
Aquaculture and Fisheries 4 (2019) 17–26
Contents lists available at ScienceDirect

Aquaculture and Fisheries

journal homepage: www.keaipublishing.com/en/journals/aquaculture-and-fisheries/
SuperSAGE digital expression analysis of differential growth rate in a
European sea bass population

Bruno Louro a,*, Rute S.T. Martins a, Patricia I.S. Pinto a, Richard Reinhardt b,
Dirk-Jan de Koning c,d, Adelino V.M. Canario a, Deborah M. Power a

a CCMAR-Centre of Marine Sciences, University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
b Max Planck Genome Centre, Carl-von-Linn�e-Weg 10, K€oln 50829, Germany
c The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland UK
d Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, Uppsala 750 07, Sweden
A R T I C L E I N F O

Keywords:
European sea bass
Specific growth rate
Gene expression
SuperSAGE
Pathways
* Corresponding author. CCMAR-Centre of Marin
E-mail address: blouro@ualg.pt (B. Louro).

https://doi.org/10.1016/j.aaf.2018.03.001
Received 19 November 2017; Received in revised f
Available online 21 March 2018
2468-550X/© 2018 Shanghai Ocean University. P
licenses/by/4.0/).
A B S T R A C T

One of the goals of the aquaculture industry is to understand and control growth associated traits through se-
lective breeding. In the present study the molecular basis of growth heterogeneity in the European sea bass
(Dicentrarchus labrax) was addressed. To establish growth heterogeneity in a group of hatchery bred sea bass
individuals were tagged and their specific growth rates (SGR) determined at monthly intervals. Gene expression in
the brain, liver and white muscle from fish with the most divergent sustained SGR (6 individuals of the first and
last quartile) was assessed using SuperSAGE (Serial Analysis Gene Expression) combined with next generation
SOLiD4 sequencing. A total of approx. 11 million edited tags (26 bp), on average 2 million tags per SAGE library,
that represented 47.071 unique transcripts were identified. Comparison of transcripts in fish with high and low
SGR yielded 344, 698 and 601 differently expressed tags (0.01% false discovery rate and 4-fold change) in brain,
liver and muscle, respectively. The tags were mapped onto the sea bass genome and approximately one third of
the tags could be assigned to annotated genes. Pathway enrichment analysis revealed in liver, muscle and brain
intricate gene expression changes in endocrine regulatory pathways involved in growth, metabolic and the stress
axis, underlying divergent SGR in sea bass.
1. Introduction

The aquaculture industry has the same general aspirations as terres-
trial production systems, which is to enhance economically important
traits (Canario et al, 2008). However, the advantages of selective
breeding programs have been exploited for only relatively few aquacul-
ture species and an optimistic estimate suggests that probably only 10%
of aquaculture production is based on genetically improved stocks
(Gjedrem & Baranski, 2009, p. 221). The salmonids, Atlantic salmon
(Salmo salar) and rainbow trout (Oncorhynchus mykiss), are the main
products of Northern European aquaculture and much of the production
is based on genetically improved stocks (Gjedrem & Baranski, 2009, p.
221). In relatively few generations selection for improved growth yielded
a 10%–14% size increase in Atlantic salmon (Gjøen& Bentsen, 1997) and
8%–13% in rainbow trout (Kause et al, 2005). However, with the more
recent adoption of intensive aquaculture production systems, Southern
European species lack large-scale formal selection programs to improve
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economically important traits. This is the case of the European sea bass
(Dicentrarchus labrax) with a production estimated at 126 thousand
tonnes and a market value of 500million Euros (FAO, 2012). This species
has a molecular resource rich status and is a prime candidate for the
development of a genetic selection program using molecular genetics
(Canario et al, 2008). The use of molecular approaches in sea bass has led
in a relatively short space of time to the establishment of hundreds of
microsatellite markers and to the production of several linkage maps
(Chistiakov et al, 2005, 2008) and candidate quantitative trait loci (QTL)
(Chatziplis et al, 2007; Louro et al, 2016; Massault et al, 2010). Addi-
tional resources include a >12� coverage BAC-library (Whitaker,
McAndrew, & Taggart, 2006), a radiation hybrid map (Guyon et al,
2010), over 30,000 expressed sequence tags (ESTs) (Louro et al, 2010),
an oligonucleotide microarray (Ferraresso et al, 2010) and a well
assembled and annotated genome (Tine et al, 2014).

While QTL mapping and a sequenced genome of an organism are
important steps towards molecular assisted selection, still few causative
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genes behind the phenotype of interest have been identified. Even in
terrestrial farm animals, few causative genes of QTLs have been identi-
fied (Mackay, Stone, & Ayroles, 2009; Rothschild & Plastow, 2008;
Rothschild, Hu, & Jiang, 2007). Recent approaches to speed up identi-
fication of the genes associated with traits of interest have deployed a
combination of QTL mapping and high throughput transcriptome anal-
ysis, also known as Systems Genomics or Genetical Genomics, when gene
expression is considered the trait rather than the physical phenotype it-
self (Hubner et al, 2005; Schadt, Monks, & Friend, 2003; Wayne &
McIntyre, 2002). Other strategies to define new QTL or loci for complex
traits have used QTL analysis coupled to gene transcriptome analysis of
individuals with distinct phenotype subtypes in a segregating population
(Blum et al, 2010; Schadt et al., 2003).

In the present study the absence of individuals selected for improved
growth phenotypes or with a known pedigree with a characterised QTL
meant that genetical genomics was not feasible. The aim of the present
study was therefore to identify differential gene expression profiles be-
tween high and low SGR fishes, i.e. that underlie divergent extreme
growth phenotypes in the European sea bass. Furthermore, the existence
of shared and tissue specific transcripts were analysed in three tissues
selected for transcriptome analysis. The tissues were selected based on
their relevance to the growth phenotype and included the liver (related
to metabolism), muscle (body mass growth) and the brain (regulation).
SuperSAGE (Serial Analysis Gene Expression) (Matsumura et al, 2010)
was used to detect differential transcript expression between chronically
slow and fast growers and cross referenced with the genes previously
identified in candidate growth QTL identified in an independent map-
ping population (Massault et al, 2010). Pathway analysis of differentially
expressed transcripts established the regulatory pathways most affected
and gave insight into the tissue specific changes underlying divergent
specific growth rate in sea bass.

2. Materials and methods

2.1. Growth trial

European sea bass juveniles obtained from a commercial fish farm
(Viveiros Vila Nova, Vila Nova de Milfontes, Portugal) were grown at
Ramalhete Marine station (University of Algarve, Faro, Portugal) in
1000 L tanks with running seawater at a density< 5 kg/m3, ambient
temperature (16-22 �C) and natural photoperiod (from February to June,
Latitude 37�). For the 70 days growth trial, two groups of 9 months old
fish were created (n¼ 75), one from below the first weight quartile
(Q1¼ 40 g) and the other from above the third weight quartile
(Q3¼ 53 g). The fish had no visible external abnormalities or lesions and
were pit tagged before being randomly distributed between two cylindro-
conical tanks (75 L). The tanks were in an open circuit and received a
continuous flow-through of aerated sea water at 21–22 �C and were
exposed to the natural photoperiod for June–September. Fish were fed to
satiation with a continuous feeding regime and verifying periodically
during the day that all food was consumed.

At monthly intervals fish were lightly anaesthetised (0.01% 2-phe-
noxyethanol) and weight and length measured. For final phenotyping
and tissue collection all fish were sacrificed 24 h after last meal with an
overdose of 2-phenoxyethanol. Whole brain (minus the pituitary gland),
liver and white muscle were rapidly collected and immediately frozen in
liquid nitrogen and stored at�80 �C until use. Specific growth rate (SGR)
was calculated for each individual as

SGR ¼ �
ln
�
Wf

� � lnðWiÞ
�
*100=t

where ln(Wf) is the natural logarithm of the final weight (g), ln(Wi) is the
natural logarithm of the initial weight (g), and t is the interval between
measurements (days). The six fish with the most divergent SGR (i.e.
persistent high or low growth rate) were selected for SAGE analysis.
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2.2. RNA extraction

Total RNA was extracted from whole brain, liver and white muscle
using a total RNA purification kit and a Maxwell 16 MDXi robot
(Promega, Madrid, Spain) following the recommended procedure. The
concentration, quantity and integrity of total RNA in 300 μL of DEPC
treated water were evaluated using a NanoDrop 1000 Spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA) and agarose (0.8%) gel
electrophoresis. Pools of total RNA (10 μg) of each tissue were generated
from the 6 selected high and low SGR individuals and treated with DNase
using a Turbo DNA-free kit (Ambion, Huntington, UK) prior to SuperS-
AGE library production.

2.3. SuperSAGE library preparation

SuperSAGE was performed using a modification of the method
described in Matsumura et al. (Matsumura et al, 2010), the tag flanking
adapter and primer sequences were adjusted to make the method
compatible with the SOLiD4 sequencing system (Life Technologies,
Carlsbad, USA) (Matsumura et al., 2012). Adapter-A was common to all
libraries and was obtained by annealing to the isolated RNA the two oli-
gonucleotides 50-TTCCTCATTCTCTCAAGCAGAAGACGGCATACGAAATG
AT ACGGCGACCACCGACAGGTCTAACGATGTACGCAGCAGCATG-30 and
50-CTGCTGCGTACATCGTTAGACCTGTCGGTGGTCGCCGTATCATTTCGT
ATGCCGTCTTCTGCTTGAGAGAATGAGGAA-amino-3’ (Metabion, Mar-
tinsried, Germany). Adapter-B was indexed with library specific 6bp
barcodes (XXXXXX) in the two oligonucleotides 50-CCACTACGCCTCC
GCTTTCCTCTCTATGGGCAGTCGGTGATXXXXXX-30 and 30-NNXXXXXXA
TCACCGACTGCCCATAGAGAGGAAAGCGGAGGCGTAGTG GTT-amino-5’
(Metabion).

SuperSAGE libraries for brain, liver and white muscle of high (H) and
low (L) SGR fish were produced from double stranded cDNA (dscDNA)
synthesised using total RNA as the template, random hexamers and
biotinylated oligo-dT (Metabion). This was followed by of dscDNA
digestion with NlaIII (New England Biolabs, Ipswich, MA, USA) and
capture of the biotynylated fragments with streptavidin-coated magnetic
beads. Adapter-A was ligated to the biotinylated dscDNA biotinylated
fragments and EcoP15I (New England Biolabs) restriction digestion
performed. Adapter-B was ligated to the produced adapter-A-dscDNA
tags. The construct was then amplified with phusion high-fidelity poly-
merase (New England Biolabs) and purified using an 8% non-denaturing
polyacrylamide gel (Matsumura et al., 2012).

2.4. SOLiD4 sequencing, editing and quality control

SuperSAGE library quality was assessed using an Agilent 2100 Bio-
analyzer (Agilent Technologies, Palo Alto, CA, USA). Emulsion PCR, slide
preparation and sequencing runs were performed following the manu-
facturer’s protocol (Applied Biosystems SOLiD Library Preparation Pro-
tocol, Life Technologies) and using the sequencing primer supplied 50-
CCACTACGCCTCCGCTTTCCTCTCTATGGG CAGTCGGTGAT-3’.

Primary data analysis including editing the 50 bp raw colour space
sequences, quality control and library assignment. The sequencer output
colour space fasta. csfasta and. qual files were converted to an integrated
colour space Phredþ33 Sanger fastq file using bfast 0.6.4e program
(Homer, Merriman, & Nelson, 2009) script “solid2fastq”. The pooled
sequences were assigned to libraries and subsequently the 6 base pair
barcode was removed with the perl script “fastx_barcode_splitter.pl”, and
“fastx_trimmer” script available in the FASTX-Toolkit (http://hannonlab.
cshl.edu/fastx_toolkit/). Summary statistics of the sequence files for
quality control was obtained using FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). Quality screening at all steps of
sequence editing was performed using FASTX-Toolkit scripts “fastx_-
quality_stats”, “fasta_clipping_histogram.pl” and “fastq_quality_boxplot_-
graph.sh”. A second positive quality control was based on the
identification of the 30-adaptor (adaptor A) sequence added during

http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


Table 1
Significant tag counts and descriptive statistics of the annotation.

Frequency Brain Liver Muscle

Significant tags 344 698 601
Significant tags annotated 109 (32%) 233 (33%) 91 (15%)
Genes with significant tags 322 683 596
Genes with significant tags annotated 87 (27%) 218 (32%) 86 (14%)
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SuperSAGE library construction. Sequences that had a modified or absent
30-adaptor sequence were eliminated from the analysis. Adaptor se-
quences were trimmed using fastx_trimmer in the FASTX-Toolkit scripts.
Taking advantage of the double encoded nature of colour space se-
quences, the positive identification of Adaptor A at the end of the
sequence was used for quality control instead of the application cut off
standard quality threshold of 20, and resulted in a higher yield of
extracted tags with high confidence.

2.5. SuperSAGE tags counts and mapping

Tag counts and genomic mapping was performed with the command
line version of solid. sage.command.v109. pl program (He, Liqun, Life
Technologies, personal communication). The European sea bass draft
genome sequence (ENA submission PRJEB5099) was edited to RefSeq
fasta format and used to map the tag sequence data. The generated output
mapping file for each library consisted of a list of tags, their frequency
and their genomic coordinates, that were all concatenated into a matrix
file.

2.6. Statistical analysis of differentially expressed tags

Differentially expressed tags in liver, brain and muscle from fast and
slow growing European sea bass were identified by pairwise frequency
comparisons (Fisher’s exact test), followed by a false discovery rate test
(FDR, proportion of false positives when a particular test is called sig-
nificant). This was performed using the tag count matrix retrieved from
the tag extraction and count steps as the input file for an in house
developed R script (R v2.8.1) (supplied on request) that tested for the null
hypothesis of independence of specific tags and library counts using an
in-built Fisher’s exact test. The P-values obtained from the Fisher’s exact
test were automatically used for q-value estimation for FDR using the
available “q value” package (http://cran.r-project.org/web/packages/
qvalue/index.html) (Storey & Tibshirani, 2003). No significance level
(P-value) or minimum tag count cut-off was defined in the Fisher’s exact
test for differential expression in pairwise comparisons. A minimum tag
count of five for at least one library was used as the cut-off to select tags
for expression analysis. The cut-off for significance was set after evalu-
ation of FDR results at a q-value <1 E�5 (0.01% FDR) and log2 threshold
of 2 for comparisons between library tag counts derived from high and
low SGR fish.

2.7. SuperSAGE tags functional annotation

Mapped tags were annotated using their positional coordinates
against the European sea bass GFF3 genomic gene annotation file via the
“Operate on Genomic Intervals” tool available in the Galaxy server
(Goecks et al, 2010) (https://main.g2.bx.psu.edu/). Significant tags from
each library were analysed using the STRING v. 9.0 protein interaction
database (Szklarczyk et al, 2011) (http://string-db.org). The interactions
included direct (physical) and indirect (functional) associations derived
from three sources: high-throughput experiments, co-expression, and
previous knowledge. The interaction score for differential tags was
established at a high confidence level (>0.4). Biological process and
molecular function Gene Ontology (GO) enrichment analysis were also
carried out using STRING v.9.0.

2.8. Ingenuity pathway analysis

A dataset file containing the gene identifiers, log2(B/S) and q-values
was the input file for Ingenuity Pathway Analysis (IPA) (Ingenuity Sys-
tem Inc, USA) [http://www.ingenuity.com/]. The IPA 00Core Analysis”
function was used to interpret the experiment results in the context of
biological function, gene networks and canonical pathways. Both log2
(ratio) and q-values were defined as value parameters for the analysis.
Canonical pathways and biological functions derived from IPA analysis
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were sorted by significance using a right-tailed Fisher’s Exact test P-
value. The networks generated were also ordered by significance, using
the score obtained with a modified Fisher Exact test with associated top
biological functions.

3. Results

3.1. Growth experiment

Specific growth rates averaged 0.8% and 1.3% (min 0.70% - max
1.38%) for L and H SGR groups, respectively, during the first period (first
9 months) and 0.9% and 1.3% (min 0.67% - max 1.31%) during the
second period (70 days growth trial). SGR was more homogenous in the
selected high SGR than in the low SGR fish (supplementary file 1, figure
S1).

3.2. Editing and quality control of the sequencing output

A total of 61,003,920 raw colour space reads was obtained and
39,805,391 reads were assigned to specific SuperSAGE libraries (sup-
plementary file 2, table S1). Reads assigned to brain and liver libraries
were similar and were approximately 6 million and 4 million, respec-
tively. For the muscle libraries, group L had ca. 6 million reads and group
H ca. 13 million reads. After quality editing and tag extraction the reads
assigned to specific tissue libraries were more evenly spread between 1.2
and 3 million (supplementary file 2, table S1).

3.3. Differential gene expression, annotation and GO enrichment

Comparison of tag frequency from the L and H groups yielded 344,
698 and 601 differently expressed in brain, liver and muscle, respectively
(Table 1). Approximately 80% of the tags were assigned to genomic loci
on the draft genome of the European sea bass (Table S1). In total 47,071
tag loci corresponding to unique transcripts were mapped and gene
annotation retrieved for 15,584 tag loci, which corresponded to 9.066
genes. The differentially expressed tags between high SGR (B) and low
SGR (S) corresponded to 322 genes in brain, 683 in liver and 596 in
muscle, respectively. The greater number of tags identified relative to
genes was the result of some tags assigning to different loci of the same
gene, that presumably represent alternative transcripts and/or possible
regulatory RNAs (Table 1) (detailed annotation and expression data in
Supplementary File 2).

The top 10 gene ontology (GO) terms for biological process and
molecular function characteristic of each tissue are listed in Tables 2 and
3, respectively. Although these included well known specific functions
for each tissue, analysis of differentially expressed tags failed to produce
significant enrichment of any specific GO terms presumably due to the
relatively low number in the significant tags population for the stringent
fold change threshold used.

Interestingly, 8% of the differentially expressed annotated transcripts
between H and L were located within previously identified growth
related QTLs (Massault et al, 2010) (Table 4). Thirty-five genes located
within previously identified growth related QTLs with an identified
physiological role in growth (Table 5) and may be candidates to explain
the divergent growth phenotypes. Although these differentially
expressed transcripts passed the FDR they did not pass the very stringent
expression cut-off threshold of Log2 (B/S, minimum of 4-fold change in

http://cran.r-project.org/web/packages/qvalue/index.html
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Table 2
Top 10 gene ontology (GO) biological process enrichment. Enriched GO terms for
the brain, liver and muscle identified transcripts are presented as GO term
number (GO_id), number of genes (#Genes), and false discovery rate (FDR)
values.

GO_id Biological process Term #Genes FDR

Brain
GO:0006796 Phosphate-containing compound metabolic

process
65 6.67E-6

GO:0006793 Phosphorus metabolic process 65 6.67E-6
GO:0051234 Establishment of localization 148 2.78E-5
GO:0072599 Establishment of protein localization in

endoplasmic reticulum
19 2.78E-5

GO:0045047 Protein targeting to ER 19 2.78E-5
GO:0006605 Protein targeting 34 2.78E-5
GO:0006810 Transport 144 5.24E-5
GO:0022415 Viral reproductive process 24 5.66E-5
GO:0006614 SRP-dependent cotranslational protein

targeting to membrane
18 6.86E-5

GO:0007411 Axon guidance 35 6.86E-5

Liver

GO:0006957 Complement activation, alternative pathway 5 1.96E-2
GO:0042221 Response to chemical stimulus 65 7.85E-2
GO:0051259 Protein oligomerization 15 7.85E-2
GO:0007599 Hemostasis 21 7.85E-2
GO:0006066 Alcohol metabolic process 20 7.85E-2
GO:0051262 Protein tetramerization 8 1.17E-1
GO:0007596 Blood coagulation 20 1.21E-1
GO:0006949 Syncytium formation 4 1.21E-1
GO:0006958 Complement activation, classical pathway 7 1.21E-1
GO:0051289 Protein homotetramerization 6 1.54E-1

Muscle

GO:0030049 Muscle filament sliding 12 9.81E-
11

GO:0006414 Translational elongation 17 9.81E-
11

GO:0006413 Translational initiation 18 2.57E-
10

GO:0019083 Viral transcription 15 1.43E-9
GO:0006415 Translational termination 15 1.47E-9
GO:0030048 Actin filament-based movement 12 2.45E-9
GO:0019058 Viral infectious cycle 15 3.33E-9
GO:0043624 Cellular protein complex disassembly 15 8.42E-9
GO:0006614 SRP-dependent cotranslational protein

targeting to membrane
15 8.42E-9

GO:0043241 Protein complex disassembly 15 8.42E-9

Table 3
Top 10 gene ontology (GO) - molecular function enrichment. Enriched GO terms
for the transcripts identified in the brain, liver and muscle are presented as GO
term number (GO_id), number of genes (#Genes), and false discovery rate (FDR)
values.

GO id Molecular function Term #Genes FDR

Brain
GO:0005515 Protein binding 284 5.66E-3
GO:0036094 Small molecule binding 132 6.63E-3
GO:0000166 Nucleotide binding 124 6.63E-3
GO:0005516 Calmodulin binding 18 2.47E-2
GO:0015085 Calcium ion transmembrane transporter

activity
5 4.1E-2

GO:0035639 Purine ribonucleoside triphosphate binding 95 4.63E-2
GO:0008092 Cytoskeletal protein binding 37 6.87E-2
GO:0046875 Ephrin receptor binding 6 6.87E-2
GO:0032555 Purine ribonucleotide binding 94 6.91E-2
GO:0032553 Ribonucleotide binding 94 6.91E-2

Liver

GO:0031701 Angiotensin receptor binding 3 4.53E-1
GO:0005254 Chloride channel activity 6 4.53E-1
GO:0005102 Receptor binding 30 4.53E-1
GO:0032403 Protein complex binding 13 4.53E-1
GO:0005253 Anion channel activity 6 4.53E-1
GO:0008395 Steroid hydroxylase activity 3 5.13E-1
GO:0030246 Carbohydrate binding 13 5.13E-1
GO:0016709 Oxidoreductase activity, acting on paired

donors.
4 5.13E-1

GO:0050997 Quaternary ammonium group binding 3 5.31E-1
GO:0005324 Long-chain fatty acid transporter activity 2 5.31E-1

Muscle

GO:0008307 Structural constituent of muscle 13 2.57E-
11

GO:0005198 Structural molecule activity 30 1.88E-8
GO:0003779 Actin binding 19 3.63E-5
GO:0008092 Cytoskeletal protein binding 23 2.48E-4
GO:0008137 NADH dehydrogenase (ubiquinone) activity 7 2.48E-4
GO:0050136 NADH dehydrogenase (quinone) activity 7 2.48E-4
GO:0016655 Oxidoreductase activity, acting on NADH 7 1.92E-3
GO:0048407 Platelet-derived growth factor binding 4 2.5E-3
GO:0005515 Protein binding 111 2.5E-3
GO:0003729 mRNA binding 7 3.07E-2
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expression between fish with high or low SGR). As examples, insulin-like
growth factor binding protein 5 (IGFBP5) maps to a LG15 growth QTL in
European sea bass and is differentially expressed in the H and L groups in
brain, liver and muscle. IGFBP5 in the H group had a lower expression in
the brain (�0.66-fold) relative to the liver (2-fold) and muscle
(1.65-fold). Insulin-like growth factor 2 (IGF2) falls within a LG6 growth
QTL and had a lower expression in the liver of H fish (�1.75-fold).
3.4. Analysis of string protein networks

The largest interacting networks inferred from the differentially
expressed tags were ribosomal proteins (Fig. 1) which interact (bind) to
generate the functional ribosome. For example, the ribosomal binding
protein complex was the largest transcript cluster found in the liver and
albeit a smaller cluster was also enriched in brain and muscle. Overall,
with the exception of the ribosomal clusters relatively few significant
groups of interacting genes (protein products) were identified in the
differentially expressed genes. Some common networks were found be-
tween muscle and liver that were linked to RNA transcription, for
example polymerase RNAII (POLR2A), serine/arginine rich splicing
factor 1 (SRSF1), pre-mRNA processing factor 8 homolog (PRPF8). In
muscle a small group of non-ribosomal interacting products were iden-
tified, namely myosin heavy chain 3 (MYH3), troponin T (TNNT), heat
20
shock protein 90 (HSP90AA1), peptidyl-prolyl cis-trans isomerase
(cyclophylin A; PPIA). In the brain a network of energy producing en-
zymes (ENO1, ALDOB, GAPDHS) was prominent.
3.5. Pathway analysis

Significant canonical pathways identified by IPA in the brain were
largely neurone specific (e.g. synaptic and gonadotropin releasing hor-
mone signalling), in the liver they included acute phase response and
synaptic response, and in muscle calcium and androgen signalling
(Fig. 2).

Comparison of the canonical pathways of differentially expressed
genes between tissues suggested common tissue wide biological regula-
tion of some processes occurred in the H and L fish. As an example CREB
signalling in the neurons canonical pathway was among the top five most
significantly represented canonical pathways and was commonly
affected in all tissues analysed (Fig. 3).

4. Discussion

In the present study we hypothesised that there would be differenti-
ation of transcript expression that underpin and are responsible for the
trait of chronic fast and slow growth in non-selected sea bass. We further
hypothesised that some of these transcripts may have a quantitative ef-
fect on growth traits. Cross-referencing the gene annotation of the
differentially expressed genes in the fast and slow growing sea bass with



Table 4
Significantly different expressed genes with genomic position within the European sea bass LG4, LG6 and LG15 growth related QTL confidence intervals. The signif-
icance cut-off was set at a q-value < 1 E�5 and log2 ratio (H/L) threshold of 2 for pairwise comparisons of all tissues libraries.

Gene Gene description Tissue Log2(H/L) q-value Chr Gene start Gene end Orient

ISLR2 Immunoglobulin superfamily L-rich repeat 2 Brain 2.9 1.1E-80 LG6 11934066 11936195 þ
PDXK Pyridoxal (pyridoxine – vitamin B6) kinase Brain ¡2.8 2.0E-07 LG15 8145231 8152657 þ
RPL24 60S ribosomal protein L24 Brain 2.6 0.0Eþ00 LG15 16293533 16297163 –

FRYL FRY-like Liver ¡3.6 2.4E-14 LG4 21320759 21361792 þ
aldh9a1a Aldehyde dehydrogenase 9 member A1A Liver 4.3 2.5E-11 LG4 24572564 24574329 –

CRTC1 CREB regulated transcription coactivator 1 Liver ¡4.6 6.4E-07 LG4 9361337 9374882 –

FETUB Fetuin B Liver ¡4.4 3.9E-11 LG4 2784300 2789783 –

GPX4 Glutathione peroxidase 4 Liver 2.7 5.6E-81 LG4 19317875 19319599 þ
CPA4 Carboxypeptidase A4 Liver ¡5.4 3.4E-49 LG6 19837939 19844753 –

CAPRIN1 Cell cycle associated protein 1 Liver ¡5.1 7.4E-10 LG6 13742751 13751644 –

MT Metallothionein Liver 4.9 1.9E-06 LG6 2014062 2014825 þ
RPS13 Ribosomal protein S13 Liver ¡6.3 0.0Eþ00 LG6 19159089 19162501 þ
SLC45A3 Solute carrier family 45 member 3 Liver ¡5.5 7.7E-13 LG6 2187105 2197339 þ
SPIRE2 Spire homolog 2 (Drosophila) Liver 4.7 1.8E-15 LG6 25656290 25692880 þ
RORA RAR-related orphan receptor A Liver ¡5.4 1.4E-12 LG6 11526244 11534924 þ
HCE1 High choriolytic enzyme 1 liver ¡2.7 4.8E-14 LG6 21266930 21271103 –

PPARA Peroxisome proliferator-activated receptor α liver 3.2 8.1E-07 LG6 16681120 16697250 –

TPM1 Tropomyosin 1 (alpha) liver 5.3 1.0E-08 LG6 11202329 11213230 –

myhz1.1 Myosin – heavy polypeptide 1 skeletal muscle liver ¡5.1 1.1E-09 LG6 22460588 22463113 þ
PPIB Peptidylprolyl isomerase B liver ¡2.6 2.1E-69 LG6 18436498 18440079 þ
CXCR4 Chemokine (CXC motif) receptor 4 liver 4.9 7.7E-06 LG15 7892444 7893885 þ
rpl8 60S ribosomal protein L8 liver 2.6 2.1E-38 LG15 19083529 19086264 –

HNRNPA3 Heterogeneous nuclear ribonucleoprotein A3 liver ¡5.1 3.6E-09 LG15 13647136 13650264 þ
EPB41L5 Erythrocyte membrane protein band 4.1 like 5 liver ¡4.7 2.0E-07 LG15 6109897 6139853 þ
Q8JIP9 Warm temperature acclimation related protein liver ¡4.9 0.0Eþ00 LG15 19754011 19758725 þ
TRPM2 Transient receptor potential cation channel M2 liver ¡2.7 7.8E-65 LG15 10987466 11005611 þ
RPL24 60S ribosomal protein L24 liver 4.5 2.4E-298 LG15 16293533 16297163 –

SERBP1 SERPIN mRNA binding protein 1 muscle ¡2.1 7.4E-41 LG4 19506224 19511352 þ
TMEM38A Transmembrane protein 38A muscle ¡3.3 3.2E-157 LG4 9330963 9339526 þ
CCDC124 Coiled-coil domain containing 124 muscle ¡3.2 3.5E-45 LG4 9570604 9572384 þ
SPIRE2 Spire homolog 2 (Drosophila) muscle ¡4.3 5.9E-18 LG6 25656290 25692880 þ
TPM1 Tropomyosin 1 (alpha) muscle ¡2.2 1.9E-266 LG6 11202329 11213230 –

NDUFA9 NADH dehydrogenase 1 α9 muscle ¡2.3 2.6E-39 LG6 3070462 3075461 þ
ANO1 Anoctamin 1 ca2þ activated chloride channel muscle ¡2.6 3.6E-07 LG6 26811750 26854267 þ
RPL24 60S ribosomal protein L24 muscle ¡2.2 0.0Eþ00 LG15 16293533 16297163 –

Table 5
Candidate genes with genomic position within the European sea bass LG4, LG6 and LG15 growth related QTL confidence intervals. Significance cut-off was set at just for
q-value < 1 E�5 for all tissues libraries pairwise comparisons.

Gene Gene description Tissue Log2(H/L) q-value Chr Gene start Gene end Orient

LEPR Leptin receptor brain 1.1 3.3E-11 LG4 6928664 6948623 þ
TRHR Similar thyrotropin-releasing hormone receptor brain 0.4 6.1E-08 LG6 26373783 26391807 –

IGFBP5 Insulin-like growth factor binding protein 5 brain �0.6 1.8E-05 LG15 3836279 3847001 þ
INSR Insulin receptor liver 0.05 1.3E-05 LG4 14044023 14119027 –

IGF2 Insulin-like growth factor 2 (somatomedin A) liver �0.8 4.2E-25 LG6 5126328 5130860 þ
IGFBP2 Insulin-like growth factor binding protein 2 liver �0.8 2.0E-13 LG15 3856585 3874856 –

IGFBP5 Insulin-like growth factor binding protein 5 liver 1.0 2.3E-34 LG15 3836279 3847001 þ
IGFBP3 Insulin-like growth factor binding protein 3 muscle 1.3 9.6E-11 LG4 1920612 1938180 þ
IGFBP5 Insulin-like growth factor binding protein 5 muscle 0.7 3.4E-09 LG15 3836279 3847001 þ
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the genes populating previously identified growth QTL (Louro et al,
2016; Massault et al, 2010), it was possible to identify strong candidate
genes for future studies. The biological role of those identified candidate
genes listed in Table 4 and Table 5 is discussed further below.

The SOLID4 SuperSAGE tag architecture required design and pro-
gramming of a new editing and quality control pipeline integrating as a
positive control the sequence of the forward and reverse tag, which
increased the yield and confidence of tag extraction. In total it was
possible to extract 10,732,697 SuperSAGE tags which represented 27%
of the total raw colour space reads in the initial raw data. Relatively fewer
differentially expressed transcripts were identified in the brain compared
to the liver and white muscle. For differential tag/transcript expression a
very stringent cut-off of 0.001% false discovery rate, and a log2 ratio (B/
S) threshold of 2 was chosen to adjust for individual variation resulting
from sequencing of SuperSAGE libraries constructed with pools of RNA
obtained from several individuals. At the time of the analysis, the
incomplete nature of the gene annotation of the sea bass genome meant
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that a relatively small proportion of all the tags generated were annotated
(15%–33%). Nonetheless, comparison of the differentially expressed and
annotated tags with the genes present in the previously identified growth
QTL revealed considerable overlap. The most noticeable gene located
within the identified growth related QTLs was IGF2, which has a known
regulatory mutation that causes a major QTL effect on muscle growth in
the pig (Van Laere et al, 2003). IGF2 is member of the insulin family of
polypeptide growth factors, it is a key regulator of normal foetal devel-
opment and growth (Cornish et al, 2007; Harris &Westwood, 2012) and
related to intrauterine growth restriction diseases (Qiu et al, 2005). IGF2
is also known to be an imprinted gene with paternal inherited allele
expression in both eutherians and marsupials, but reported bi-allelic
expression in live bearing fishes (Lawton et al, 2005). In the current
study although the expression variation did not pass the Log2 (H/L)
expression threshold, it was more highly expressed in the L SGR group,
and this reinforces the generally held idea that this hormone is less
important in juvenile/adult growth regulation (Pierce et al, 2010a).



Fig. 1. STRING gene network inferences viewed in “actions view” in liver, brain and muscle.
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There was no evidence that IGF1, the principal somatomedin acting
as a growth factor in adult stages was differentially expressed between
slow and fast growing fish (Picha et al., 2008). Surprisingly, hepatic IGF1
tags were of low abundance and gave a non-conclusive high FDR on
comparison between the fast and slow growing fish. An explanation for
the low abundance of IGF1 tags may be related to the relatively high
abundance of insulin-like growth factor binding proteins (IGFBP) in all
the tissues analysed. IGFBPs are also located within previously identified
growth related QTLs in sea bass (Louro et al, 2016) namely, LG4, LG6 and
LG15 and differential expression passed the confidence interval and
achieved FDR significance. The IGFBP are multifunctional integrators
which bind IGFs and in this way modulate their action and influence
diverse physiological functions (Kelley et al, 2002). In the liver IGFBP 5
and 2 were identified and an SNP (single nucleotide polymorphism) in
the latter binding protein has been associated with type 2 diabetes and
triglyceride levels in humans (Harvard et al, 2007). In sea bass muscle
IGFBP 5 and 3 were also present and in pigs an SNP in the former gene
was associated with meat quality (Wang et al, 2010). Furthermore, the
divergent expression of IGFBP5 in brain relative to liver and muscle in
the present study, may indicate that QTLs can be tissue specific as a
consequence of divergent gene regulatory processes such a gene
methylation.

Pathway analysis (IPA) allowed the characterization and identifica-
tion of the canonical pathways differentiated between L and H SGR
groups. The CREB signalling in neurons canonical pathway was among
the top five most significant pathways commonly affected in all three
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tissue comparisons between slow and fast growing fish, suggesting a
linked biological regulation. The cAMP/CREB signalling pathway has
been strongly implicated in cell proliferation and survival, glucose ho-
meostasis, spermatogenesis, circadian rhythms and synaptic plasticity
that is associated with a variety of complex forms of memory including
spatial and social learning (Mayr & Montminy, 2001; Shaywitz &
Greenberg, 1999; Wen, Sakamoto, & Miller, 2010). It activates tran-
scription of target genes in response to a diverse array of stimuli,
including peptide hormones, growth factors, and neuronal activity, that
activates a variety of protein kinases including protein kinase A (PKA),
pp90 ribosomal S6 kinase (pp90RSK), and Ca2þ/calmodulin-dependent
protein kinases (CaMKs) (Shaywitz & Greenberg, 1999). In the compar-
isons between transcripts in the brain from fast growing and slow
growing fish the abundance of several transcripts encoding proteins of
the CREB signalling pathway were markedly modified. In particular, in
the H group down regulation of the iGLUR and mGLUR group II/III was
evident and the PIK3, cAMP and Ca2þ signalling pathways appeared to
also be down-regulated. The GLUR family are involved in activity
dependent, long term synaptic strength and with the exception of GLURI
their transcription was down regulated along with the down-stream
transcripts for the proteins they signal through, PKA and cAMP (Barria
et al, 1997). In contrast, transcripts encoding a number of elements of the
Ras signalling pathway were up-regulated and included MEK, the
extracellular kinase regulated (ERK) signalling pathway, which in-
fluences Elk a transcription factor involved in cell growth differentiation
and survival (Besnard et al, 2011). Recently in an elegant series of



Fig. 2. Top five most significantly modified canonical pathways in all three
tissue comparisons. The columns represent “-log (P-value), the orange points
represent the ratio of the number of genes that meet the cut-off criteria, to the
number of genes that make up the pathway.
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experiments ERK1/2 signalling was shown to be important for catch up
growth in the zebrafish (Kamei et al, 2011) and the results of the present
study revealing a significant modification in this pathway in fast growing
sea bass raise the possibility that it might also be at the basis of divergent
growth rates in older fish. It is apparent from this short appraisal that
substantial modifications have occurred at the level of the brain between
23
fast and slow growing fish, although their functional significance remains
to be established.

STRING analysis revealed a high representation of transcripts for ri-
bosomal proteins and transcription factors in all tissues, which was
perhaps unsurprisingly taking into consideration the abundance and
constitutive character of transcription and translation. However, these
transcripts are differentially expressed between fast and slow growing
fish suggesting that there may be underlying differences in protein syn-
thesis. Several endocrine pathways with anabolic actions were also
differentially expressed between fast and slow growing sea bass and
included elements and targets of the IGF and insulin axis. As in all ver-
tebrates, many of the actions of GH in fish are mediated by insulin/
insulin-like growth factor signalling (INS/IGF) [for review see Rein-
ecke, 2010]. The modification of insulin (INS) signalling revealed by the
divergent expression between fast and slow growing fish may also be a
factor explaining divergent growth. INS exerts its growth promoting ac-
tion via similar mechanisms to IGF (Barbieri et al, 2003) and can also act
by modifying IGF1 production by the liver when it synergizes with GH
(Plisetskaya & Duan, 1994). The identification of differential expression
of INS receptors in the liver suggested modifications in tissue respon-
siveness at this site between fast and slow growing sea bass. Within the
INS/IGF axis our results interestingly highlight the divergence in IGF2
transcript abundance, which like IGF1 is an anabolic hormone (Pierce
et al, 2010b), raising intriguing possibilities in relation to its cross-talk
with INS receptors and its role in the sea bass with divergent growth in
the present study. In the European seabass, the levels of both IGF1 and 2
mRNAs are regulated in the liver and muscle in response to fasting and
refeeding protocols (Terova et al, 2007), suggesting they are involved in
the regulation of energy balance in this species. The results presented
herein further expand a candidate function of IGF2 in the regulation of
growth in this species. In channel catfish (Ictalurus punctatus), IGF2
mRNA levels were greater in muscle (Peterson et al., 2004, 2008) and
liver (Peterson et al., 2004) of fast growing fish compared to slow
growing fish, contrary to our results with lower IGF2 expression levels in
liver of H group. Such divergence might result from the regulatory bal-
ance of the myogenic effect of IGFs from other genes, namely the rela-
tionship between IGF and IGFBP and final effect on growth is fairly well
established in vertebrates (Caruso& Sheridan, 2011; Fuentes et al, 2011;
Kamei et al, 2011; Svanberg et al, 1996). In fish several studies with
fasting and posterior refeeding challenges in Atlantic salmon (Bower
et al, 2008) and fine flounder (Safian et al, 2012) suggest IGFBP4 and
IGFBP5 as positive regulators of IGF role in compensatory growth,
evidencing the weight of IGBPs effect upstream the IGF system and not
solely pinpointing the IGF1 major role effect in the final muscle trait. The
importance of the relationship between IGFs signalling, with hormone
receptors and IGFBPs in the different tissues is also highlighted in the
presented candidate genes listed in Table 5, as a result of the integrative
approach of gene expression, pathway analysis and cross-mapping genes
with previous growth related QTLs (Louro et al, 2016). In barramundi
(Lates calcarifer), the IGF2 gene was also identified within a quantitative
trait locus for body weight and length in LG10 (Wang et al, 2008).

In our study higher expression of cAMP/CREB path via G-protein GN-
alpha (GαS) and protein kinase-A (PKA) occurred in the fish with a higher
SGR and this pathway was coupled to G-protein receptors (GPCR) of
several hormones and neurotransmitters. In contrast, Ca2þ/calmodulin-
dependent protein kinase (CaMKs) the alternative signalling pathway for
GPCRs via Ca2þ/calmodulin was reduced. Specifically, in muscle this
Ca2þ GPCR signalling pathway was up-regulated and it is part of a sig-
nalling cascade with an important role in cellular growth and develop-
ment. Transcript encoding proteins involved in CREB regulation varied
between tissues, indicating as expected tissue specific regulation. The
results regarding tissue specificity was the complementation of tissue
specific pathways that when interlinked via hormonal stimuli create a
higher physiological response such as sexual differentiation. GNRH,
corticotropin releasing hormone (CRH) and androgen signalling path-
ways were among the top five enriched pathways in brain, liver and



Fig. 3. The CREB signalling pathway, highlighting the differentially expressed transcripts between low (L) and high (H) SGR sea bass when differential transcripts
from all tissue analysed were pooled. Red shading indicates higher expression values in (H) fast growing fish, green shading indicates higher expression (L) in slow
growing fish and white is not significantly different. The intensity of the colour denotes the intensity of the response as assessed by transcript abundance. Expression
results are shown for the sum/overlap of differential transcripts represented in all three tissues. Note transcripts of the G-protein, Ca2þ and PI3K intracellular signalling
pathways appear to be down-regulated. In contrast the ERK signalling pathway was up-regulated through GLUR (group I) and presumably acts via Elk-1 (no infor-
mation) to bring about its effect. Notably in the top five canonical pathways, in addition to the CREB pathway, a number of complimentary pathways involved in
sexual differentiation were observed. The pathways identified included gonadotropin releasing hormone (GNRH) in the brain, corticotropin releasing hormone (CRH)
in the liver and androgen signalling pathways in the muscle (Fig. S2). The results indicate slow or fast growth was the outcome of the integrated tissue specific
responses that interlink to create a whole body physiological response such as sexually dimorphic growth.
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muscle, respectively. The CRH network was most populated with tran-
scripts and was down-regulated in the fast growing fish. The CRH sig-
nalling pathway is principally recognised for its role in stress (Brewer
et al, 2003), although it has also been implicated in reproduction
(Leatherland, Li, & Barkataki, 2010). The down regulation of the CRH
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receptor and elements of this signalling pathway in the liver of large fish
was intriguing and suggested possibly a lower stress response. It will be
important to assess plasma indicators of the stress axis to determine if the
smaller fish have a more active stress-axis and if this contributed to their
lower growth rate. Alternatively, and taking together the three principal
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pathways that intersect the three tissues, which were linked with
reproduction they may suggest growth divergence as a consequence of
sex. The fish used in the experiment had probably already undergone
sexual differentiation, but it was not possible to visually check sexual
gender during the sampling due to the small size of the fish. As such, most
gonads were sampled for future histological studies which might confirm
this gender bias to explore the possibility that the bigger fish might be
females.

5. Conclusion

The present study has demonstrated the utility of high throughput
methods for revealing transcriptional changes that underlie divergent
growth phenotypes in the sea bass. The three tissues tested, the liver,
muscle and brain suffered different changes suggesting tissue specific
programs operate, although intersecting pathways common to the three
tissues were identified suggesting an integrated response. The results
suggested that changes in endocrine regulatory pathways involving the
IGF, insulin and stress axis may be at the basis of the divergent growth
observed in our study. By merging transcriptomics with QTL analysis it
has been possible to identify a suite of candidate genes which may
explain the divergent growth phenotypes. The SAGE method deployed
coupled to the SOLiD4 sequencing platform permitted identification of
SNPs, which should contribute to future studies aimed at identifying the
causative mutations explaining QTL. Phenotype characterization needs
to be extended to other markers, such as plasma biochemical parameters
and to test experimentally the link between pathway/transcript changes
and physiology.
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