig. 3  The effect of different λ values (1 ×  107 − 1 ×  102) on the base-
line correction of the lactic acid/threonine region of a root exudate 
spectrum. Black: experimental spectrum before baseline correc-

tion, dashed: fitted baseline, grey: experimental spectrum after base-
line correction. Note that the experimental and corrected spectra are 
superimposed, not stacked on top of each other
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(see next section). However, in an experimental data set, the 
inter-spectral variation is usually not as big. Furthermore, 
the quantification accuracy for a given metabolite gener-
ally increased with increasing signal intensity relative to the 
spectral background. Thus, the lower the intensity of the nar-
row signals and the higher the intensity of the background, 
the more critical it becomes to optimise the method param-
eters to avoid quantification errors. Ideally, the signals used 
in the AQuA computation should all have a low degree of 
interference and high signal to noise ratio (Röhnisch et al., 
2018); however, this is not possible for all metabolites. Still, 
the proposed method appears to be both linear and accurate 
for most metabolites.

3.2.2  Spike‑in experiment

A spike-in experiment was conducted to further evaluate 
the extended AQuA (Tables S4, S5 and Fig. S11). Five 
metabolites (asparagine, GABA, tartaric acid, threonine, and 
xylose) were added both to blank samples and to aliquots 

of a pooled root exudate sample in concentrations above 
the limit of quantification (10 × S/N) for each metabolite. 
The blank spectra displayed minimal signal interference and 
lacked the broad background signals and baseline distor-
tions that were present in the root exudate spectra. There-
fore, these spectra were only subjected to manual baseline 
correction before the AQuA computation. The spiked root 
exudate spectra, on the other hand, were baseline corrected 
with the airPLS algorithm to remove broad background sig-
nals. Here, the default λ value gave a satisfactory correction 
for all metabolites except threonine and GABA, as evaluated 
by manual inspection. Threonine was the most challenging 
metabolite to quantify in the spiked root exudate spectra 
because its selected signal overlapped both with the signal 
of the methyl group of lactic acid and with a broad signal 
that was not assigned unambiguously but can be tentatively 
attributed to a lipid methylene signal (Fig. S11). The latter 
could not be correctly suppressed unless a lower λ value 
was used (see Fig. 3). The GABA signal is a broad quintet 
whose intensity was slightly reduced with the default λ value 
because the fitted baseline removed a small portion of the 
signal (Fig. S12). Therefore, the size of λ was increased for 
this spectral region.

After baseline correction, AQuA computation was per-
formed on both the spectra from the spiked root exudates 
and the spiked blank samples, and the results were compared 
with each other using linear regression as well as percent dif-
ferences (Table 1). The calculated concentrations are listed 
in Table S6. Because the same amount of metabolites were 
added to both sample sets, all slopes should theoretically be 
equal to one, and all intercepts should be equal to zero as 
none of the spiked metabolites were present in the samples 
initially. However, since the sample matrices differed some-
what and all metabolite additions were done manually, some 
deviations could be expected. Still, as shown in Table 1, the 
 R2 values were > 0.999, all intercepts were close to the ori-
gin, and the percent differences were generally small. This 
was in agreement with the results from the simulations. To 
enable comparison of the intercepts amongst the different 
metabolites despite the big differences in concentration, the 
intercepts are reported both as the actual value and as per-
cent of the highest concentration for each metabolite. The 
tartaric acid signal was consistently more intense in the spec-
tra of the spiked root exudate samples than in the spectra of 
the corresponding blank samples (Fig. S13), hence the large 
slope and percent differences. An experimental error prob-
ably occurred when tartaric acid was added to the root exu-
date samples since the calculated concentration of tartaric 
acid in the blank samples, but not the root exudate samples, 
agreed well with the actual concentrations (Tables S6–S8). 
The values of the intercepts and slopes for the other metabo-
lites indicated that there was no clear, systematic over- or 
underestimation of the concentrations obtained using the 

Fig. 4  Examples of simulated spectra used to evaluate the extended 
AQuA. a Simulated root exudate spectrum, constructed from a simu-
lated spectral background b and a simulated narrow signal spectrum 
c. d  The simulated root exudate spectrum after correction with the 
airPLS algorithm (λ = 1 ×  107 for the entire spectrum). Ideally, the 
spectra in c  and d  should be identical. An intensity scale has been 
added to all spectra to facilitate comparison between the spectra
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proposed method compared to when the same metabolites, 
in the absence of baseline distortions, were quantified with 
the non-extended AQuA.

3.3  Application to plant root exudates

The extended AQuA was applied to a data set consisting 
of 50 NMR spectra from oilseed rape root exudates and 7 

Fig. 5  Evaluation of the extended AQuA applied to seven simulated 
spectra constructed using spectral background model A, B, or C (see 
Figs. S5–S9). Linear regression was performed using signal heights 
in the simulated narrow signal spectra as predictor (x-axis) and sig-
nal heights in the corresponding simulated spectra with both broad 
and narrow signals, after correction with the airPLS algorithm, as 

response (y-axis). Only the signals used in AQuA were evaluated. Bar 
heights display values of the intercepts and slopes for each metabo-
lite in the simulated spectra. Bar colour indicates the λ value used 
in the baseline correction. Asterisks denote linear regressions with 
 R2 < 0.9900
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blank spectra. Concentration estimates were computed for 
24 metabolites (Table S1). Additionally, four unknown sig-
nals were included to model signal interferences (Fig. S1) 
but they were not quantitatively interpreted.

The extended AQuA process (i.e. baseline correction fol-
lowed by the quantification of 24 target metabolites) applied 
to all 57 spectra was typically completed in less than 30 s on 
a standard personal computer. The same method parameters 
were used for all spectra. In addition to the default λ value, 
two local values were used in the airPLS baseline correc-
tion (λ = 1 ×  106 for the spectral region 0.899–0.967 ppm 
and λ = 1 ×  105 for the region 1.225–1.334 ppm). If only one 
λ value was used, the total computation time decreased to 
around 10 s. It has been shown that AQuA requires less than 
one second to quantify 67 metabolites in 1342 spectra (Röh-
nisch et al., 2018). Introducing the airPLS step thus increases 
the computation time but the combined method is still very 
rapid. Because the airPLS algorithm is the rate-limiting step, 
the computation time increases notably with the number of 
spectra and λ values whereas it is negligibly affected by the 
number of metabolites targeted for quantification.

3.4  Advantages and limitations

The method described here allows for quantification of 
metabolites in complex spectra that contain broad signals 
and baseline distortions. Only minimal sample preparation 
is required and because the method is purely computational, 
knowledge about the compounds causing the broad signals is 
not needed. However, in case of binding interactions between 
metabolites and other compounds such as proteins, applica-
tion of the method would be more challenging. The occur-
rence of such interactions can be estimated by assessing the 

line width and shape of the internal standard signal, since 
both DSS and TSP are known to interact with macromol-
ecules (Bell et al., 1989; Kriat et al., 1992; Shimizu et al., 
1994; Nowick et al., 2003). Here, both metabolite signals 
and the internal standard signal were narrow and symmetric, 
which indicated that no significant macromolecular interac-
tion was taking place.

As shown here, the baseline correction method airPLS 
and the quantification method AQuA can be combined into 
a fully automated workflow, provided that prior metabolite 
identification and parameter optimisation have been con-
ducted. Optimising the airPLS algorithm is straightforward 
and depends only on the parameter λ. Here, we did not strive 
for an optimal baseline in the whole spectrum but only in 
regions containing signals used in AQuA, which reduced 
the optimisation time and effort. The combined method is 
extremely fast and typically requires less than one second 
per spectrum. This is due both to the sparse matrix charac-
teristic of the airPLS algorithm, but more importantly the 
AQuA data reduction strategy. AQuA only considers a set 
of pre-selected signals in the quantitative process, one for 
each metabolite, which facilitates very rapid computations 
whilst still accounting for interferences between metabolites.

Here, we chose to use the airPLS algorithm for baseline 
correction but it is possible to use other methods instead, 
as long as they are compatible with AQuA. The metabolite 
library can also be exchanged if e.g. in-house spectral librar-
ies are preferred.

There are also some limitations of the method. Relying 
on the height of one single metabolite signal for deriving 
concentrations may make the method more sensitive to 
systematic errors caused by database discrepancies com-
pared to when several signals are used (see Supplementary 

Table 1  Comparison of the 
concentrations obtained for the 
spiked blank samples and the 
concentrations obtained for the 
spiked root exudate  samplesa

a Results from linear regression. Predictor (x-axis): Concentrations for spiked blank samples calculated 
using an AQuA including only the five spiked metabolites and lactic acid. Response (y-axis): Concentra-
tions for spiked root exudate samples calculated using an airPLS-extended AQuA including the metabo-
lites listed in Table S1. Used airPLS parameters: λdefault = 1 ×  107, λThr = 1 ×  105 − 1 ×  106 (depending on the 
intensity of the threonine signal), λGABA = 1 ×  108

b Actual value for the spiked sample with the highest concentration
c Intercept as percent of the maximum concentration for the metabolite
d Average difference (%) for each spiked metabolite, comparing the calculated concentrations found for the 
spiked root exudate samples with the calculated concentrations for the corresponding blank samples (calcu-
lated as 100 × |Cblank −  Csample|/Cblank). See Table S6 for a complete list of difference values

Metabolite Max conc. (µM)b R2 Slope Intercept (µM) Rel.  interceptc % Mean % dif-
ference blank-
sampled

Asparagine 1604 1.0000 0.976 − 0.474  − 0.0295 2.7
GABA 403 1.0000 1.00  − 3.23  − 0.801 4.0
Tartaric acid 800 0.9994 1.16 6.70 0.837 20.0
Threonine 164 0.9996 1.01 2.22 1.36 6.2
Xylose 3224 1.0000 0.999 4.49 0.139 1.2
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Information, Sect. 4.2). However, this has not been fully 
evaluated, neither have we investigated whether other 
quantification methods are less susceptible to this kind of 
errors. Since AQuA is not an identification method, there 
is also a risk of erroneous metabolite quantification if the 
chemical shift windows have not been properly selected or 
if there are unknown signals present in some spectra that 
have not been accounted for. If a signal from another com-
pound, metabolite or impurity, with higher intensity than 
the intended metabolite signal resides in the chemical shift 
window, the algorithm will pick this signal for quantifica-
tion instead. For reliable results, metabolite identification 
should ideally be assessed manually. However, the prob-
lem with possible false identification of metabolites is not 
unique to AQuA, especially when the targeted metabolite 
signals are singlets.

4  Conclusions

We have here presented a fast and accurate approach for 
automated quantification of selected metabolites in com-
plex NMR spectra. The spectra of minimally handled plant 
root exudate samples were successfully analysed with the 
proposed method, despite the presence of unknown broad 
signals, baseline distortions, and extensive spectral overlap. 
Although not evaluated here, the method is theoretically 
applicable to any spectrum with similar characteristics, as 
long as the metabolite signals are unaffected by macromo-
lecular interactions.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11306- 023- 02073-z.
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1. Metabolite library 

Table S1 The metabolites included in AQuA (indicated by “X”) applied to the different data sets 

 Signal used in AQuA Data set 

Metabolite δ (ppm) mult. no. H structure 
Root 

exudates Simulations Spike-in, 
samples 

Spike-in, 
blanks 

Acetic acid 1.91 s 3 –CH3 X X X  

Alanine 1.48 d 3 –CH3 X X X  

Asparagine 2.86 dd 1 –CH2– X X X X 

Aspartic acid 2.68 dd 1 –CH2– X X X  

Choline 3.19 s 9 –CH3 X X X  

Formic acid 8.45 s 1 =CH– X X X  

Fructose 4.10 m 2 >CH– X X X  

Fumaric acid 6.51 s 2 =CH– X X X  

GABA 1.89 m 2 –CH2– X X X X 

Glucose 5.22 d 1 >CH– X X X  

Glutamine 2.46 m 2 –CH2– X    

Glyceric acid 4.07 dd 1 >CH– X X X  

Isoleucine 1.01 d 3 –CH3 X X X  

Lactic acid 1.31 d 3 –CH3 X X X X 

Leucine 0.96 m 6 –CH3 X X X  

Maleic acid 6.01 s 2 =CH– X X X  

Malic acid 2.68 dd 1 –CH2– X X X  

Pyroglutamic 
acid 4.17 dd 1 >CH– X    

Succinic acid 2.40 s 4 –CH2– X X X  

Sucrose 4.22 d 1 >CH– X X X  

Tartaric acid 4.31 s 2 >CH–  X X X 

Threonine 1.31 d 3 –CH3 X X X X 

Unknown-1a 0.94 s - - X    

Unknown-2a 0.95 s - - X    

Unknown-3a 0.96 s - - X    

Unknown-4a 0.97 s - - X    

Uracil 5.80 d 1 =CH– X X X  

Uridine 5.88 d 1 =CH– X X X  

Valine 1.03 d 3 –CH3 X X X  

Xylose 5.18 d 1 >CH–  X X X 
a The unknown signals were included as Lorentzians to model signal interference in the root exudate spectra 
(see Fig. S1) but they were not quantitatively interpreted. 
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Fig. S1 Overlap with unknown signals. The leucine signal that was selected for AQuA (blue) overlaps 
with unknown signals that need to be included in the model for accurate concentration estimation. The 
red dashed line represents the model sum. When only known metabolites (blue and grey) are included 
in the model, the calculated height of the leucine signal (blue dot) closely matches that of the 
experimental target signal (black dot) (a). When unknown signals (green) are added to the model, the 
leucine signal is estimated to be less intense, because interference contributions from the unknown 
signals are now taken into account (b). The library signals of the unknowns were generated in Chenomx 
as Lorentzians whose positions and signal line widths were matched manually, based on visual 
inspection, to one representative root exudate NMR spectrum. 
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2. Evaluation of different methods for suppression of broad signals in 1D-1H 
NMR spectra 

2.1 Evaluation results 
Ultrafiltration is the routine procedure to remove macromolecules from blood samples. 
However, the broad signals in the root exudate sample were unaffected by this procedure, 
meaning that they are likely not caused by macromolecules larger than 3 kDa (Fig. S2). The 
sample was also passed through a C18 solid phase extraction (SPE) column. In the aqueous 
filtrate, some of the broad signals have been completely removed whereas others have been 
diminished. The baseline was also generally improved. However, this procedure inevitably 
disturbs the integrity of the sample and some compounds, including the internal standard DSS, 
were not fully recovered in the first elution step but appear in the subsequent methanolic eluate 
as well (Fig. S3). Thus, the method cannot be used for absolute metabolite quantification. 
Furthermore, since some broad signals are still present in the aqueous filtrate, it can be 
concluded that the underlying compounds are not particularly hydrophobic. 
 
The CPMG pulse sequence (Carr & Purcell 1954; Meiboom & Gill 1958) is a common 
approach to selectively suppress broad NMR signals based on their short transverse relaxation 
times (T2) compared to narrower signals. Here, with the CPMG experiment it was possible to 
reduce the intensity of the broad signals, but not without severely affecting certain metabolite 
signals (Fig. S2). Diffusion experiments, in which resonances from fast-diffusing compounds 
are defocused, also allowed the intensity of the broad signals in the difference spectrum to be 
reduced, but other signals were suppressed as well (Fig. S2 and S4). Thus, it appears that there 
is no distinct difference in T2 relaxation times or diffusion coefficients between the compounds 
causing the broad signals and the metabolites of interest, and it was therefore not possible to 
find NMR parameters that selectively targeted all broad signals, but no metabolite signals, 
using either CPMG or diffusion experiments. The diffusion experiments also affected 
individual broad signals differently, implying that the underlying compounds have different 
diffusion coefficients. This particular problem has been addressed in a previous study where 
the intensities of individual lipoprotein signals were allowed to vary ±10 % to achieve a good 
fit with the original 1D-1H spectrum (de Graaf et al. 2015). However, because the spread in 
diffusion coefficients is much larger in our study, a higher intensity variation would have to be 
allowed to accurately fit the spectra. 
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Fig. S2 Ultrafiltration, SPE, CPMG, 1D-diffusion, and airPLS applied to the same root exudate sample 
(black spectra). All NMR spectra are overlaid with a 1D-NOESY presaturation spectrum recorded on 
the intact sample (grey). A baseline at zero intensity has been added to all spectra. The insets show 
magnifications of the spectral region 0.8-1.4 ppm. For the airPLS computation, the default λ value was 
1×107. In addition, two local λ values were used: 1×105 for the spectral region 1.23-1.33 ppm and 1×106 
for the region 0.90-0.97 ppm. For the other methods, see section 2.2 for parameter details. 
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Fig. S3 1D-1H NMR spectra of a pooled root exudate sample either analysed directly (top) or after it 
was passed through an SPE column (middle and bottom) 
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Fig. S4 1D-NOESY-presat, 1D-diffusion, and the difference spectrum (1D-diffusion subtracted from 
1D-NOESY), respectively, of a pooled root exudate sample 
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2.2 Sample preparation and acquisition parameters 

Ten of the analysed root exudate samples were pooled together to obtain a large enough sample 
volume for comparison of different methods. 600 µl of the pooled sample was transferred 
directly to an NMR tube to be used for 1D-NOESY-presat, CPMG, and diffusion-edited 
experiments. The remaining sample volume was used to evaluate ultrafiltration and solid phase 
extraction (SPE). Except where noted, NMR spectra were recorded and processed as described 
in the Materials and methods section of the paper. 
 
Ultrafiltration was performed in two replicates using Nanosep filters with 3 kDa cut-off (Pall 
Life Science, Port Washington (NY), USA). The filters were washed nine times with MilliQ 
water (500 μl, 36 °C, 2000 g, 15 min) and then once with D2O before the sample was added. 
To each filter, 500 µl of the pooled sample was added and the samples were spun for 10 min 
at 13 000 g and 4 °C, after which an additional volume of 200 µl was added and the 
centrifugation was repeated until most of the sample had passed through the filter. 600 µl of 
the filtered samples were then transferred to NMR tubes. 
 
SPE was performed in two replicates using Isolute C18(EC) cartridges (50 mg, 1 ml) (Biotage, 
Uppsala, Sweden). The cartridges were activated with 1 ml methanol and then washed with 1 
ml MilliQ water. Thereafter, 600 µl of the pooled sample was passed through each column 
followed by 1 ml MilliQ water to wash out all polar metabolites. To elute non-polar metabolites 
from the SPE columns, 1 ml methanol was added and the eluate was collected separately. Both 
the aqueous (sample and subsequent MilliQ washing) and the methanolic eluates were dried in 
a vacuum centrifuge. The dried samples were dissolved in 600 µl D2O and transferred to NMR 
tubes. 
 
CPMG spectra were recorded with water presaturation using the Bruker pulse sequence 
cpmgpr1d (relaxation delay-90°-(τ-180°-τ)n-acquire). The best suppression of broad signals 
was achieved with a 2 s relaxation delay, n = 450 loops, and a spin echo delay τ of 1 ms, 
yielding a total echo time of 900 ms. 
 
Diffusion-edited spectra were recorded using a longitudinal-eddy current delay experiment 
with bipolar gradients (the Bruker pulse sequence ledbpgp2s1d). The best suppression of broad 
signals in the difference spectrum was achieved with a diffusion time of 100 ms and an effective 
gradient pulse duration (δ) of 2 ms. The gradient strength was set to 95 % of its maximum value 
(the maximum z-gradient was 48.15 G/cm). 1024 transients were recorded in the diffusion 
experiment to improve the signal to noise ratio. 
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3. Simulated spectra 
The spectral background of one root exudate spectrum was modelled using average-based 
smoothing. The procedure is outlined in Fig. S5a. Before applying the smoothing function, 
narrow high-intensity signals (“spikes”) were removed from the spectrum. This was done by 
defining spike borders - two spectral data points on either side of the spike - and performing 
linear regression between these two points. Smoothing applied directly to the root exudate 
spectrum resulted in undesirable artefacts in spike regions (Fig. S5b), which is why spikes 
were removed before the smoothing step. 
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Fig. S5 Modelling the spectral background of a root exudate spectrum. a) The procedure used here to 
generate the spectral background models (background B is shown), b) Average-based smoothing 
applied to the root-exudate spectrum with spikes creates artefacts in spike regions (indicated here for 
two of the spikes). 
 
 
 

 
Fig. S6 The three spectral background models included in the simulations 
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Fig. S7 The seven simulated spectra (black) based on background A (grey) 
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Fig. S8 The seven simulated spectra (black) based on background B (grey) 
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Fig. S9 The seven simulated spectra (black) based on background C (grey) 
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Fig. S10 The metabolite signals that were targeted in the analysis of the simulated spectra. Shown are 
the uncorrected simulated spectra with the lowest and highest proportion of narrow signal to spectral 
background for background A, B, and C (i.e. spectra 1 and 7 in Fig. S6-S8) (black). Shown are also the 
corresponding library spectra (coloured), normalised so that the intensities of the signals used in AQuA 
equal 1 a.u. 
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Table S2 The contribution (in percent) of the spectral background to the total target signal intensities 
in the simulated root exudate NMR spectraa 

 Spectrum 1 Spectrum 7  
A B C A B C 

Acetic acid 55.0 60.1 59.6 14.9 17.7 17.4 
Alanine 66.8 69.3 79.3 22.3 24.4 35.4 
Asparagine 44.3 45.9 54.5 10.2 10.8 14.6 
Aspartic acid 57.3 58.2 59.7 16.1 16.6 17.5 
Choline 67.0 66.0 64.3 22.3 21.7 20.5 
Formic acid 6.3 8.7 7.8 1.0 1.3 1.2 
Fructose 86.2 86.6 85.3 47.2 47.9 45.3 
Fumaric acid 35.2 36.2 37.7 7.2 7.5 8.0 
GABA 60.1 64.4 64.3 17.7 20.5 20.5 
Glucose 47.8 46.3 47.5 11.6 11.0 11.4 
Glyceric acid 86.0 86.0 86.5 46.7 46.7 47.8 
Isoleucine 56.1 55.9 66.1 15.4 15.3 21.8 
Lactic acid 86.2 78.7 80.3 47.1 34.5 36.8 
Leucine 74.0 65.7 72.3 28.8 21.5 27.2 
Maleic acid 30.6 22.4 24.4 5.9 4.0 4.4 
Malic acid 56.5 57.5 58.9 15.6 16.2 17.0 
Succinic acid 63.5 67.2 59.9 19.9 22.6 17.6 
Sucrose 79.3 79.1 79.4 35.4 35.0 35.4 
Tartaric acid 75.5 78.3 79.4 30.6 34.1 35.5 
Threonine 85.6 78.7 80.3 46.0 34.5 36.8 
Uracil 36.6 30.7 29.0 7.6 6.0 5.5 
Uridine 25.7 24.2 28.5 4.7 4.4 5.4 
Valine 55.7 52.5 62.3 15.2 13.6 19.1 
Xylose 52.1 52.8 50.7 13.5 13.8 12.8 

a Estimated by comparing the signal intensities in the simulated root exudate spectra, before correction with the 
airPLS algorithm, to the intensities in the corresponding narrow signal spectra. Included in the table are estimates 
for the simulated spectra with the lowest (1) and highest (7) proportion of narrow signals to spectral background, 
for each background (A, B, and C). 
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Table S3 Evaluation of the extended AQuA applied to 21 simulated NMR spectraa 
  

A B C  
λ slope intercept R2 diff 

%b slope intercept R2 diff 
%b slope intercept R2 diff 

%b 
Acetic acid 106 0.9370 -0.0931 0.9997 8.7 0.9017 -0.0087 1.0000 10.1 0.9013 -0.0162 1.0000 10.4 

107 0.9885 -0.0108 1.0000 1.5 0.9864 -0.0787 0.9998 3.6 0.9847 -0.1254 0.9995 4.8 
108 0.9929 0.0316 1.0000 0.5 0.9926 -0.0103 1.0000 1.0 0.9898 -0.0739 1.0000 3.1 

Alanine 106 0.9856 -0.0028 0.9999 1.5 0.9686 -0.0560 1.0000 5.2 0.9709 -0.0280 1.0000 4.0 
107 0.9864 0.0500 1.0000 1.0 0.9800 -0.0718 1.0000 4.6 0.9872 0.0109 1.0000 1.1 
108 1.0029 0.4138 0.9996 15.3 1.0036 0.1328 0.9999 5.3 0.9962 0.0829 0.9995 3.1 

Asparagine 106 0.9534 -0.0233 1.0000 5.4 0.9452 -0.0287 1.0000 6.6 0.9457 0.0196 1.0000 4.9 
107 0.9562 -0.0110 1.0000 4.8 0.9580 -0.0531 1.0000 6.1 0.9802 0.0146 0.9991 2.3 
108 0.9876 -0.0558 1.0000 3.3 0.9865 -0.0851 1.0000 4.4 0.9913 0.0974 0.9997 3.1 

Aspartic acid 106 0.9548 -0.0584 0.9999 6.4 0.9454 -0.0097 1.0000 5.9 0.9443 0.0206 1.0000 5.0 
107 0.9787 0.1066 0.9999 1.9 0.9848 -0.0460 0.9995 2.8 0.9750 -0.0085 0.9997 2.5 
108 0.9913 0.2224 1.0000 7.0 0.9939 0.0690 1.0000 1.9 0.9876 0.0223 0.9999 1.5 

Choline 106 0.9322 0.0167 1.0000 6.1 0.9393 -0.0458 1.0000 7.8 0.9389 -0.0204 1.0000 6.9 
107 0.9560 0.1190 1.0000 2.5 0.9781 -0.1462 0.9990 6.9 0.9568 -0.0531 0.9996 5.9 
108 0.9625 0.4813 0.9992 13.4 0.9935 0.2393 1.0000 8.0 0.9844 -0.0539 0.9999 3.3 

Formic acid 106 0.9952 -0.0083 1.0000 0.8 0.9917 -0.0037 1.0000 1.0 0.9916 -0.0041 1.0000 1.0 
107 0.9978 -0.0028 1.0000 0.3 0.9985 -0.0036 1.0000 0.3 0.9981 -0.0033 1.0000 0.3 
108 0.9987 0.0095 1.0000 0.2 0.9992 0.0053 1.0000 0.1 0.9991 0.0027 1.0000 0.1 

Fructose 106 0.9105 -0.1803 0.9931 14.6 0.8485 0.0302 0.9999 14.3 0.8471 -0.0124 0.9999 15.9 
107 0.8125 0.9849 0.9583 20.1 0.9362 0.0799 0.9998 3.7 0.9298 -0.0789 1.0000 9.8 
108 0.9223 1.7648 0.9998 55.0 0.9703 1.0166 0.9963 34.3 0.9376 -0.1367 0.9999 10.9 

Fumaric acid 106 0.9906 -0.0264 1.0000 1.8 0.9908 -0.0058 1.0000 1.2 0.9910 -0.0023 1.0000 1.0 
107 0.9980 -0.0203 1.0000 0.9 0.9971 0.0018 1.0000 0.2 0.9977 0.0081 1.0000 0.2 
108 0.9979 0.0234 1.0000 0.6 1.0055 -0.0121 1.0000 0.4 0.9992 0.0189 1.0000 0.6 

GABA 106 0.9128 -0.1571 0.9985 13.8 0.8431 -0.0094 1.0000 16.1 0.8442 -0.0060 1.0000 15.9 
107 0.9844 -0.0242 0.9999 2.4 0.9849 -0.1151 0.9992 5.6 0.9805 -0.1246 0.9987 5.9 
108 0.9919 0.0617 1.0000 1.5 0.9909 -0.0045 1.0000 1.0 0.9884 -0.0481 1.0000 2.9 

Glucose 106 0.9798 -0.0242 0.9998 2.6 0.9679 -0.0374 1.0000 4.7 0.9674 -0.0128 1.0000 3.8 
107 0.9824 0.0689 1.0000 1.3 0.9829 -0.0465 1.0000 3.4 0.9828 -0.0056 1.0000 1.9 
108 0.9986 0.2701 0.9839 9.0 0.9868 0.0194 0.9988 2.1 0.9929 -0.0047 0.9999 1.0 

Glyceric acid 106 0.8906 -0.0922 0.9997 14.0 0.8795 -0.2530 1.0000 21.2 0.8871 -0.0915 0.9999 14.8 
107 0.8247 0.4699 0.9815 14.7 0.8936 -0.3004 0.9998 21.3 0.9065 -0.0224 0.9994 9.7 
108 0.9014 1.1563 0.9997 32.0 0.9565 0.3315 0.9978 8.5 0.9174 -0.0180 0.9997 8.6 

Isoleucine 106 0.9373 -0.0237 0.9998 6.9 0.9204 -0.0064 1.0000 8.2 0.9195 -0.0137 1.0000 8.6 
107 0.9225 -0.0142 1.0000 8.1 0.9355 -0.0218 1.0000 7.2 0.9333 -0.0265 1.0000 7.6 
108 0.9403 -0.0888 0.9985 9.2 0.9373 -0.0729 1.0000 8.9 0.9536 -0.0051 0.9991 4.4 

Lactic acid 106 0.9017 0.7359 0.9864 16.8 0.9597 -0.0227 1.0000 4.9 0.9566 -0.0468 1.0000 6.0 
107 0.9918 1.4528 0.9983 47.4 0.9950 0.0414 0.9997 1.4 0.9860 -0.0060 0.9999 1.5 
108 0.9452 3.5842 0.9950 112.4 1.0034 0.5829 0.9993 20.0 0.9968 0.0978 0.9964 4.4 

Leucine 106 0.8941 -0.2236 0.9973 17.8 0.8520 -0.0403 0.9998 16.6 0.8528 -0.0446 0.9999 16.6 
107 0.8877 0.2504 0.9998 6.2 0.8817 -0.1065 0.9998 15.5 0.8810 -0.0367 0.9997 13.0 
108 0.9171 1.1772 0.9815 34.1 0.8833 0.0747 0.9981 8.8 0.9583 -0.0278 0.9962 5.3 

Maleic acid 106 0.9871 0.0310 1.0000 1.1 0.9894 -0.0013 1.0000 1.1 0.9890 -0.0062 1.0000 1.4 
107 1.0003 0.0997 0.9999 3.5 0.9969 -0.0017 1.0000 0.4 0.9972 -0.0091 1.0000 0.6 
108 0.9906 0.2288 0.9998 7.5 0.9985 0.0040 1.0000 0.1 1.0004 -0.0011 1.0000 0.1 
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Table S3 (continued) Evaluation of the extended AQuA applied to 21 simulated spectraa 
  

A B C  
λ slope intercept R2 diff 

%b slope intercept R2 diff 
%b slope intercept R2 diff 

%b 
Malic acid 106 0.9422 -0.1181 0.9999 9.7 0.9326 0.0038 1.0000 6.8 0.9310 0.0402 0.9999 5.7 

107 0.9772 0.0961 0.9999 1.6 0.9840 -0.0629 0.9991 3.4 0.9725 -0.0139 0.9994 2.9 
108 0.9912 0.2170 1.0000 6.7 0.9939 0.0745 1.0000 2.0 0.9880 0.0168 0.9999 1.5 

Succinic acid 106 0.9941 -0.0044 0.9999 0.8 0.9885 -0.0041 1.0000 1.3 0.9888 -0.0041 1.0000 1.3 
107 0.9833 0.1030 1.0000 2.2 0.9869 -0.0021 1.0000 1.4 0.9866 0.0024 1.0000 1.3 
108 0.9833 0.1013 1.0000 2.1 0.9890 -0.0066 1.0000 1.3 0.9893 -0.0041 1.0000 1.2 

Sucrose 106 0.9329 -0.0593 0.9967 8.5 0.8868 -0.0314 1.0000 12.3 0.8823 0.1062 0.9992 9.5 
107 0.9010 0.9155 0.9810 14.6 0.9910 -0.0534 0.9997 2.2 0.9619 0.1748 0.9996 3.2 
108 0.9887 1.2913 0.9999 33.7 0.9796 0.5537 0.9998 12.8 0.9709 0.2819 1.0000 4.8 

Tartaric acid 106 0.9618 -0.0768 0.9983 6.2 0.9183 0.0690 1.0000 5.8 0.9249 0.0055 1.0000 7.4 
107 0.9508 0.0241 0.9982 4.6 0.9567 0.0345 1.0000 3.1 0.9632 0.0305 0.9999 2.8 
108 0.9575 0.2397 1.0000 4.7 0.9603 0.2986 0.9993 6.9 0.9779 0.2955 0.9996 8.9 

Threonine 106 0.9100 0.5333 0.9891 13.0 0.9577 -0.0385 1.0000 5.7 0.9544 -0.0539 0.9999 6.5 
107 0.9930 1.2197 0.9984 39.8 0.9947 0.0219 0.9997 1.0 0.9861 -0.0118 0.9999 1.6 
108 0.9455 3.2740 0.9951 102.1 1.0035 0.5905 0.9993 20.2 0.9968 0.0827 0.9970 3.9 

Uracil 106 0.9877 0.0102 0.9999 1.4 0.9669 -0.0115 1.0000 3.8 0.9673 -0.0062 1.0000 3.6 
107 0.9972 0.1559 0.9999 5.5 0.9949 -0.0209 1.0000 1.3 0.9947 -0.0006 1.0000 0.5 
108 0.9964 0.3030 1.0000 10.8 0.9980 0.0773 1.0000 2.7 0.9979 0.0077 1.0000 0.2 

Uridine 106 0.9562 -0.0183 1.0000 5.0 0.9493 -0.0047 1.0000 5.3 0.9493 -0.0005 1.0000 5.1 
107 0.9932 0.0556 0.9999 1.4 0.9905 -0.0403 1.0000 2.4 0.9889 -0.0227 0.9999 1.8 
108 0.9904 0.1235 0.9999 3.6 0.9949 -0.0142 1.0000 1.0 0.9958 0.0082 1.0000 0.4 

Valine 106 0.9671 -0.0035 1.0000 3.4 0.9614 -0.0210 1.0000 4.8 0.9618 -0.0052 1.0000 4.2 
107 0.9593 0.1596 1.0000 3.2 0.9676 -0.0187 1.0000 3.9 0.9650 0.0211 1.0000 2.7 
108 0.9527 0.0594 0.9999 3.3 0.9609 -0.0337 1.0000 5.1 0.9633 0.0236 0.9999 2.9 

Xylose 106 0.9764 -0.0113 1.0000 2.7 0.9737 -0.0153 1.0000 3.3 0.9744 -0.0094 1.0000 3.0 
107 0.9777 0.1173 1.0000 2.3 0.9855 -0.0032 1.0000 1.6 0.9838 -0.0047 1.0000 1.8 
108 0.9873 0.4527 0.9668 14.4 0.9818 0.1459 0.9938 3.8 0.9894 0.0209 0.9998 1.3 

Meanc 106 0.9496 0.1055 0.9982 7.0 0.9366 0.0316 1.0000 7.2 0.9367 0.0240 0.9999 6.8 
107 0.9584 0.2722 0.9964 8.0 0.9726 0.0572 0.9998 4.3 0.9700 0.0340 0.9998 3.6 
108 0.9723 0.6513 0.9966 20.1 0.9818 0.1856 0.9993 6.7 0.9818 0.0597 0.9994 3.2 

Medianc 106 0.9541 0.0287 0.9999 6.2 0.9473 0.0181 1.0000 5.7 0.9475 0.0133 1.0000 5.4 
107 0.9806 0.1014 0.9999 2.8 0.9848 0.0437 1.0000 3.3 0.9817 0.0143 0.9999 2.4 
108 0.9882 0.2342 0.9999 8.3 0.9918 0.0746 1.0000 4.1 0.9894 0.0230 0.9999 3.0 

a Results from linear regression including seven different intensity scaling levels (1-7 arbitrary intensity units) of the simulated 
narrow signal spectrum (summed library spectra). The three spectral background models were evaluated separately. Predictor (x-
axis): Signal heights in the simulated narrow signal spectra (1, 2, 3, 4, 5, 6, and 7 arbitrary intensity units). Response (y-axis): Signal 
heights in the simulated spectra with both broad and narrow signals, after correction with the airPLS algorithm. Three λ values 
(1×106, 1×107, and 1×108) were evaluated. 
b Average difference (%) between the signal intensities in the simulated narrow signal spectrum and the signal heights in the 
corresponding simulated spectra with both broad and narrow signals, after correction with the airPLS algorithm. The formula used 
was 100 × |Intensitynarrow spectrum - Intensitysimulated spectrum| / Intensitynarrow spectrum 
c Mean and median were calculated on the absolute values of the intercepts 
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4. Spike-in experiment 

4.1 Methodology 
A spike-in experiment was performed to verify the linearity and accuracy of the method. The 
metabolites were chosen to represent different chemical classes and their selected target signals 
have varying coupling patterns and appear in different spectral regions, with or without 
interference from background or other metabolites (Table S4 and Fig. S10). None of the 
metabolites were present in the pooled sample before the spike-in experiment, as evaluated 
using Chenomx Profiler, which means that the calculated concentrations ideally should equal 
the added amounts. This makes it possible to evaluate how well the proposed method can 
remove disturbing background while quantitatively retaining the metabolite signals. 
 
Table S4 Summary of the target signal characteristics of the spiked metabolites 
 

Chemical class NMR chemical 
shift (ppm) Multiplicity 

Interference 
broad signals/ 
background 

Interference 
other 

metabolites 

Asparagine amino acid 2.86 dd no no 

GABA amino acid 1.89 m no yes 

Tartaric acid organic acid 4.31 s yes no 

Threonine amino acid 1.31 d yes yes 

Xylose sugar 5.18 d yes no 
 
 
The metabolites were added in different concentrations, which is mainly because their target 
signals have different multiplicities and consist of different numbers of protons (Table S5). For 
example, the signal of threonine belongs to a doublet containing three protons whilst 
asparagine’s signal is part of a doublet of doublets containing only one proton. This means that 
the target signal of asparagine is only around 2.5 times more intense than that of threonine, 
despite the ten times difference in concentration. The concentrations were furthermore chosen 
so that the target signals of all added metabolites should be over the limit of quantification 
(10×noise) in each sample. 
 
Table S5 Approximate concentrations (µM) in the samples after spiking with 5 µl of each standard 
solution 

 mult., no of H Sample A Sample B Sample C Sample D Sample E 

Asparagine dd, 1H 400 200 1600 800 100 

GABA m, 2H 50 25 200 400 100 

Tartaric acid s, 2H 400 800 50 200 100 

Threonine d, 3H 10 80 40 20 160 

Xylose d, 0.35 Ha 3200 800 400 200 1600 
a The target signal belongs to the α-pyranose anomer, which makes up ca 35 % of the total xylose. 
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Fig. S11 Upper panel: NMR spectra of the pooled root exudate sample before (grey) and after (black) 
addition of the spike-in metabolites. Lower panel: Magnification of the target signal regions for the five 
spiked metabolites. Both the pooled root exudate without addition of spike-in metabolites (grey) and 
the spiked root exudate with the smallest amount of the respective metabolite added (black) are shown. 
The corresponding library signals are shown in blue. The target signals used for quantification are 
marked with arrows. The signals for GABA and threonine overlap with other metabolites (acetic acid 
and lactic acid, respectively); these are shown in green. 
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Fig. S12 The effect of two different λ values (1×107 and 1×108) on the baseline correction around the 
GABA signal used in AQuA 
 
 
 

 
Fig. S13 The signal of tartaric acid in the spectra of the spiked root exudate samples (black) overlaid 
with the spectra from the corresponding spiked blank samples (grey). The intensities of all spectra have 
been normalised to the height of the internal standard signal. The pH differed slightly between the root 
exudates and the blank samples, hence the difference in chemical shift of the tartaric acid signal between 
the two sample sets. 
 

4.2 Comparison of AQuA results with the actual concentrations 
The calculated results from both the spiked root exudate samples and the spiked blank samples 
(Table S6) were compared with the actual concentrations (Table S7 and S8). Theoretically, the 
calculated concentrations should equal the actual concentrations for both sample sets, i.e. the 
slopes should be close to one. Because none of the metabolites was present in the sample to 
begin with, the intercepts should all be close to zero. In general, the calculated concentrations 
in the spiked root exudate samples agree better with the calculated concentrations in the 
corresponding blank samples (Table 1) than with the actual concentrations (Table S7). The 
difference is smaller for the spiked blank samples; the slopes are generally better when the 
results are compared with those for the spiked root exudates (Table 1), whereas the R2 and 
intercept are comparable between Table 1 and Table S8. 
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Table S6 Calculated concentrations from the spike-in experiment 
  Concentration (µM)  

 Sample Actual Spiked 
samplea 

Spiked 
blankb 

% difference 
blank-samplec 

Asparagine A 401 507 522 2.8 

 B 1604 2057 2110 2.5 

 C 200 251 257 2.4 

 D 802 1021 1042 2.1 

 E 100 128 133 3.8 

GABA A 50 51 55 8.0 

 B 202 206 209 1.7 

 C 25 25 27 6.4 

 D 403 415 418 0.7 

 E 101 104 107 3.3 

Tartaric acid A 400 504 438 15.2 

 B 50 68 55 22.7 

 C 800 988 845 16.9 

 D 200 259 206 25.9 

 E 100 131 110 18.7 

Threonine A 10 15 13 15.4 

 B 41 56 51 9.0 

 C 82 102 99 3.2 

 D 20 27 26 2.2 

 E 164 200 198 1.4 

Xylose A 3224 3048 3046 0.1 

 B 403 398 398 0.1 

 C 806 775 774 0.1 

 D 202 207 197 5.2 

 E 1612 1539 1535 0.2 
a Concentrations for spiked root exudate samples calculated using an airPLS-extended AQuA including all 
metabolites listed in Table S1, plus tartaric acid and xylose. Used airPLS parameters: λdefault=107, λThr=105-106, 
λGABA=108. 
b Concentrations for spiked blank samples calculated using an AQuA including only the five spiked metabolites 
and lactic acid. 
c Calculated as 100×|Cblank-Csample|/Cblank 
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Table S7 Comparison of the actual spiked concentrations with the AQuA concentrations obtained for 
the spiked root exudate samplesa 

Metabolite Max conc.b R2 Slope Intercept Rel. interceptc 

Asparagine 1604 1.0000 1.28 -5.71 -0.356 % 

GABA 403 1.0000 1.03 -0.868 -0.215 % 

Tartaric acid 800 0.9999 1.22 10.2 1.28 % 

Threonine 164 0.9994 1.20 3.65 2.23 % 

Xylose 3224 1.0000 0.940 18.9 0.586 % 
a Results from linear regression. Predictor (x-axis): Actual spiked concentrations. Response (y-axis): 
Concentrations for spiked root exudate samples calculated using an airPLS-extended AQuA including all 
metabolites listed in Table S1, plus tartaric acid and xylose. Used airPLS parameters: λdefault=107, λThr=105-106, 
λGABA=108. 
b Actual value (µM) for the spiked sample with the highest concentration 
c Intercept as percent of the maximum concentration for the metabolite 
 
 
Table S8 Comparison of the actual spiked concentrations with the AQuA concentrations obtained for 
the spiked blank samplesa 

Metabolite Max conc.b R2 Slope Intercept Rel. interceptc 

Asparagine 1604 1.0000 1.32 -5.35 -0.334 % 

GABA 403 1.0000 1.03 2.36 0.586 % 

Tartaric acid 800 0.9994 1.06 3.23 0.404 % 

Threonine 164 0.9999 1.20 1.41 0.864 % 

Xylose 3224 1.0000 0.941 14.4 0.447 % 
a Results from linear regression. Predictor (x-axis): Actual spiked concentrations. Response (y-axis): 
Concentrations for spiked blank samples calculated using an AQuA including only the five spiked metabolites 
and lactic acid. 
b Actual value (µM) for the spiked sample with the highest concentration 
c Intercept as percent of the maximum concentration for the metabolite 
 
 
One possible reason for the discrepancy between the calculated and actual concentrations is 
that minor errors in weighing, dilution, and pipetting will lead to the added concentrations 
differing slightly from the expected amounts. Another explanation is that the accuracy of the 
AQuA results depends on the level of agreement between the experimental data and the used 
database, in this case the Chenomx reference library. Before AQuA can calculate metabolite 
concentrations based on signal heights, it derives metabolite-specific calibration factors from 
a database. Any discrepancies between the experimental data and the database will be 
incorporated into the calibration factors and lead to consistent over- or underestimation of the 
concentration of affected metabolites. This effect is most easily observed in the spectra of the 
spiked blank samples. These spectra were quantified with AQuA directly, without any 
additional baseline correction, which means that slopes deviating from one in Table S8 are a 
result of either database discrepancies or experimental errors, and not necessarily poor 
algorithm performance. For asparagine and threonine, the calculated concentrations were 
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significantly higher than the actual concentrations (Table S8). For neither of these compounds 
was it possible to achieve a good fit for all signals; if the signals belonging to the alpha protons 
had been chosen to be used in AQuA, the calculated concentrations would have been lower. 
One explanation for the discrepancy is that the samples in this study were prepared in D2O 
whereas the Chenomx spectral library is optimised for samples containing 90 % H2O (Fig. 
S13). In general, the signal line widths in the reference library are wider than in the 
experimental spectra despite careful calibration of the DSS signal line width. Since AQuA 
calculates metabolite concentrations only based on signal heights, differences in line width can 
negatively affect accurate quantification. 
 
 

 
Fig. S14 Experimental spectrum of asparagine (black), dissolved in either 90% H2O/10% D2O or 100% 
D2O, overlaid with the Chenomx library spectrum (blue) adjusted to the height of the signal that was 
used in AQuA (marked with arrow). The spectrum recorded in 90 % H2O displays a better fit with the 
library spectrum for the alpha proton signal at 4 ppm. 
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