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Global biodiversity gradients are generally expected to reflect greater species replacement closer to
the equator. However, empirical validation of global biodiversity gradients largely relies on vertebrates,
plants, and other less diverse taxa. Here we assess the temporal and spatial dynamics of global
arthropod biodiversity dynamics using a beta-diversity framework. Sampling includes 129 sampling
sites whereby malaise traps are deployed to monitor temporal changes in arthropod communities.
Overall, we encountered more than 150,000 unique barcode index numbers (BINs) (i.e. species
proxies). We assess between site differences in community diversity using beta-diversity and the
partitioned components of species replacement and richness difference. Global total beta-diversity
(dissimilarity) increases with decreasing latitude, greater spatial distance and greater temporal
distance. Species replacement and richness difference patterns vary across biogeographic regions.
Our findings support long-standing, general expectations of global biodiversity patterns. However,we
also show that the underlying processes driving patterns may be regionally linked.

Biodiversity is influenced by environmental, evolutionary, biotic, and sto-
chastic processes, resulting in a global distribution of over 2 million
described species1, along with several million more undescribed species2.
Global biodiversity is essential for life, in that it provides various environ-
mental services, including energy and nutrient cycling, food security, and
waste management, etc.3,4. As such, understanding what factors shape
biodiversity across time and space, particularly at the global scale, is of

interest to a wide range of researchers in ecology, evolutionary biology,
conservation and invasive speciesmanagement, agriculture,medical science
andmanyothers. It is generally accepted that biodiversity is expected to scale
with latitude, increasing toward the tropics, a phenomenon referred to as the
latitudinal diversity gradient (LDG)5. The underlying mechanism(s) for the
LDG expectation are not definitive. Currently, there are over 30 hypotheses
explaining the LDG, which are based on varying degrees of ecological,
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evolutionary, and environmental complexity6. Recent efforts have also
discovered exceptions to the LDG, which primarily indicate regional
influences7–10. Themany hypotheses advanced to explain global biodiversity
patterns are also often difficult to test, particularly across taxonomic groups
or at large spatial and temporal scales11,12.However,we cangain insights into
biodiversity patterns using pairwise site assessment of total beta-diversity
and its associated decomposition components.

Thebeta-diversity (i.e.β-diversity) frameworkprovides a robustmeans
to assess differences in biodiversity between communities, which can, in
turn be used to determine spatio-temporal or environmental response13.
Beta-diversity is the compositional difference (i.e. dissimilarity) between
two communities13. This compositional dissimilarity between communities
arises from twokeyprocesses: (i) species replacement (turnover), the change
in community composition due to non-shared species, and (ii) richness
difference (nestedness), the gain or loss of species between two commu-
nities. High species replacement can result from strong environmental
forcing, competition, natural enemies, or historical disturbances14. Richness
difference can be caused by species disappearing from a location (localized
extinction), differing niche diversity, or other processes that result in the
gain or loss of species15,16. Total beta-diversity, as per the beta-diversity
framework fromPodani et al.17, can be separated into components of species
replacement and richness difference, which sum to the total beta-diversity
measure. Subsequently, the beta-diversity partitioning framework provides
a means to investigate the potential links between global biodiversity pat-
terns and the underlying processes associated with their formation across
different species groups and ecological dimensions.

While several studies have investigated global biodiversity patterns,
predominately using the LDG, they were constrained by three major lim-
itations. First, they were mainly based on meta-analyses, as they combined
data collected using different methodologies at different spatial and tem-
poral resolutions, including seasonal variation5,12.While suchdata have high
heuristic value, they are often affected by biases emerging from the varied
sampling techniques underlying the individual data points18. Second, the
few studies which have sampled communities using standardized methods
to estimate differences in biological communities across broad latitudinal
ranges have generally ignored the effects of temporal variability (i.e. sea-
sonality) within or between sampled communities19. If differences in bio-
logical communities are only assessed across space, estimates of site-specific
diversity will ignore thewell-established importance of local spatiotemporal
variation in describing patterns of biodiversity20,21. If site-specific diversity
comparisons aremade across different time points, the estimates of patterns
of beta-diversity (i.e. diversity difference between sites) in space will alter
patterns of beta-diversity in time, i.e. the scope for spatiotemporal
interactions22. Third, prior studies have either examined less diverse
taxa5,22,23 or have generalized patterns emergent from local studies to the

global scale8,24. Thus far, efforts to assess global patterns with standardized
sampling methods have not been undertaken for taxonomic groups that
comprise the bulk of global biodiversity.

With regards to the LDG, as the most prominent ecological
assumption of global biodiversity distribution, species replacement is
expected to increase at lower latitudes, reflecting greater habitat specia-
lization and smaller ranges in more seasonally stable environments13,25.
By contrast, richness difference is expected to increase with latitude,
reflecting recent recolonization from a shared species pool following
deglaciation26. Alternatively, species replacement may increase with
latitude, which could reflect historical selection for species adapted for
colder periods or to stronger changes in seasonality27. Different latitu-
dinal patterns in richness difference, be it decreasing with latitude or
unimodal, could indicate spatio-temporal disturbance patterns linked to
regular or historical extinction events28. A lack of general patterns across
multiple regions or continents may also indicate inconsistent patterns of
global biodiversity, which may suggest that regional-specific processes,
such as historical or environmental, predominate over expected envir-
onmental gradient filtering of community assembly. Regional ecosystems
and their historical stability vary greatly across the planet, which has
provided several key instances of unique adaptive radiations in response
to specific environments29. Hence, comparisons between species repla-
cement and richness difference can provide insights into the processes
influencing global biodiversity patterns.

In this study, we adopted DNA-based methods to characterize
beta-diversity for a highly diverse lineage of animals: terrestrial
arthropods30. We comprehensively sampled 129 sites across the globe
for an average of 22 sequential weeks each, encountering more than
150,000 different Barcode Index Numbers (BINs), which here serves as
a species proxy31. We calculated and partitioned beta-diversity into its
species replacement and richness difference components in both space
and time to determine how global biodiversity patterns relate to lati-
tude, distance, and time.

Results
The Global Malaise Trap Program data
The Global Malaise Trap Program (GMTP) was initiated in 2007 with the
goal of observing global-scale spatiotemporal arthropod biodiversity
dynamics (Figs. 1 and 2). Between 2010 and 2016, one or more Malaise
traps were deployed at 129 sampling sites in 28 countries, with repeated
weekly sampling ranging from 2 to 104 weeks (Fig. 2). The international
collaboration of the Global Malaise Trap Program (Fig. 1; Supplementary
Data 1) jointly produced the first set of global biodiversity data for ter-
restrial arthropods based on a uniform barcode sampling method. Details
on GMTP standardized sampling protocols (e.g. trap type, sampling

Sampling sites = 129
Trapping events = 2412

Fig. 1 | Sampling sites and five biogeographical regions considered. Regions are differentiated by color. White points indicate sampling locations.
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method, data curation) used for this study are outlined in detail in deWaard
et al.32.

Overall the GMTP recovered 155,185 unique BINs across five geo-
graphic regions (Fig. 1), representing regional variation in latitudinal,
temporal, and spatial profiles (Fig. 2 and Supplementary Fig. 1). BIN
diversity (Fig. 2) captured a large range of terrestrial diversity across 50
orders dominated by Diptera (51% of total BINs; 77,046 unique BINs),
Hymenoptera (22% of total BINs; 33,265 unique BINs), Coleoptera (7% of

total BINs; 12,550 unique BINs), Lepidoptera (7% of total BINs; 11,899
uniqueBINs), andHemiptera (5%of totalBINs; 7,783uniqueBINs) (Fig. 2).

Global and regional beta-diversity patterns
Global beta-diversity (dissimilarity) decreased significantly with absolute
latitude, which supports the general expectations of the LDG (Table 1;
Supplementary Fig. 2). More generally, site comparisons between com-
munities at higher latitudes were more similar to each other than site
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Fig. 2 | Diversity of BINs (i.e. species proxies) across sampling sites.Colors shown
are unique terrestrial arthropod orders with each height corresponding to the
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site. The absolute latitude is provided on the x-axis with sites arranged from low to

high. Bottom panel, each circle represents a unique sampling event, with colors
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groups following the same color scheme as Fig. 1.
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comparisons between communities closer to the Equator, with this obser-
vation also extending over longer temporal and spatial scales. Total beta-
diversity spatio-temporal patterns were generally consistent in indicating
latitudinal trends across biogeographic regions (Table 1; Supplementary
Fig. 3). There were some deviations in patterns across the regions, parti-
cularly when assessing the partitioned components of species replacement
and richness difference (Supplementary Fig. 2). Oceania did not have sig-
nificant total beta-diversity or species replacement associationwith latitude,
spatial distance or temporal distance, but richness difference was found to
decrease significantly with increase temporal distance (p < 0.01) (Table 1).
Eurasia did not have significant latitudinal relationships with total beta-
diversity or its partitioned components but did show significant positive
association between total beta-diversity dissimilarity and spatial distance
(p < 0.01) along with significant positive associations between species
replacement and spatial distance (p = 0.04), and temporal distance
(p < 0.01), with a negative association with temporal distance × latitude
(p = 0.05), as well as significant negative associations between richness dif-
ference and temporal distance (p < 0.01) (Table 1, Figs. 3 and 4). More
generally, latitude, latitude × distance, or latitude × time were significantly
associated with species replacement for two of five regions (North America

and Eurasia) and for one of five regions for richness difference (South
America). In this regard latitude × distance interactions indicated that
communities were increasingly more dissimilar with increasing distance at
lower latitudes compared to higher latitudes. Similarly, latitude × time
interactions indicated that communities were increasingly more dissimilar
with greater difference in time at lower latitudes compared to higher lati-
tudes. Spatial distance was significantly associated with species replacement
for Africa (p < 0.01) and Eurasia (p = 0.04) with species replacement asso-
ciated with latitude for North America (p = 0.01). Temporal distance or
time × latitudewas significantly associatedwith species replacement for four
of five regions (except Oceania), with richness difference being significant
for North America, Oceania, and Eurasia (Table 1; Figs. 3 and 4).

Discussion
The dataset generated by the Global Malaise Trap Program offers a unique
opportunity to assess the underpinnings of global latitudinal biodiversity
patterns using a highly diverse and dominant group of terrestrial organisms.
Ourmain finding is that total pairwise beta-diversity dissimilarity increases
with decreasing latitude, increasing spatial distance, and increasing
distance in time. We did not find strong indications of generalized

Table 1 | Statistical significance of patterns detected

Covariate Region Beta Dir. Richness difference Dir. Species replacement Dir.

Latitude Global <0.01 − 0.19 + 0.18 −

Distance in space (ΔS) Global <0.01 − 0.95 + 0.91 −

Distance in time (ΔT) Global <0.01 − 1.00 − 1.00 +

ΔT × Latitude Global <0.01 + 0.04 + 0.05 −

ΔS × Latitude Global <0.01 + 0.03 − 0.03 +

Latitude North America <0.01 − 0.02 + 0.01 −

Distance in space (ΔS) North America <0.01 − 0.01 − 0.45 +

Distance in time (ΔT) North America 1.00 − <0.01 + <0.01 −

ΔT × Latitude North America <0.01 + 0.07 − <0.01 +

ΔS × Latitude North America <0.01 + 0.01 + 0.63 −

Latitude South America <0.01 + <0.01 + 0.17 +

Distance in space (ΔS) South America 0.17 − 0.51 − 0.66 +

Distance in time (ΔT) South America <0.01 + 1.00 + <0.01 +

ΔT × Latitude South America 0.33 − 0.49 + 0.33 −

ΔS × Latitude South America 0.85 + 0.15 + 0.19 −

Latitude Oceania 0.71 − 0.90 + 0.81 −

Distance in space (ΔS) Oceania 0.57 + 0.98 + 0.11 −

Distance in time (ΔT) Oceania 1.00 + <0.01 − 1.00 +

ΔT × Latitude Oceania 0.33 + 0.37 + 0.45 −

ΔS × Latitude Oceania 0.43 + 0.08 − 0.07 +

Latitude Eurasia 0.13 − 0.29 − 0.37 +

Distance in space (ΔS) Eurasia <0.01 + 0.93 − 0.04 +

Distance in time (ΔT) Eurasia 1.00 + <0.01 − <0.01 +

ΔT × Latitude Eurasia 0.29 + 0.06 + 0.05 −

ΔS × Latitude Eurasia 0.43 + 0.71 + 0.85 −

Latitude Africa 0.03 − 0.83 − 0.40 +

Distance in space (ΔS) Africa <0.01 + 0.01 + 0.01 −

Distance in time (ΔT) Africa 1.00 + 1.00 + <0.01 +

ΔT × Latitude Africa 0.52 + 0.60 + 0.88 −

ΔS × Latitude Africa 0.91 − 0.54 + 0.22 −

To assess the importance of each candidate variable (listed on the left as Covariates), we used a series of permutation tests. We first calculated the log-likelihood ratio between the model where the
explanatory variable being testedwas included (the full model), and themodel with the explanatory variable being testedwas excluded (the reducedmodel). We then compared the observed log-likelihood
ratio to its null distribution, which we computed by permuting the data N = 1000 times (see Methods for the exact permutation schemes implemented). This table shows the proportion of permutation
outcomes for which the log-likelihood ratio of the model fitted to the actual data was lower than the log-likelihood ratio for the models fitted to the permuted data. Values at or below 0.05 are deemed
significant and are indicated in bold and the direction of the response is indicated as Dir. +/−.
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partitioned beta-diversity patterns (i.e. species replacement or richness
difference) at the global scale. However, we did find partitioned beta-
diversity patterns at the regional scale, which differed in the influence of
latitude, spatial distance, and time indicating regional factors play a key role
in overall beta diversity patterns (Figs. 3 and 4).

We found that Diptera contributed the most to insect diversity,
accounting for 51% of the total BINs recovered. This finding challenges the
commonly held belief that Coleoptera are the most biodiverse lineage of
arthropods among regions33. In North America, Diptera dominated with
62% of the BINs, followed by Hymenoptera (13%), Lepidoptera (6%), and
Coleoptera (5%). South America also showed a high occurrence of Diptera

(70%), along with Hymenoptera (7%), Hemiptera (7%), and Lepidoptera
(5%). Africa exhibited a similar pattern, with Diptera (53%), Hymenoptera
(18%), Hemiptera (9%), and Lepidoptera (8%) being the most prominent
groups. Eurasia had a dominance of Diptera (60%), Hymenoptera (17%),
and Hemiptera (6%), while Oceania displayed a collage dominated by
Diptera (67%), Hymenoptera (10%), and Coleoptera (5%). These regional
variations in the contribution of different taxa to insect diversity highlight
the importance of considering local and global patterns in biodiversity.
While Diptera emerged as the most diverse group in our study, further
research and analysis will provide a more comprehensive understanding of
the global patterns of arthropod biodiversity.
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Fig. 3 | Impacts of pairwise distance in space and latitude on community dis-
similarity. This figure shows the species replacement and richness difference
components of beta-diversity, plotted from the fitted values of a linear model of the
metric in question as a function of distance in space, distance in time (here set to
zero), mean absolute latitude, and the interactions mean latitude × distance in space
andmean latitude × distance in time (see Table 1 for statistical significances). In this

figure, we explicitly test whether spatial patterns of community beta-diversity in
space (in terms of overall beta-diversity, species replacement, or richness difference)
varies detectably with latitude. Regions with a significant interaction between
pairwise difference in latitude and pairwise distance are indicated by an asterisk.
Note the differences in the scaling of axes among the individual graphs.
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To evaluate community dissimilarity in space and time, we partitioned
overall beta-diversity into its components: richness difference and species
replacement. This partitioning framework provides insights into what fac-
tors are driving differences in biological diversity between sites, and sub-
sequently overall diversity gradients13,34. We expected richness difference to
increase with increasing latitude, reflecting the recent recolonization of high
latitude environments following deglaciation26. If species expanded their
distributions from a joint source pool in a glacial refugium, communities
established along the expansion front should form nested subsets of the
source species pool. Consistent with this scenario, we generally found
increased richness differencewith increasing latitude (Table 1, Figs. 3 and4).
We also expected species replacement to decreasewith increasing latitude as
a direct effect of limiting factors or eco-evolutionary processes, leading to

smaller ranges and increased specialization in areas with less seasonal
variability25,35. However, while we found clear support for latitudinal
changes in overall beta-diversity, the underlying trends in species replace-
ment and richness difference were inconsistent across regions, suggesting
different, regional, ecological or evolutionary processes are influencing
biodiversity patterns (Table 1, Figs. 3 and 4).

The appearance of generally consistent total beta-diversity patterns
across geographic regions suggests alternatives to earlier observations
pointing to regional rather than global factors influencing changes in
community composition. However, the Oceania region seems to be an
exception, as we found no association between changes in biodiversity
community composition and spatial distance or latitude. This supports
findings from Novotny et al.24, which proposed that regional differences in
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Fig. 4 | Impacts of pairwise distance in time and latitude on community dis-
similarity. This figure shows the species replacement and richness difference
components of beta-diversity, plotted from the fitted values of a linear model of the
metric in question as a function of distance in space (here set to zero), distance in
time, mean latitude, and interactions betweenmean latitude × distance in space and

mean latitude × distance in time (see Table 1 for statistical significances). In this
figure, we explicitly test whether temporal patterns of community beta-diversity in
time (in terms of overall beta-diversity, species replacement, and richness difference)
varies detectably with latitude.
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arthropodcommunitiesmayactually be lower inPapuaNewGuinea than in
temperate sites, indicating that beta-diversity is unlikely to explain the high
diversity of tropical arthropod communities. However, their patterns and
ours may suffer from lower site coverage than is needed to confirm the lack
of latitudinal gradient, but it is interesting none the less.

The presence of inconsistent trends within a specific biogeographic
region, such as Oceania, raises intriguing questions about the underlying
processes driving local biodiversity patterns. Several factors may contribute
to this disparity. Firstly, geological processes, such as the formation of
mountains or islands, can create barriers that impede species dispersal and
promote speciation36. These barriers can lead to the development of unique
and isolated habitats within a region, resulting in distinct community
composition. Secondly, ecological factors, such as competition, predation,
and resource availability, can vary across different localities within a region,
which directly influence local and regional biodiversity patterns37. Addi-
tionally, climatic factors, including temperature, precipitation, and sea-
sonality, can vary within a region, creating diverse regional microhabitats
leading to patterns of localized environmental filtration38, or longer term,
region-specific, diversification of species through evolutionary processes39.
Finally, area-effect processes, such as habitat fragmentation or island size,
can also influence species richness and biodiversity patterns within a
region40.

Past studies have largely focused on temperate sites, drawing some
concern that tropical sites may be underestimated in assessing LDG
dynamics. The GMTP data includes 30 tropical sampling sites (23% of the
sampled sites) over 986 trapping events (40.1% of the total trapping effort),
providing a wider assessment compared to previous assessment. We did
find partitioned components of beta-diversity differed across regions,
however, which would suggest that although the general global spatial
trends in beta-diversity are consistently observed, the underlying environ-
mental or biotic drivers of species replacement and richness difference may
be regional rather than global11. The more frequent association with spatial
distance versus latitude, particularly outside North America might also
support recent indications that the strengthof theLDGmaybegreater in the
western hemisphere12. It is also worth noting that the regional trends
observed inour studymaybe reflectiveof regional differences inpaleological
climatic stability, particularly for South America and Africa, influencing
local and regional species evolution and biological diversity41. Additionally,
local and regional topography is known to play a crucial role in shaping
alpha- and beta-diversity patterns, whereby unique local habitats can lead to
unique species evolution and specialization, promoting elevated alpha-
diversity within a given region42. Topographic heterogeneity can influence
climatic conditions by altering temperature and precipitation gradients,
further altering alpha-diversity patterns43,44. As such regional topography
has a direct effect on beta-diversity by influencing habitat connectivity and
subsequently species dispersal. Whereas the LDG provides a parsimonious
assessment of general biodiversity trends, considering the regional barriers
(e.g. mountains, deserts, oceans) and connectors (e.g. rivers or ocean cur-
rents) with regards to time and space are essential for robust assessments of
biodiversity patterns.

While our analytical approach accounted for the presence of small
sample sizes for some regions, particularly South America and Africa,
additional sampling of these regions is needed to validate the regional
latitudinal and spatial trends observed here. Given the importance of
regional aspects to biodiversity trends found in this study, future sampling
efforts should seek to assess biodiversity across regional variation in habitat,
landuse, elevation and seasonality to build upon our findings, as well as
others.

In stark contrast to previous studies, especially in assessing global scale
patterns, our analyses also considered temporal effects on latitudinal beta-
diversity dynamics. Temporal species replacement or richness difference
were significant for all five regions, including the global scale (Table 1).
Temporal ecological dynamics are important for understanding seasonal
shifts in habitat and home ranges which can influence spatial biodiversity
patterns21,45. While pronounced temporal changes in environmental

conditions (e.g. seasonality) in the temperate zone have been well docu-
mented, the same may also be true for the tropics. Temporal species
replacement was noted for several regions, indicating seasonal shifts in
community composition likely due to competition and seasonal effects of
environmental forcing46,47. Here we note variation in rainfall, radiation, leaf
flush, etc. has been proposed to generate strong seasonality in the activity of
arthropods48,49. Temporal richness replacement, which predominantly was
co-associated with a significant effect of latitude likely attributed to species
loss during key seasonal shifts, which may be more prominent at higher
latitudes where seasonal shifts in environmental conditions are greater47.
The observed temporal patterns here attest to finer partitioning of com-
munity composition that should be accounted for in determining the
mechanistic associationswith larger spatial/latitudinal biodiversity patterns.

The prevalence of high beta-diversity values between sites, particularly
the high number (88%) of pairwise global sites that were completely dis-
similar (i.e. shared no species) highlights the extraordinary diversity of
terrestrial arthropods. Communities become more similar at the regional
level with 63%dissimilar sites forNorthAmerica, 69% forOceania, 50% for
Eurasia, 51% forAfrica, and34%for SouthAmerica.Whilemost arthropods
candisperse byflight, both individual home ranges and species distributions
are commonly restricted50. Range sizes have been proposed to shrink
towards the tropics, followingRapoport’s rule.Nonetheless, the evidence for
this assertion is very limited as it has traditionally been derived from studies
predominately conducted in the Northern Hemisphere22, but some recent
support for Southern Hemisphere trends are available51,52. Our observation
of greater species replacement may reflect greater niche partitioning and
specialization allowed by higher productivity or stemming from greater
levels of speciation5.

While previous assessments of beta-diversity have largely involved
regional assessments21,47, whichwere then used to fuelmeta-analyses5,12, this
study represents a true global assessment of temporal-spatial dynamics of
the most diverse lineage of terrestrial animals. The consistency in general
global patterns which were decomposed at the regional scale enables a
mechanistic assessment of the planetary biodiversity patterns. This synth-
esis was only made possible by our coupling of a standardized sampling
method with DNA-based taxonomic assignments53. Importantly, convin-
cing analyses of beta diversity require an efficient means for
rigorously establishing the incidence of species shared across sites inmassive
sampling programs. Such methods are finally available for our use on a
planetary scale.

Methods
Arthropods were captured using a standard Townes-style Malaise trap
deployed at each sampling location (hereafter site), with arthropods har-
vested from each trap weekly (hereafter trapping event). Traps were set up
primarily in designated conservation areas (108 out of 129 sites). Habitat
type was predominantly forest (N = 70), but also included were grassland
(N = 15), tundra (N = 14), wetland (N = 9), urban (N = 5), and mixed
habitat (N = 16) (Supplementary Fig. 4). Arthropod specimens captured
from each trapping event were sorted, photographed, and processed indi-
vidually. Analysis beganwith each specimen identifiedmorphologically to a
taxonomic order and registered on the Barcode of Life Data Systems
(BOLD). DNA from each specimen was then extracted and used to amplify
and Sanger sequence the standard cytochrome c oxidase I (COI) barcode
region53. The resulting COI sequence data was uploaded to the BOLD
database, linking each specimen’s morphological identification to its COI
barcode sequence. For each trapping event, all specimens were sequenced,
except when a particular morphospecies was represented by more than 50
individuals, in which case a subset of the individuals were sequenced to
confirm that the specimens did indeed represent a single unique BIN32. The
final GMTP dataset includes 1.2 million barcode records and 155,185
unique barcode index numbers (BINs)31. Prior studies have established a
strong correspondence between BINs and species identification in insect
groupswithwell-established taxonomy, thereby justifying the recognitionof
BINs as species proxies31.
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Temporal differences (i.e. distance in time) between each pair of
sampling events was calculated using circular statistics by first determining
the Julian day of the two sampling events and taking two measures (1) the
absolute difference between the two Julian days divided by 0.986 (0.986
degrees = 1 day) and (2) 360minus the absolute difference between the two
Julian days divided by 0.986. Theminimum value betweenmeasure (1) and
(2) was then used as the distance in time between the two sampling events.
Here we refer to difference in time which includes changes in seasons since
the study, and sampling period for individual sampling sites, spansmultiple
seasons (Fig. 2) and since seasonality differs drastically between different
global locations. Distance between each pair of sampling locations (i.e.
distance in space) was calculated as the geographic distance between site
pairs using the function distHaversine in the R package geosphere54. Mean
absolute latitudewas calculated betweeneachpair of sites along theLDG.To
understand how this metric behaves, consider a site pair in which both
members are at the Equator. In this case, their mean absolute latitude is 0° -
which also applies to two samples from the same trap at the Equator. For a
trap pair at theNorthPole, themean absolute latitude is 90°N; for a trap pair
with itsmembers on theNorth vs SouthPole, itwill be 90°, and for a trappair
of which one member sits on the North Pole and the other at the Equator,
mean absolute latitude will be 45°N.

Statistics and reproducibility
Community data were converted to presence absence data for calculations
and analyses of diversity. Beta-diversity and its components were calculated
as Jaccard dissimilarity using the Podani family of indices, which is a “true”
beta-diversity estimate that is unaffected by the species pool (i.e., gamma-
diversity)15. Total beta-diversity (here Jaccard dissimilarity) and the asso-
ciated components of species replacement and richness difference were
calculated for each site pair using the function beta.div.comp in the
R-package adespatial13. We do note that there are alternative beta-diversity
partitioningmethods13,15. The Podani family was utilized here as it does not
overestimate diversity differences and provides a “true” diversity estimate
that is unaffected by the total species pool13,15, but see also alternative true-
diversity based partition approaches55,56. Utilizing a “true-diversity” allows
for independent measures of alpha, beta, and gamma diversity. Whereas
alpha-diversity reflectswithin site variation, beta-diversitymay either reflect
between site variation independently or dependently (i.e. scalingwith alpha-
diversity) depending on the measure used57. Using an independent (i.e.
“true”) measure of beta-diversity becomes more important when compar-
ing beta-diversitymeasures.Measures of beta-diversity dependentonalpha-
diversity may compromise interpreting results that actually reflect within-
site instead of between site observations58.

Pairwise values of total beta-diversity, species replacement, and rich-
ness difference were calculated for all trapping event pairs by taking the
lower triangle values from the associated distance matrix. As there were
2412 trapping events in total, N = 2,907,666 pairs of trapping events were
included in our analyses.

Using linear regression, we modeled each pairwise beta-diversity
component as a separate, univariate function of distance in space, distance
in time, mean latitude, and the interactions mean latitude × distance in
space andmean latitude × distance in time. Here, the two interaction terms
are of key interest in explicitly testing whether the rate of beta-diversity,
species replacement or richness difference in space or time, respectively,
varies detectably with latitude.

Our data are not fully balanced as the number of data points per site,
and hence pairs of sites, varies. In the analyses, we wished to give each site,
and pair of sites, an equal weight in the analyses. If ns1s2 is the number of
pairs of trapping events for which one trapping event belongs to site s1 and
the other trapping event belongs to site s2, in an unweighted regression this
pair of sites would achieve the total weight of ns1s2 , and thus sites withmore
data would contribute disproportionally to our analyses. To account for the
unbalanced sampling effort in our models, we applied a weighted linear
regression,where theweight for eachdatapointwas set to 1=ns1s2 , so that the
total weight was equal among all pairs of sites.

We note that data points are not independent of each other, because
each data point in the linear model involves a pair of samples that are
correlated in time and space. For this reason, we did not perform sig-
nificance tests based on output from the linear model but instead employed
the following permutation approach to determine significance for each of
the explanatory variables in our models.

Given the unequal temporal sampling and spatial sampling design
across the multiple GMTP project datasets we used a series of permutation
test to assess the significance of each explanatory variable59. For each per-
mutation test we assessed the significance of each explanatory variable
individually, including distance in space, distance in time, mean latitude,
and the interactions mean latitude × distance in space and mean lati-
tude × distance in time, by doing the following. We first calculated the log-
likelihood ratio between themodel where the focal explanatory variable was
included (the full model), and the model where the focal explanatory
variable was excluded (the reducedmodel).We compared the observed log-
likelihood ratio to its null distributionwhichwe computed bypermuting the
data N = 1000 times, with the permutation scheme detailed below for each
specific test. In general, if the log-likelihood ratio for the full vs. reduced
model fitted to the actual data was greater than the log-likelihood ratio for
the full vs. reducedmodel fitted to the permuted data for at least 95% of the
permutation outcomes, the explanatory variable was deemed significant59.

When testing for the interaction between mean absolute latitude and
distance in space, we permuted the sampling sites, keeping all trapping
events that belonged to the same original site in the same group. When
testing for the interaction between mean absolute latitude and distance in
time, we first permuted the sampling sites as described above and permuted
the sampling dates within each group of trapping events. When testing for
the main (non-interactive) effects of the explanatory variables, we reduced
the full model to exclude the respective interaction associated with the
explanatory variable being tested. When testing for the main effect of dis-
tance in space or for themain effect ofmean absolute latitude, we permuted
the sampling sites. When testing for the main effect of distance in time, we
permuted the dates within sampling locations.

Data availability
All data associated with the manuscript, including source data for the
analysis and figure generation, are provided in Supplementary Data 1,
Supplementary Data 2 and Supplementary Data 3.

Code availability
R scripts for data processing, analyses and figure generation can be found at
https://github.com/MatSeymour/MyWebsite/tree/GMTP_R-code60.
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