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A B S T R A C T   

Microbial carbon-use efficiency (CUE) in soils captures carbon (C) partitioning between anabolic biosynthesis of 
microbial metabolites and catabolic C emissions (i.e. respiratory C waste). The use of C for biosynthesis provides 
a potential for the accumulation of microbial metabolic residues in soil. Recognised as a crucial control in C 
cycling, microbial CUE is implemented in the majority of soil C models. Due to the models’ high sensitivity to 
CUE, reliable soil C projections demand accurate CUE quantifications. Current measurements of CUE neglect 
microbial non-growth metabolites, such as extracellular polymeric substances (EPS) or exoenzymes, although 
they remain in soil and could be quantitatively important. Here, we highlight that disregarding non-growth 
anabolism can lead to severe underestimations of CUE. Based on two case studies, we demonstrate that 
neglecting exoenzyme and EPS production underestimates CUE by more than 100% and up to 30%, respectively. 
By incorporating these case-specific values in model simulations, we observed that the model projects up to 34% 
larger SOC stocks over a period of 64 years when non-growth metabolites are considered for estimating CUE, 
highlighting the crucial importance of accurate CUE quantification. Our considerations outlined here challenge 
the current ways how CUE is measured and we suggest improvements concerning the quantification of non- 
growth metabolites. Research efforts should focus on (i) advancing CUE estimations by capturing the multi-
tude of microbial C uses, (ii) improving techniques to quantify non-growth metabolic products in soil, and (iii) 
providing an understanding of dynamic metabolic C uses under different environmental conditions and over 
time. In the light of current discussion on soil C stabilisation mechanisms, we call for efforts to open the ‘black 
box’ of microbial physiology in soil and to incorporate all quantitative important C uses in CUE measurements.   

1. Introduction 

The microbial origin of stabilised soil organic C (SOC) has received 
increasing attention in recent years (e.g. Domeignoz-Horta et al., 2021; 
Kallenbach et al., 2016, 2015; Liang et al., 2020, 2017; Miltner et al., 
2012). To date, it remains challenging to quantify the contribution of 
microbial-derived C to stable SOC (Liang et al., 2019), but some findings 
suggest that microbial-derived C may make up a quarter to more than 
half of total SOC (Deng and Liang, 2021; Liang et al., 2019; Miltner et al., 
2012). Despite quantitative uncertainties concerning microbial-derived 

stable SOC, the microbial metabolic performance is a key factor in soil C 
dynamics, because the vast majority of organic C inputs to soil will be 
eventually processed by soil microorganisms. Soil C inputs will thus 
largely be subjected to microbial C allocation towards catabolic C 
emissions (i.e. C waste via respiration) or biosynthesis, with the latter 
leading to C remaining in soil, providing a potential for C stabilisation. 
Recognised as a crucial control in C cycling, microbial carbon-use effi-
ciency (CUE) is implemented, implicitly or explicitly, in all soil C models 
(Schimel et al., 2022; Schimel, 2013), which respond highly sensitive to 
even small changes (Allison et al., 2010; Bölscher et al., 2020; Frey et al., 
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2013; Hyvönen et al., 1998). Due to the models’ high sensitivity, reliable 
SOC projections require accurate CUE quantifications, capturing all 
metabolic C uses within microorganisms. 

The concept of microbial CUE—as applied in soil ecology—neglects 
considerable parts of the microbially processed C, because current 
methods focus on capturing growth/biomass increases and assume non- 
growth anabolism as quantitatively unimportant (Manzoni et al., 2018; 
Paul and Clark, 1989). Here, we show that this quantitatively neglected 
C will affect CUE estimations. The neglected non-growth anabolic C 
comprises all extracellular metabolites released from microbial cells into 
the surrounding soil, such as extracellular polymeric substances (EPS), 
exoenzymes, or nutrient mobilising compounds (Flemming and Wing-
ender, 2010; Van Bodegom, 2007), and certain intracellular metabolites, 
such as storage compounds or endoenzymes (Mason-Jones et al., 2023, 
2022, Fig. 1). Definitions of CUE and methods to quantify it determine 
which specific metabolites are ignored in the assessment of microbial 
CUE. Despite its key importance for soil C cycling, CUE remains an 
ambiguous and poorly defined concept (Schimel et al., 2022). Within 
soil ecology, two partially different notions of CUE have emerged, the 
substrate-specific CUE, which measures the incorporation of 13C or 
14C-isotope labels into microbial biomass (Geyer et al., 2019; Manzoni 
et al., 2012; Steinweg et al., 2008), and the substrate-independent CUE, 
measuring growth via 18O-water incorporation into DNA (Blazewicz and 
Schwartz, 2011; Canarini et al., 2019; Spohn et al., 2016). While 
substrate-specific CUE treats all C incorporated into microbial biomass 
as efficiently used (and thus remaining in soil when implemented in soil 
C models), substrate-independent CUE considers only C directed to-
wards growth as efficiently used C. However, C directed towards the 
synthesis of non-growth metabolites is not ‘inefficiently’ used C, as it 
serves crucial functions supporting microorganisms to survive and is 

primordial for microbial life itself. More importantly, this C remains in 
soil and thus provides a potential for C stabilisation. When CUE, based 
on current methods, is implemented in soil C models, the models para-
doxically treat non-growth metabolites as emitted C waste leaving the 
soil. Neglecting microbial non-growth anabolism may introduce a bias 
when quantifying microbial CUE. 

Here, we (i) scrutinise the idea that non-growth anabolism can be 
ignored for CUE investigations, (ii) suggest adjustments to common CUE 
approaches, (iii) demonstrate that current assessments of CUE measure 
only an ‘apparent’ CUE which could significantly underestimate ‘actual’ 
CUE, (iv) illustrate the potential consequences for SOC projections, and 
(v) outline research needs and potential ways forward. 

2. Why is non-growth anabolism disregarded for microbial CUE? 

Why do current concepts of microbial CUE in soil ecology neglect 
non-growth anabolism, despite the respective C remains in soil and 
serves important microbial survival strategies? The reason may be three- 
fold: (i) Ideas of CUE evolved parallel in various scientific fields, 
contributing to the concept’s ambiguity and amorphous definition 
(Geyer et al., 2016; Manzoni et al., 2018; Schimel et al., 2022); (ii) 
Non-growth anabolism is considered quantitatively negligible compared 
to C used for growth (Manzoni et al., 2018); and (iii) Quantification of 
microbial non-growth anabolism in soil is challenging. 

(i) Concepts of CUE have been developed in various subfields of 
biology. While addressing roughly the same idea, specific definitions 
and conceptualisations of CUE diverge (Geyer et al., 2016; Manzoni 
et al., 2018). The assignment of C as efficiently used can comprise 
growth, biomass production or entire biosynthesis (Manzoni et al., 2012, 
2018). Depending on the organism and specific situation, these three 

Fig. 1. Schematic illustration of carbon (C) partitioning during microbial metabolism when considering carbon-use efficiency (CUE). (a) Current concepts of CUE 
disregard C used for non-growth anabolism (Cnon-growth). CUE is quantified from C used for growth (Cgrowth) and respiration (Crespiration) where the entire C uptake 
(Cuptake) is considered as the sum of Cgrowth and Crespiration (equation (1)). Current approaches measure therefore an apparent CUE (CUEapparent). (b) To measure actual 
CUE (CUEactual), Cnon-growth should be considered. The latter remains in soil at the time and therefore needs to be included in the numerator and denominator of the 
CUE equation, if soil C stabilisation is of interest (equation (2)). 
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entities can be almost similar or they differ substantially (Manzoni et al., 
2018). The concept of microbial CUE in soil ecology has been largely 
influenced by the idea of microbial-growth efficiency (also called 
growth yield; Frey et al., 2001; Herron et al., 2009; Sinsabaugh et al., 
2013; Spohn et al., 2016; Thiet et al., 2006), as commonly used in 
microbiology (e.g. Gommers et al., 1988; Linton, 1991; von Stockar and 
Marison, 1993; see Supplementary Note for discussion on how 
neglecting non-growth anabolism affects estimations of growth effi-
ciency). In microbiology, growth efficiencies are, however, frequently 
measured in pure cultures with (near)optimal conditions for microbial 
growth. Under such conditions, non-growth anabolism (e.g. EPS, storage 
compound, or osmolyte production) may be less important for microbial 
survival than in harsh soil environments. As such, pure culture studies 
serve purposes that are often different from investigations in soil ecology 
(e.g. process advancement in biotechnology with no substrate limita-
tions vs. questions of C stabilisation in resource-scarce soils). 

(ii) The absence of non-growth anabolism from CUE calculations has 
been justified by its presumably low contribution to overall anabolism 
under aerobic conditions (Manzoni et al., 2018; Paul and Clark, 1989). 
This assumption can, however, be questioned, because it is based on 
glucose tracer experiments (Frey et al., 2001; Šantrůčková et al., 2004) 
in which glucose was applied in quantities well above the range 
commonly found in soils (i.e. 315-1000 μg glucose-C g-1 soil. These 
additions are much higher compared to 0.012–216 μg glucose-C g-1 soil, 
quantities common for unamended soils; Dijkstra et al., 2015; Frey et al., 
2001; Šantrůčková et al., 2004). Previously, high rates of glucose addi-
tion have been criticised for distorting insights into microbial meta-
bolism and CUE, because glucose can trigger rapid uptake and 
intracellular storage and/or favour rapid growth of r-selective micro-
organisms over more versatile metabolic performance (Blagodatskaya 
et al., 2014; Dijkstra et al., 2015; Sinsabaugh et al., 2013). Neglecting 
non-growth anabolism for CUE quantification is thus solely founded on 
experiments favouring growth over non-growth anabolism. These ex-
periments investigated CUE under conditions with unrealistically high 
availability of low-molecular-weight substrate while microbial access to 
C is commonly limited in soil. The criticism of high glucose application 
rates has led to experiments reflecting more realistic, in-situ conditions 
(e.g. Bölscher et al., 2017; Dijkstra et al., 2015; Jones et al., 2019; Takriti 
et al., 2018), and promoted the development of methods independent of 
13C- or 14C-labelled substrate addition (Blazewicz and Schwartz, 2011; 
Canarini et al., 2020; Spohn et al., 2016). Yet surprisingly, it did not 
trigger a critical re-consideration regarding the neglection of 
non-growth anabolism for CUE. 

(iii) Although quantifying microbial non-growth anabolism and its 
metabolites in soils remains challenging, advancements have been made 
and deserve attention (Banfield et al., 2017; Mason-Jones et al., 2019, 
2023; Redmile-Gordon et al., 2014, 2015). In the following, we will 
demonstrate the need to consider non-growth anabolism for CUE. We 
will then discuss how CUE investigations can be advanced using readily 
available methods that quantify at least some products of non-growth 
anabolism. 

3. Advancing the concept and calculation of CUE in soil 

Neglecting non-growth anabolism not only affects the concept of 
CUE (i.e. it considers that non-growth C is ‘inefficiently’ used for syn-
thesis of waste products), but also impacts how CUE in soil is quantified 
(Fig. 1). Carbon used for non-growth anabolism is virtually absent from 
common CUE measurements independent from the adopted approaches 
(i.e. substrate-specific or substrate-independent CUE). In both ap-
proaches, the total C metabolised by microorganisms is calculated as the 
sum of the C used for microbial respiration and growth, with the latter 
being estimated from DNA and/or biomass measurements (Geyer et al., 
2019) (Fig. 1a): 

CUEapparent =
Cgrowth

Cgrowth + Crespiration
(1)  

Where CUEapparent is the apparent CUE and Cgrowth and Crespiration are C 
used for growth or respiration, respectively. Here, we propose that 
equation (1) provides only an apparent CUE because it does not consider 
the entire metabolised C by microorganisms as non-growth anabolism is 
absent from the calculation (Fig. 1a). It illustrates that microbial 
extracellular metabolites are not quantified for substrate-specific CUE 
and even all non-growth metabolites (i.e. extra- and intracellular) are 
not captured when using substrate-independent CUE. For investigating 
SOC stabilisation, we propose that actual CUE should be calculated, 
considering growth and non-growth anabolism (Fig. 1b): 

CUEactual =
Cgrowth + Cnon− growth

Cgrowth + Cnon− growth + Crespiration
(2)  

Where CUEactual is the actual CUE and Cnon-growth is C used in non-growth 
anabolism (Fig. 1b). 

From equation (2), it becomes clear that not capturing non-growth 
anabolism could lead to an underestimation of CUE because Cnon-growth 
appears in the numerator and denominator of the equation. In the 
following, we will quantify potential underestimation of CUE when non- 
growth metabolites are excluded using two examples (i.e. extracellular 
enzymes, Domeignoz-Horta et al., 2023; EPS, Olagoke et al., 2022). 

4. Accounting for microbial non-growth anabolism reveals 
underestimations of actual CUE 

We employed two case studies to quantify potential underestimation 
of CUEactual when non-growth anabolism is not quantified during CUE 
measurements (Domeignoz-Horta et al., 2023; Olagoke et al., 2022, 
section 4.1 and 4.2, respectively). Then, we performed a theoretical 
exercise assuming various relative allocations of C during metabolism 
(section 4.3). In all cases, CUEactual versus CUEapparent is expressed as a 
unitless number between 0.00 and 1.00 (i.e. 0-100% efficiency). 

4.1. Case study 1: what is the effect of extracellular enzyme production on 
CUE? 

We used data on extracellular enzymes and substrate-independent 
CUE, measured by Domeignoz-Horta et al. (2023), to compare CUEac-

tual and CUEapparent when accounting for microbial C-investments into 
exoenzyme synthesis (for detailed information, see Supplementary 
Methods): In a first scenario (enzyme pool maintenance), we assumed that 
the microbial community invests C only into non-growth anabolism in 
order to maintain the existing pool of exoenzymes. Here, we estimated 
the C costs by considering the exoenzymes’ capacities to process sub-
strate molecules (BRENDA, 2023; Chang et al., 2021), along with pre-
viously measured enzyme turnover (Schimel et al., 2017), and the 
fraction of C present in the amino-acids constituting the enzymes (NCBI, 
2023; Supplementary Methods, Table S1). In a second scenario (enzyme 
pool expansion), we assumed that the microbial community expands the 
initial exoenzyme pool by 20% within 24 h (Table S1). Similar increases 
in enzyme pools were observed previously following shifts in soil 
nutrient inputs (Allison and Vitousek, 2005). 

Depending on the underlying scenario (Fig. 2, Table S2), our analysis 
demonstrates that exoenzyme production can influence CUE to con-
trasting degrees. For the first scenario, enzyme pool maintenance, the 
underestimation of CUEactual is minute, i.e. less than 0.01 differences 
between CUEactual and CUEapparent (Fig. 2a and b). This indicates that 
microbial investments of C into exoenzymes may remain negligible for 
CUE measurements when merely compensating for enzyme turnover. 
But, for the enzyme pool expansion scenario, we found substantial un-
derestimation of CUEactual. The assumed 20% increase in the exoenzyme 
pool caused underestimations of CUEactual between 0.002 and 0.189 
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(Fig. 2c and d). Here, 40% of the samples resulted in an underestimation 
of 0.05 or larger and CUEactual was more than twice as high as CUEap-

parent in 12% of the samples. Consequently, even smaller increases in the 
exoenzyme pool than the assumed 20% could result in a considerable 
underestimation of CUEactual. These findings demonstrate that micro-
organisms can potentially invest an important fraction of their C budget 
into the production of enzymes, thereby influencing CUE. We therefore 
consider that microbial C investments into enzymes should not be—a 
priori—ignored during investigations of CUE. 

The high sensitivity of CUEactual to increased enzyme production 
calls for a better understanding of enzyme pool dynamics in soils and 
their effects on CUE. Generally, it can be assumed that the formation and 
turnover of enzymes, thus the size of the exoenzyme pool, is dynamic in 
soils (Schimel et al., 2017; Sinsabaugh, 2010; Zuccarini et al., 2023). 
Both, enzyme production and turnover depend on the environmental 
conditions, such as organic matter quality, nutrient availability, season, 
or soil moisture (Allison and Vitousek, 2005; Zuccarini et al., 2023) and 
change considerably over short time (Allison and Vitousek, 2005). To 
advance our knowledge whether neglecting exoenzymes affects CUE, we 
call for measuring exoenzyme pool dynamics over time and in relation to 
microbial growth. We need to advance our understanding of the phys-
iological responses of microorganisms to changes in environmental 
conditions which may either lead to maintenance or increases of 

exoenzyme pools. Especially, it is necessary to take further consideration 
in relation to growth dynamics, because increased exoenzyme formation 
is generally followed by accelerated microbial growth (Schimel and 
Weintraub, 2003). It remains, however, unclear how far these cou-
pled—yet shifted in time—changes affect the underestimation of 
CUEactual over time. Yet, due to the time-shift, it can be assumed that 
CUEactual remains high over longer periods than CUEapparent, because 
CUEapparent is only affected by accelerated growth while CUEactual in-
creases already with the preceding increase in enzyme formation. 

In the second scenario, exoenzyme pool expansion, the underesti-
mation of CUEactual was dependent on measured CUEapparent. We found a 
clear trend that the underestimation of CUEactual decreased with 
increasing CUEapparent (Fig. 2d). This trend occurs, because the relative 
distribution of C between metabolic pathways affects CUE. If the same 
amount of C is used for enzyme production across different CUEapparent, 
adding Cnon-growth to the CUE equation will have a stronger effect on 
CUEactual when CUEapparent (and thus growth) is low. This is due to the 
fact that the relative contribution of Cnon-growth to the total anabolic C 
use is high compared to cases when CUEapparent is high (see also section 
4.3). Commonly, substrate-independent methods (i.e. 18O tracing tech-
niques) measure CUEapparent for SOC decomposition less than 0.40 
(Geyer et al., 2019). As exoenzyme-related underestimations of CUEac-

tual seem to be larger below this value, special considerations should be 

Fig. 2. Actual and apparent carbon-use efficiencies (CUEactual and CUEapparent, respectively) considering extracellular enzyme formation based on data adopted from 
Domeignoz-Horta et al. (2023). The displayed results consider two scenarios for enzyme formation: First, microbial communities maintaining the existing exoenzyme 
pool by replacing turned-over exoenzymes (a, b). Second, an expansion of the exoenzyme pool by 20% (c, d). Left panels (a, c) compare CUEapparent (equation (1)) 
and corresponding CUEactual (equation (2)) for the two scenarios, respectively. The dotted lines indicate the 1:1 ratio of equal CUEapparent and CUEactual. Right panels 
(b, d) present the underestimation of CUEactual (i.e. CUEactual minus CUEapparent) plotted as function of assumed CUEapparent for the two scenarios, respectively. 
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given to potential effects of exoenzyme pool dynamics on CUE when 
substrate-independent methods are applied. 

4.2. Case study 2: what is the effect of EPS production on CUE? 

We used data from a soil microcosms experiment by Olagoke et al. 
(2022) and compared hypothetical CUEapparent with CUEactual when EPS 
production was quantified (for detailed information, see Supplementary 
Methods). For our purpose, we focused on two clay treatments (i.e. +0% 
and +1% clay) in combination with three substrate additions (i.e. starch, 
cellulose, and no substrate). Since no CUE was measured in the experi-
ment, we assumed that CUEapparent can range between 0.10 and 0.80 in 
each sample. We then calculated the respective cumulative respiration 
and CUEactual based on the measured changes in EPS and microbial 
biomass C as well as the assumed CUEapparent (see Supplementary 
Methods). Based on real EPS and microbial biomass C data, this 
approach provided us with a set of hypothetical CUEapparent and 
CUEactual for each treatment. 

Our analysis revealed that the underestimation of CUEactual can be 
considerable when microbial EPS production is neglected (Fig. 3, Sup-
plementary Tables S3 and S4). Depending on the amount of produced 
EPS relative to microbial biomass, the underestimation of CUEactual can 
span from virtually 0 (see 0% clay and starch addition treatment, 
assuming CUEapparent of 0.10; Fig. 3b) up to 0.12 (1% clay and cellulose 
addition treatment, assuming CUEapparent of 0.40 and 0.50; Fig. 3b). In 
the latter case, CUEactual was 0.52 or 0.62 compared to CUEapparent of 
0.40 or 0.50, respectively (Fig. 3a). The implication of these un-
derestimations becomes clearer when we consider the relative differ-
ences between CUEactual and CUEapparent. In our case, CUEactual would be 
4–30% higher than CUEapparent, which means that 4–30% more C may 
remain in soil than estimated in the approach neglecting microbial non- 
growth anabolism. 

Furthermore, in all treatments, underestimations of CUEactual peak in 
a range of CUEapparent between 0.40 and 0.50 and decrease towards both 
ends of the CUE range (i.e. 0.10 to 0.80, Fig. 3b). Yet, underestimations 
of CUEactual can remain high even at both ends of the range of CUEapparent 
(i.e. as high as 0.05 and 0.07 for CUEapparent of 0.10 and 0.80, respec-
tively; Fig. 3b). As consequence, CUEactual could be substantially 
underestimated over the entire range of usually reported CUEs in soils (i. 
e. <0.40 for substrate-independent CUE and <0.60 for substrate-specific 
CUE; Dijkstra et al., 2015; Geyer et al., 2019; Sinsabaugh et al., 2013) 
and the range of CUE usually assumed in soil C models (i.e. 0.15–0.60; 
Manzoni et al., 2012). In the range of CUEapparent commonly measured 

for native SOC (i.e. CUE <0.40; Geyer et al., 2019), underestimations of 
CUEactual were as high as 0.12 (Fig. 3b). 

Underestimations of CUEactual seem to depend on the metabolised 
substrate. While we found relatively small underestimations of CUEactual 
for soil amended with starch (i.e. less than 0.02; Fig. 3b), the un-
derestimations were considerably higher for soils amended with cellu-
lose or unamended soils (i.e. 0.03–0.12 and 0.03–0.08, respectively; 
Fig. 3b). The differences were related to the relative production of EPS to 
biomass (Fig. 3c; Olagoke et al., 2022). Starch is a readily available 
substrate for microbial metabolisation, while cellulose breakdown is 
more complex, and control soils were depleted of labile and particulate 
SOC (Olagoke et al., 2022). If the here revealed substrate-dependent 
underestimations of CUEactual are generally true, underestimations of 
CUEactual could be less pronounced (i) in the rhizosphere where roots 
exude low-molecular-weight organic compounds, (ii) at locations 
receiving fresh dissolved organic C via leaching, or (iii) at ceasing 
hot-spots of microbial activity with increased cell lysis (Kuzyakov and 
Blagodatskaya, 2015). Yet, underestimations of CUEactual could be more 
pronounced if organic C supply for microorganisms is low and/or 
dominated by complex organic matter. In the latter case, un-
derestimations of CUEactual may not only be caused by C investments 
into EPS production (analysed here in case study 2), but also by a need to 
produce exoenzymes (see case study 1, section 4.1). 

4.3. Theoretical approach: what are the general effects of neglecting non- 
growth anabolism for CUE? 

Our aim here was to evaluate the quantity of non-growth metabolites 
required to cause substantial underestimation of CUEactual. Because 
quantitative information on non-growth metabolites in soils is limited, 
we deployed a theoretical approach using various relative microbial C 
allocation ratios between non-growth and growth anabolism as well as 
ratios between non-growth anabolism and C uptake (see Supplementary 
Methods). In general, underestimations of CUEactual increase with 
increasing amounts of C used for non-growth anabolism (Fig. 4 
Table S5). They can be above 0.05 when the C used for non-growth 
anabolism is ≥ 5% of C uptake (Fig. 4a) or ≥25% of the C used for 
growth. Underestimations of CUEactual increase with decreasing CUEap-

parent for constant ratios of non-growth anabolism to C uptake (Fig. 4a). 
For ratios of non-growth to growth anabolism, graphs follow inverse U- 
shapes peaking around a CUEapparent of 0.35–0.50 (Fig. 4b). The inverse 
U-shapes are caused by the balance (or imbalance) of the C allocation 
between the variables Crespiration and Cgrowth (equation (1)): At low 

Fig. 3. Actual and apparent carbon-use efficiencies (CUEactual and CUEapparent, respectively) and production of extracellular polymeric substances (EPS) calculated 
from data of Olagoke et al. (2022). (a) Comparison between assumed CUEapparent (equation (1)) and corresponding CUEactual (equation (2)) for soil treated with 
cellulose, starch or no substrate (i.e. control) in combination with either +0 or +1% clay. The dotted line indicates the 1:1 ratio of equal CUEapparent and CUEactual (b) 
Underestimation of CUEactual (i.e. CUEactual minus CUEapparent) plotted as a function of assumed CUEapparent. (c) Production of EPS carbon (EPS-C) relative to the 
change in microbial biomass carbon (ΔMBC) after substrate addition. Results are displayed as means and error bars show standard errors (n = 4). If no whiskers are 
visible, standard errors are smaller than the symbol size. Symbols in (a) and (b) are slightly shifted along the x-axis to improve visibility. 
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CUEapparent, most of the total C used is directed towards respiration and 
Crespiration dominates the CUE calculations. Adding Cnon-growth to the 
calculation has therefore a relatively small effect on CUE. At high 
CUEapparent, most of the C is used for growth. Similarly, as Cgrowth 
dominates the CUE calculation, adding Cnon-growth to the calculation has 
a relatively small effect. Considering Cnon-growth for CUE has the largest 
effect when the distribution of C between respiration and growth is 
balanced. Our theoretical approach therefore demonstrates that non- 
growth anabolism should be integrated in CUE quantifications in situ-
ations when non-growth C is equal or more than 5% of C uptake or 25% 
growth C. 

5. Modelling approach: potential consequences for SOC 
projections 

To test how sensitive SOC projections are to varying CUEs, we 
applied a model introduced by Meurer et al. (2020). Here, we introduced 
a step-wise increase in the model’s organic matter retention coefficient 
(ε, which can be seen as a proxy for CUE), covering the underestimations 
of CUEactual revealed in the case studies and theoretical approach (see 
Supplementary Methods). Our modelling approach provides a sensi-
tivity analysis. Projected SOC stocks need to be interpreted in this 
context. 

In the model reference scenario that assumed no underestimation of 
CUEactual (i.e. CUE = 0.14), SOC stocks are modelled with 4.21 kg C m-2. 
Yet, for the largest difference in CUE (i.e. underestimation of CUEactual 
being 0.23, non-growth anabolic C equal to 25% of C uptake or 150% of 
growth C, see red solid lines in Fig. 4), SOC stocks are modelled with 
5.97 kg C m-2, a SOC stock which is 42% larger than the reference sce-
nario (Fig. 5). Also, we found almost as large discrepancies in modelled 
SOC stocks when the CUEs from the empirical case studies were applied. 
In the exoenzyme case study, differences in CUEactual and CUEapparent 
ranged from no differences up to 0.19 (Fig. 2), and calculated SOC stocks 
range from 4.21 kg C m-2 (i.e. the reference value) to 5.63 kg C m-2. The 
latter is 34% higher than the reference scenario (Fig. 5). In the EPS case 
study, CUEactual was 0.004–0.12 units higher than CUEapparent (Fig. 3). 
Modelled SOC stocks range from 4.22 to 5.10 kg C m-2. While the former 
resulted in only a small discrepancy of 0.2% to the reference scenario, 
the latter is 21% larger than the reference scenario (Fig. 5b). 

Our modelling approach shows how crucial accurate estimations of 
CUE are for SOC projections, because an underestimation of CUE as little 
as 0.03 projected 5% higher SOC stocks. Hence, non-growth anabolism 

should not be disregarded from CUE measurements. 

6. Perspective on microbial CUE in the light of SOC stabilisation 

6.1. Non-growth anabolism consumes likely a major part of microbially 
processed C 

Here, we demonstrate that non-growth anabolites can make up a 
substantial part of microbially processed C, thus affecting microbial CUE 
(Figs. 2–4). The findings of our case studies (section 4) are supported by 
other (semi-)quantitative investigations. First, non-growth conditions 
are expected to dominate in soil, where access to available substrate and 
nutrients is restricted (Hobbie and Hobbie, 2013; Joergensen and 
Wichern, 2018; Kuzyakov and Blagodatskaya, 2015). While the 
non-growth state of microorganisms remains largely uncharacterised 
with respect to metabolite production, recent studies suggest that 
metabolic activity and production can be substantial without microbial 
growth (Chodkowski and Shade, 2020; Joergensen and Wichern, 2018; 
Lever et al., 2015). Furthermore, it is widely accepted that the vast 
majority of bacteria and archaea in soils, as well as certain fungi, are 
surrounded by an EPS matrix (Costerton et al., 1987; De Beeck et al., 
2021; Flemming and Wingender, 2010; Flemming and Wuertz, 2019). 
This matrix consists of polysaccharides, proteins, lipids, and nucleic 
acids which account for 90% of the EPS matrix, while microbial cells 
account for less than 10% of its dry mass (Flemming and Wingender, 
2010). Chenu (1995) estimated that microbial EPS in soil could be 
quantitatively equal to microbial biomass, representing up to 1.5% of 
SOC. Microbial cellular storage compounds are another form of 
non-growth C that is not accounted for by common organic C and DNA 
extractions. Mason-Jones et al. (2023) demonstrated recently that 
storage compounds could be of similar quantity as microbial biomass, 
even under C-limited conditions, counting for up to 19–46% of the 
extractable microbial biomass C and a biomass increase as large as 
2.8-fold accounted for by DNA-based techniques. Other examples of 
non-growth anabolites are osmolytes, which can account for 10% or 
more of microbial biomass (Schimel et al., 2007; Warren, 2020), and 
oxalic acid, which was released by mineral weathering fungi in quan-
tities equal to 1–20% of the fungi’s biomass during a 19 h incubation 
experiment (Schmalenberger et al., 2015). These examples represent a 
glimpse of studies illustrating that soil microbial communities produce a 
diverse set of non-growth metabolites, potentially in quantities that can 
be crucial when estimating CUE. Non-growth metabolites should thus 

Fig. 4. Underestimation of actual carbon-use efficiency (CUEactual) in relation to (a) microbial carbon (C) uptake and (b) microbial C allocation between non-growth 
and growth anabolism. Underestimation of CUEactual (i.e. CUEactual minus CUEapparent) is plotted as function of assumed apparent CUE (CUEapparent). CUEapparent was 
assumed to range between 0.10 and 0.80. CUEactual was calculated for fourteen scenarios with C used for non-growth anabolism relative to (a) C uptake ranging from 
1 to 25% of C uptake and (b) C used for growth ranging from 5 to 150% of C used for growth. 
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not be neglected, especially as microbial communities likely synthesise 
various non-growth metabolites simultaneously. Further attention 
should be given to improving techniques to quantify non-growth me-
tabolites in soil. 

6.2. Non-growth metabolites in soils are likely as stable as residues of 
microbial growth 

Microbial non-growth metabolites may not only be quantitatively 
important for CUE but may also be a stable soil C pool. It is suggested 
that residues of microbial growth make up a major part of SOC (Deng 
and Liang, 2021; Kallenbach et al., 2015; Liang et al., 2017; Miltner 
et al., 2012). Although less studied, microbial non-growth metabolites in 
soil may be as stable as microbial growth residues and foster processes 
that promote C stabilisation, such as soil aggregation and formation of 
mineral-organic associations (Chenu and Stotzky, 2002; Kleber et al., 
2015). Non-growth metabolites, like EPS or exoenzymes, are built of 
proteins, polysaccharides, lipids, and other polymeric substances (Burns 
et al., 2012; Flemming and Wingender, 2010). These substances have a 
high affinity to reactive mineral surfaces. They form strong multiple 
bonds, due to a diverse set of molecular functional groups, via various 

mechanisms (Kleber et al., 2007, 2015, 2021; Lehmann et al., 2020), 
promoting the formation of relatively stable forms of mineral-organic 
associations (Chenu, 1995; Chenu and Stotzky, 2002; Yang et al., 
2021). Additionally, it is widely established that EPS contribute to SOC 
stabilisation via soil aggregation (Guhra et al., 2022). These examples 
demonstrate that non-growth anabolism does not only serve important 
functions for microbial survival but likely contributes to stabile SOC in 
similar ways as residues of microbial growth. Recent findings indicate 
even that products of non-growth anabolism may be more important in 
forming stable SOC than products of growth (Craig et al., 2022). 

6.3. We need to open the ‘black box’ of microbial physiology in soil 

The concept of CUE is ambiguous (Schimel et al., 2022) and treats 
microbial physiology as a ‘black box’. While its ambiguity has received 
attention (e.g. Geyer et al., 2019, 2016; Joergensen and Wichern, 2018; 
Manzoni et al., 2018; Schimel et al., 2022), its ‘black box’ character has 
been rarely considered (Dijkstra et al., 2022). Here, we argue for a need 
to open the ‘black box’ of CUE, supporting Dijkstra et al. (2022) in their 
call to disentangle the underlying metabolic processes, including those 
of non-growth anabolism. Efforts in this direction seem more promising 

Fig. 5. Results from the modelling approach showing soil organic carbon (SOC) stocks calculated for the Green Manure treatment of the Ultuna Long-Term Soil 
Organic Matter Experiment (Herrmann and Witter, 2008; Persson and Kirchmann, 1994) in the year 2020. The SOC stocks were modelled assuming carbon-use 
efficiencies (CUE) in the range from 0.14 (i.e. the model reference value) to 0.37, a similar range as observed in the two case studies and theoretical approach 
(section 4). (a) On the left, calculated SOC stocks are shown, (b) while differences in SOC stocks to the reference (i.e. no underestimation of CUEactual) are shown on 
the right. Horizontal solid lines above the graphs show the range of the underestimation of CUEactual found in the case studies and theoretical approach. For the case 
study of extracellular polymeric substances (EPS) and the theoretical approach, markers are placed on the lines where the value is located for an assumed CUEapparent 
of 0.14 (i.e. the model reference CUE). In the EPS case, round markers are used for the +0% clay treatment and triangular markers for the +1% clay treatment. The 
dotted horizontal line in the graphs represents (a) the SOC stock or (b) difference to the reference SOC stock assuming an annual increase by 4 ‰ (Rumpel et al., 
2020) until 2020, relative to the initial stocks in 1956. 
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to advance our knowledge than attempts to overcome the CUE ambi-
guity via additional efficiency definitions (e.g. Cai et al., 2022; Geyer 
et al., 2016; Manzoni et al., 2018). Strictly speaking, the latter provides 
primarily additional ‘black boxes’ of varying sizes rather than furthering 
our process understanding. To advance our understanding of the mi-
crobial physiology’s role in SOC stabilisation, we need to disentangle the 
different pathways of microbial anabolism, improve our abilities to 
quantify the various products of microbial physiology (i.e. endogenous 
and exogenous) in soil, and understand the environmental influence on 
their dynamics. 

How do habitat conditions in combination with microbial life-history 
strategies influence the microbial metabolic C allocation? It can be 
assumed that the dynamics of most non-growth metabolites (such as 
EPS, enzymes and osmolytes) are coupled and alter interrelatedly 
following environmental changes within the microbial habitat (Red-
mile-Gordon et al., 2015; Schimel et al., 2007; Zuccarini et al., 2023). 
For example, fresh inputs of complex organic C can trigger an increase in 
production of exoenzymes (Allison and Vitousek, 2005), followed by a 
delay in microbial growth (Schimel and Weintraub, 2003), which then is 
followed by an increase in formation of EPS when substrate becomes 
scarce (Olagoke et al., 2022). Such consecutive and interrelated dy-
namics of metabolite production over time and space have implications 
for CUE measurements. In our example, CUEapparent would only increase 
for a short time with enhanced microbial growth, while CUEactual would 
remain on a high level for an extended period from the start of enzyme 
production until EPS formation subsides. To advance our understanding 
of CUE and metabolite dynamics, we need to establish procedures with 
repeated measurements of CUE and microbial metabolites over short 
periods, but also over seasonal shifts throughout the year. 

The research aims laid out here require that we develop new and 
advance existing techniques for the identification of metabolic C fluxes 
that quantify endo- and exogenous metabolites in soil. Over the last 
years, advances have been made to quantify various microbial metab-
olites in soil. Different extraction techniques for microbial EPS have 
been tested and a method was described which allows measuring 
changes in extracellular polysaccharides and proteins over a short time 
(Olagoke et al., 2022; Redmile-Gordon et al., 2014). Although we still 
lack procedures to quantify all types of storage compounds, protocols 
are readily available for key lipid forms of microbial energy storage 
(Mason-Jones et al., 2022) including triacylglycerides (Banfield et al., 
2017; Gorka et al., 2023; Mason-Jones et al., 2023) and poly-
hydroxyalkanoates (Mason-Jones et al., 2019). In conjunction with 13C- 
or 2H-labelling, these protocols allow the quantification of small changes 
in microbial storage over a short time and in combination with 
substrate-specific and substrate-independent CUE, respectively (Canar-
ini et al., 2023; Mason-Jones et al., 2023). Saccharide storage com-
pounds (i.e. glycogen and trehalose; Mason-Jones et al., 2022) could be 
targeted using a protocol for glycogen extraction from soil (Bölscher 
et al., 2016) in combination with the chloroform fumigation extraction 
method (Vance et al., 1987). Yet, its feasibility and sensitivity for 
quantifying changes in saccharide storage compounds remain to be 
examined. While we describe a possibility to estimate extracellular 
enzyme C (see Supplementary Methods), metabolomics offers a way 
forward to quantify low molecular weight metabolites (Johns et al., 
2017; Patti et al., 2012; Swenson et al., 2015; Withers et al., 2020). 
Metabolomics can quantify exo- and/or endometabolites (Swenson 
et al., 2015). Especially untargeted metabolomics with the capability to 
measure a wide range of low molecular weight metabolites (Patti et al., 
2012; Swenson et al., 2015; Withers et al., 2020) bears potential to gain 
more accurate estimations of CUEactual. Beyond providing more accurate 
quantifications of CUEactual, the combination of CUE measurements with 
metabolomics could provide additional insights into underlying micro-
bial functioning, especially when combined with other “omics” tech-
nologies (e.g. genomics and transcriptomics; Chowdhury et al., 2021; 
Daniel, 2005; Withers et al., 2020). In addition to group-specific 
metabolite quantification, 13C Metabolic Flux Analysis offers a way 

forward to track C fluxes during metabolism. It measures active meta-
bolic pathways via the incorporation of 13C from position-specific 
labelled substrate into products of biosynthesis (Zamboni et al., 2009) 
or CO2 (Dijkstra et al., 2011, 2015, 2022). 13C Metabolic Flux Analysis 
may therefore offer great potential for opening the black boxes of soil 
microbial physiology and CUE, especially when combined with other 
techniques described above. 

Capturing entire microbial metabolic C fluxes in soil is currently 
impossible and it will likely remain a major challenge in the near future. 
Adopting the ‘black box’ of CUE is advantageous e.g. as a simple indi-
cator for large-scale SOC projections (reducing required input data and 
computing capacity). However, we will need to understand the under-
lying processes of microbial physiology to judge in which situations 
current simpler CUE measurements are sufficient (i.e. equation (1)) or 
when more inclusive complex CUE measurements are required (i.e. 
equation (2)). In the end, the development around microbial CUE may 
go in parallel with the development of soil C models, where complex 
mechanics models provide process understanding while simple kinetic- 
based models are commonly used for large-scale SOC projections (Le 
Noë et al., 2023). While the complex mechanistic soil C models would 
profit from an ‘open box’ of soil microbial physiology, simple soil C 
models would profit from improved measurements of CUEactual, keeping 
this physiological feature as a ‘black box’. 

7. Conclusions 

Carbon used for non-growth anabolism is commonly disregarded in 
estimations of microbial CUE. Thus, CUE values represent only 
‘apparent’ CUEs. In the light of SOC stabilisation, non-growth anabolism 
is essential and needs to be quantified to capture the entire microbial C 
use and measure ‘actual’ CUE. Here, we argue for an adjustment of 
microbial CUE measurements. Using two case studies and a theoretical 
approach, we demonstrated that measurements of apparent CUE can 
substantially underestimate actual CUE, especially over the CUE range 
commonly observed in soils. Considering an exoenzyme pool expansion 
by 20% resulted in a doubling of CUE values, while considering EPS 
production increased CUE by up to 30%. A SOC model reacted highly 
sensitive when we increased the CUE parameter similarly, projecting up 
to 34% larger SOC stocks after 64 years. These underestimations of CUE 
and SOC stock are case and model-specific. Future work is needed to test 
whether similar underestimations occur under different environmental 
conditions and in-situ. Yet, our results emphasised that substantial un-
derestimations of CUE are feasible when non-growth metabolites are 
ignored. Although quantification of non-growth metabolites in soils 
remains challenging, efforts should be made to further our under-
standing of their role in the terrestrial C cycle. As revealed by multiple 
studies, microbial communities can invest a substantial amount of 
metabolised C into non-growth metabolites, which are likely as much 
stabilised in soils as residues of microbial growth. Both, non-growth and 
growth residues, are exposed to the same C stabilisation mechanisms. 
We call for efforts to open the ‘black box’ of microbial physiology, 
represented by CUE, to advance our mechanistic understanding of how 
microbial physiology contributes to stabilised SOC. Recent advances 
allow us to quantify, to some degree, non-growth metabolites such as 
EPS, exoenzymes, and storage compounds. Efforts in this direction 
should continue and acknowledge the dynamic, linked nature of the 
various microbial C pathways and their dependence on conditions in the 
microbial habitat, an underexplored research area in the terrestrial C 
cycle. 
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