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1  |  INTRODUC TION

The success of plants outside their native geographic ranges, 
whether introduced intentionally or accidentally, is affected by 
many factors, but one prevailing hypothesis is that the success of 

non- native plants is due to the lack of natural enemies (i.e., enemy 
release) (Keane & Crawley, 2002), which would otherwise limit their 
spread and suppress population growth. The lack of natural enemies 
is often a desirable characteristic of cultivated plants (Lombardero 
et al., 2008), but can facilitate the ecological damage caused by 
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Abstract
Trees growing outside their native geographic ranges often exhibit exceptional 
growth and survival due in part to the lack of co- evolved natural enemies that may 
limit	their	spread	and	suppress	population	growth.	While	most	non-	native	trees	tend	
to accumulate natural enemies over time, it remains uncertain which host and insect 
characteristics affect these novel associations and whether novel associations fol-
low patterns of assembly similar to those of native hosts. Here, we used a dataset 
of insect–host tree associations in Europe to model which native insect species are 
paired with which native tree species, and then tested the model on its ability to 
predict	which	native	 insects	are	paired	with	which	non-	native	trees.	We	show	that	
native and non- native tree species closely related to known hosts are more likely to 
be hosts themselves, but that native host geographic range size, insect feeding guild, 
and sampling effort similarly affect insect associations. Our model had a strong abil-
ity to predict which insect species utilize non- native trees as hosts, but evolutionarily 
isolated tree species posed the greatest challenge to the model. These results demon-
strate that insect–host associations can be reliably predicted, regardless of whether 
insect and host trees have co- evolved, and provide a framework for predicting future 
pest threats using a select number of easily attainable tree and insect characteristics.
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some invasive plants (e.g., replacement of native species, reduction 
in soil fertility, shifts in water availability) (Castro- Díez et al., 2021; 
Wolfe,	2002).	While	enemy	release	has	frequently	been	observed	
in non- native plants, many non- native plants accumulate pests over 
time	either	 through	subsequent	 invasions	by	 specialist	herbivores	
or plant pathogens from the native range (e.g., Hurley et al., 2016; 
Medzihorský	et	al.,	2023), or via native insects expanding their host 
breadth (Crous et al., 2017; Hawkes, 2007; Hurley et al., 2016). 
Native	 insects	may	be	able	 to	 immediately	utilize	non-	native	 spe-
cies or, over successive generations, may adapt to newly available 
hosts (Branco et al., 2015; Brändle et al., 2008; Siemann et al., 2006; 
Strong, 1974; Strong et al., 1977). These novel interactions between 
native insects and non- native plants can be problematic for non- 
native plants, as hosts may have no evolved resistance against novel 
insect herbivores and may be preferred compared to native hosts 
(Parker & Hay, 2005; Sunny et al., 2015).	Furthermore,	once	an	in-
sect begins to utilize a non- native host, the association provides a 
biological pathway for the insect to be transported to the native 
range of the host where it may devastate natural populations (e.g., 
Dang et al., 2022). Plants grown outside their native ranges, thus, 
have the potential not only to elucidate the mechanisms that facili-
tate	insect–host	interactions,	but	may	also	provide	unique	insights	
for identifying future pest threats that could impact non- native 
plants in their native ranges (Eschen et al., 2019).

Despite the importance of insect enemies to the ecology and man-
agement of non- native plants, it is unclear if the processes governing 
novel insect–host associations (that is, between native insects and non- 
native hosts) are the same as those for native insect–host associations. 
If they are, it may be possible to predict novel associations, using host 
and insect characteristics from the native range, where insect and host 
ecologies	may	be	better	understood	and	documented.	Numerous	fac-
tors are likely to affect which insects feed on different plant species. 
First,	 if	 insects	are	 limited	to	phylogenetically	similar	hosts,	 then	the	
phylogenetic distance between native hosts and non- native plants is 
likely	important	(Mech	et	al.,	2019;	Pearse	&	Altermatt,	2013; Schulz 
et al., 2021; Uden et al., 2022). The role of phylogeny is likely due to 
the phylogenetic pattern of traits (e.g., chemical or visual characteris-
tics) used by insects to identify suitable hosts or coevolution of hosts 
and	insects.	While	numerous	studies	have	shown	insect	host	breadth	
and	damage	are	often	phylogenetically	clustered	(Gilbert	et	al.,	2012, 
2015), this is not universal among insects, as some generalist insects 
are seemingly unaffected by host phylogeny, and can feed on a wide 
variety	of	distantly	related	hosts	(Gougherty	&	Davies,	2022). In these 
cases, host breadth may be more limited by host availability and co- 
occurrence, rather than relatedness. The effect of host phylogeny on 
insect associations is likely partially affected by the type of interaction 
between insects and hosts. Insects with specialized interactions, which 
require	a	tight	coupling	of	host	and	insect	physiologies,	such	as	in	gall-	
forming insects, may be more phylogenetically restricted than other 
folivorous insects (Hardy & Cook, 2010) that feed on a wide array of 
species'	leaves	(Novotny	et	al.,	2010).

Previous studies have also found that insect associations are af-
fected by the geographic ranges of hosts (Branco et al., 2015; Joy & 

Crespi, 2012; Southwood & Kennedy, 1983). Plant species can be con-
sidered analogous to islands and may accumulate herbivores in the same 
way islands accumulate species, as expected from the theory of island 
biogeography—that is, species with large geographical ranges have 
greater apparency (Brändle & Brandl, 2001), which may increase the 
likelihood of new host associations forming (Janzen, 1968; Southwood 
& Kennedy, 1983). Large- ranged host species may also cover larger cli-
matic gradients or have higher local abundance (Sporbert et al., 2020), 
both of which could increase the opportunity of insect associations de-
veloping over time. Knowledge of insect–host associations could like-
wise be affected by the relative scientific knowledge of host species. 
Economically and ecologically important trees, for instance, those used 
for agriculture or forestry, are likely to be more closely monitored for 
pests that may impede their growth and productivity, compared to rare 
plants not considered ecologically or economically important.

Here, we sought to identify the principal drivers of native insect 
associations of native European trees and then test how well these re-
lationships can predict novel associations between native insects and 
non- native tree hosts. Predicting these novel associations can help 
guide the introduction and importation of new tree species for for-
estry and horticulture and can improve our understanding of enemy- 
release	and	the	accumulation	of	pest	loads	on	non-	native	plants.	We	
hypothesize that insect–host associations will be strongly affected by 
host tree relatedness, as host breadth for many pests is phylogenet-
ically	conserved.	We	expect	this	to	be	particularly	true	for	host	spe-
cialists which may utilize only a small, phylogenetically- circumscribed 
subset	 of	 available	 host	 species	 (Gilbert	 et	 al.,	2012;	 Gougherty	 &	
Davies, 2022).	We	also	 expect	 that	 host	 geographic	 range	 size	 and	
the relative scientific knowledge of host trees will also play a posi-
tive role as large- ranged, well- studied species may accumulate more 
insect herbivores. Likewise, we hypothesize that, although non- native 
plants	may	be	inhabiting	unique	biotic	and	environmental	conditions	
not present in their native range, the factors limiting insect associa-
tions are generalizable among native and non- native plants, and thus 
the insect associations of non- native plants can be reliably predicted.

2  |  METHODS

2.1  |  Data

A	list	of	85	native	and	non-	native	tree	species	in	Europe	was	com-
piled	from	the	European	Atlas	of	Forest	Tree	Species	(San-	Miguel-	
Ayanz	et	al.,	2016).	For	each	tree	species,	a	list	of	insects	known	to	
utilize that species as a host was compiled from a variety of sources 
(see Table S1). These sources contain thousands of insect–host as-
sociations documented in the literature, but we acknowledge even 
these large databases may have some omissions. Thus, to ensure 
our data collection was standardized and reproducible, we limited 
our analysis to the insect–host associations characterized in these 
high-	quality,	reliable	databases.	Each	insect	was	researched	to	de-
termine its taxonomic groupings, feeding guild (gall- maker, folivore, 
reproductive plant feeder, sap- feeder, or phloem/wood- borer), and 
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whether	it	was	native	to	Europe	or	non-	native	based	on	the	Fauna	
Europea database (De Jong et al., 2014)	and	the	International	Non-	
native Insect Establishment Database (Turner et al., 2021).	Accuracy	
of the dataset was ensured through multiple steps that involved the 
removal of: (1) insect species not considered herbivores (e.g., para-
sitoids in Braconidae), (2) duplicated tree- insect pairs due to spell-
ing errors (e.g., Alebra wahlbergi vs. A. wahlbergii) or different Latin 
cases (e.g., Phyllonorycter cerasicolella vs. P. cerasicolellus), and (3) 
subspecies if the species was already listed for the tree species. In 
addition,	insect	species	synonyms	were	identified,	and	subsequently	
removed,	 using	 the	 Global	 Biodiversity	 Information	 Facility	 taxo-
nomic backbone accessed with the rgbif R package (Chamberlain & 
Boettiger, 2017).	The	final	dataset	included	1592	insect	species.

2.2  |  Model predictors

We	used	seven	predictors	to	model	which	native	insects	are	associ-
ated with which host tree species. These included the mean phy-
logenetic distance between trees and known hosts of the insect, 
the variance of these distances, insect feeding guild, numerous host 
characteristics (geographic range size, and taxonomy), and sampling 
(representing the relative knowledge of host species).

Phylogenetic metrics were calculated using a phylogenetic tree 
created	from	V.PhyloMaker	 (Jin	&	Qian,	2019). Briefly, a megatree 
(Zanne	et	al.,	2014) was pruned to the host species in our analysis, 
and any host trees not included in the megatree were included as 
a polytomy within the inclusive genus. Three phylogenetic metrics 
were calculated from this tree: mean distances to known host spe-

cies, variance of distances to known hosts, and the minimum dis-
tance to the nearest native tree. The mean and variance distance 
were meant to capture how closely related trees are to known hosts 
of the insect, and how variable this was. In both cases, if a tree was 
a host, the zero distance was not included in the calculation. These 
two metrics were calculated for each insect–host pair included in 
the model. The minimum distance was included as a metric of how 
evolutionarily distinct tree species were with respect to the entire 
native tree community. This metric was calculated for each host tree.

Host characteristics included geographic range area and broad 
taxonomic grouping (i.e., angiosperm, gymnosperm). Species geo-
graphic	range	areas	were	based	on	the	EU-	Forest	database	(Mauri	
et al., 2017), and represent the current distribution of tree species 
across the European Union and the United Kingdom, based on 

countries' national forest inventories. Because countries vary in the 
sampling density of their respective forest inventory plots, we drew 
a	10 km	buffer	around	each	plot	containing	a	focal	host	tree	and	then	
merged	the	buffers.	We	then	masked	the	merged	buffer	area	with	
a	map	of	forested	areas	based	on	the	CORINE	land	cover	database	
(European	Environment	Agency,	2023). Species range sizes were cal-
culated from this masked buffer area.

Sampling	 effort	was	 quantified	 as	 the	 approximate	 number	 of	
search	results	from	GoogleScholar	for	each	host	species,	reported	
on the first page of search results for the contemporary scientific 
name	of	the	host	species.	Although	this	metric	is	not	specific	to	the	
knowledge of insects of each host, it serves as a useful proxy for the 
relative amount of research that has been conducted on each tree 
species.	Finally,	we	included	broad	host	taxonomic	grouping	(angio-
sperm, gymnosperm) as a categorical variable in the model.

Insect feeding guild was included in the model as a categori-
cal variable and included folivores (n	 insects = 803),	 gall-	formers	
(n = 135),	 reproductive-	feeders	 (n = 11),	 sap-	feeders	 (n = 411),	 and	
wood- borers (including bark-  and phloem- feeders, n = 232).	Insects	
found to belong to multiple guilds were consolidated to a single 
guild, most common to the species.

2.3  |  Model and predictions

In	total,	our	model	was	trained	on	the	occurrence	of	1592	 insects	
on 68 native hosts. The insect–host association model was fit as 
a mixed effect logistic regression model using the lme4 package 
(Bates et al., 2015), and was fit as:

where α is the intercept, and β are beta coefficients, extracted with 
the	equatiomatic	package.	The	model	was	trained	on	native	hosts	and	
native insect associations and non- associations (n = 108,256	total	 in-
sect–host pairs), and tested on non- native hosts and native insects 
(n = 27,064).	 Non-	native	 trees	 included	 17	 species	 with	 native	 geo-
graphic ranges outside of Europe, including Abies grandis, Ailanthus al-
tissima, Eucalyptus globulus, Juglans nigra, Juglans regia, Larix kaempferi, 
Picea sitchensis, Pinus contorta, Pinus radiata, Pinus strobus, Prunus cer-
asifera, Prunus mahaleb, Prunus serotina, Pseudotsuga menziesii, Quercus 
palustris, Quercus rubra, and Robinia pseudoacacia.

All	 continuous	 variables	 were	 log-	transformed	 and	 scaled	 be-
fore inclusion in the model (mean of zero, standard deviation of 1.0). 
The maximum correlation between any two continuous variables 
used in model training was between host geographic range size and 
sampling effort (Pearson's correlation coefficient, r = .71),	 all	 other	
pairs of variables were weakly correlated (all |r| < .3).	 In	addition	to	
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the predictor variables described above, each insect species was 
allowed	to	have	a	random	intercept.	Model	performance	was	mea-
sured using R2 (estimated with the sjPlot package; Lüdecke, 2023), 
area	under	the	receiver	operating	curve	(AUC)	(using	the	pROC	pack-
age; Robin et al., 2011), total accuracy, true- positive rate (TPR), and 
true-	negative	 rates	 (TNR).	Here,	 the	 true-	positive	 rate	 represents	
the proportion of insect hosts that are accurately predicted, while 
the true- negative rate represents the proportion of non- hosts that 
are accurately predicted. These metrics were calculated across the 
entire dataset, for training and testing sets separately, as well as for 
each host and insect separately, and for insect guilds in aggregate. 
For	performance	metrics	that	required	a	binary	response,	the	con-
tinuous prediction was thresholded using the value that maximized 
AUC.	 To	 better	 understand	 which	 insect–host	 associations	 were	
best predicted, we tested for phylogenetic signal (Pagel's lambda) 
in	host	TPR	and	TNR,	and	their	relation	to	host	evolutionary	distinc-
tiveness. The full dataset used in model fitting is available at https://
doi.org/10.5061/dryad.3n5tb2rrx 2024.

3  |  RESULTS

In general, the model had good predictive ability (Table 2, Tables S2 
and S3). The pseudo R2 was .50, when considering only the fixed ef-
fects,	but	was	.70	when	the	random	effects	of	insect	species	were	
included. Insect–host associations were most strongly predicted by 
the mean evolutionary distance between trees and known hosts of 
the insect—consistent with most insects being phylogenetically re-
stricted in their host breadth (Tables 1 and 2, Figure 1, Figure S1). The 
variance of distances was also important, and had a positive effect 
on associations, indicating that an association was more likely when 
hosts were both closely related to some hosts and distantly related 
to other hosts (Figure 1), potentially reflecting the wide host breadth 
of generalist herbivores, or a tendency of insect hosts to be clus-
tered	on	multiple	different	parts	of	the	host	phylogeny.	Geographic	
range size and sampling effort were both positively associated with 
the probability of insect associations, consistent with more wide-
spread and intensively studied tree species having a greater possi-
bility of insect associations (Table 1). Insect feeding guild was also 
important, with galling insects, in particular, tending to have fewer 
associations than insects in other guilds (Figure 1).

Each	accuracy	metric	(AUC,	accuracy,	TPR,	TNR)	was	high	for	the	
training data (all >0.85, native tree hosts) and was only slightly lower 
for the testing data (all >0.75,	non-	native	tree	hosts).	TPR	and	TNR	
were	similar	for	native	hosts	(0.87	and	0.86,	respectively)	while	TPR	
was	 lower	 than	 TNR	 for	 non-	native	 hosts	 (0.76	 and	 0.91,	 respec-
tively)—indicating the model had a slightly reduced ability to predict 
associations than non- associations for non- native hosts.

Predictive ability also tended to be high for individual host spe-
cies, but there was considerable variability (Figure 2). On average 
(±SD),	TPR	and	TNR	were	0.77	(±0.24)	and	0.87	(±0.13), respectively, 
across host species, with ranges of 0–1.0 and 0.41–1.0. Species with 
numerous close relatives (e.g., Quercus, Pinus) often had high TPR, 

likely benefiting from a strong phylogenetic signal in many insects' 
host	breadths.	Consistent	with	this	finding,	both	TPR	and	TNR	had	
phylogenetic signals, indicating that closely related species tended 
to	have	similar	rates.	Non-	pine	conifers	tended	to	have	among	the	
highest	TNR,	in	particular,	Abies and Juniperus.

Values	of	TPR	and	TNR	were	also	often	high	for	individual	insect	
species, but there was substantial variability (Figure 3). In aggregate, 

TA B L E  1 Parameter	estimates	from	the	mixed	model	predicting	
insect–tree associations.

Predictors Log- odds CI p

(Intercept) −4.84 −4.98	to	−4.71 <.001

Mean	evol.	distance −1.88 −1.92	to	−1.84 <.001

Variance	evol.	
distances

0.07 0.03 to 0.11 <.001

Guild	[gall] −2.11 −2.45	to	−1.78 <.001

Guild	[reproductive] −0.54 −1.55	to	0.47 .294

Guild	[sap] −0.28 −0.48	to	−0.08 .006

Guild	[wood] 0.04 −0.21	to	0.28 .763

Host group 
[gymnosperms]

−0.22 −0.37	to	−0.06 .007

Citations 0.39 0.33 to 0.44 <.001

Range size 0.74 0.67	to	0.81 <.001

Evol. dist. to nearest 
native tree

0.18 0.14 to 0.22 <.001

Random effects

σ2 3.29

τ00 insectSpecies 2.27

ICC .41

NinsectSpecies 1592

Observations 108,256

Marginal	R2/
Conditional R2

.497/.702

Note: In total 108,256 native insect–native tree associations and 
non- associations were used to train the model, and 22,288 native 
insect–non- native tree associations/non- associations were used to test 
the model. Table summary was generated with the R package sjPlot 
(Lüdecke, 2023).	Marginal	R2 accounts only for the fixed effects in the 
model, while the conditional R2 accounts for fixed and random effects.
Bold values indicate a p-value less than 0.05.

TA B L E  2 Validation	statistics	from	a	mixed	model	predicting	
insect–tree associations. The model was trained on native insect–
native tree associations and non- associations and was tested on 
native insect–non- native tree associations/non- associations.

Statistic

Training data Testing data

Native host–insect
Novel 
host–insect

AUC 0.95 0.93

Total accuracy 0.86 0.91

True- positive rate 0.87 0.76

True- negative rate 0.86 0.91
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galling	 insects	had	 the	highest	TPR	and	TNR,	 likely	due	 in	part	 to	
their small, phylogenetically circumscribed host breadths and in-
timate association with host physiology. TPR was lowest among 
insects	 that	 feed	on	sap	 (0.85),	and	TNR	was	 lowest	among	wood	
borers (0.84), but both rates were high nonetheless.

4  |  DISCUSSION

Our work demonstrates that insect–host associations can be accu-
rately predicted using a select number of relatively easily attainable 
insect	and	host	traits.	Like	other	studies	(Gilbert	et	al.,	2012; Pearse 
&	Altermatt,	2013), we found that host phylogeny plays an impor-
tant role in determining which insects were documented with which 
hosts, but we also found that host geographic range size, sampling, 
and insect feeding guild each play important roles. This work has 
important implications for identifying future, and currently undoc-
umented, insect–host associations that may damage hosts in their 
non- native ranges, and have potential to threaten native host popu-
lations if introduced abroad.

4.1  |  Phylogeny

Our results support previous findings that host phylogeny plays a 
crucial	role	in	defining	insect	host	breadths	(e.g.,	Gilbert	et	al.,	2012; 
Ness	et	al.,	2011;	Pearse	&	Altermatt,	2013), and implies that non- 
native trees distantly related to the native tree community are less 

likely to be attacked by insect enemies—consistent with a greater op-
portunity	for	enemy	release.	Many	non-	native	plants	will	accumulate	
insect enemies over time (Branco et al., 2015; Brändle et al., 2008), 
and for agricultural and forestry species, the period of enemy re-
lease is often seen as an advantage to non- native plants, as it may 
translate to increased growth and vigor, and less need for costly 
management to control insect enemies (Pearse & Rosenheim, 2020). 
The success of evolutionarily distinct species is readily seen in the 
wide planting (and success) of Pinus and Eucalyptus around the globe 
outside	their	native	ranges	 (Wingfield	et	al.,	2015), and taxonomi-
cally	distinct	non-	native	plants	generally	(Pearse	&	Altermatt,	2013).

Despite the overall importance of host phylogeny in predicting 
host–insect associations, our analyses revealed considerable variabil-
ity	in	individual	insects'	responses	to	phylogenetic	distances.	While	
many insects showed a strong response to host phylogeny, others 
appeared	 largely	 unaffected	by	phylogeny.	Numerous	 insects	 (e.g.,	
Aphis fabae, Coccus hesperidum, etc.), for instance, were recorded to 
utilize both gymnosperms and angiosperms, which diverged ~300 mil-
lion years ago, and differ greatly in numerous functional traits (Stahl 
et al., 2013; Yang et al., 2022). Curiously, the insects recorded on an-
giosperms and gymnosperms, and other distantly related taxa, were 
not exclusively generalists (i.e., those that utilize many host species). 
Indeed, numerous insects were found to utilize only a few, distantly 
related species. The use of distantly related species, when congeners 
are available, is difficult to explain as one would expect insects to 
preferentially utilize trees similar to the hosts they are adapted to. 
This inconsistency, however, highlights the complexity of insect–host 
associations, and may be indicative of the importance of other factors 

F I G U R E  1 Marginal	effects	of	predictors	used	in	a	mixed	effect	model	of	host–insect	associations.	Continuous	variables	were	scaled	and	
centered before inclusion in the model. The y- axes show the predicted probability of host–insect association, indicated by p().	Note	each	
panel	has	a	unique	y- axis to ensure the shape and directionality of the variables was visible. The large y- axis range for phylogenetic distance 
indicates	its	prominence	in	the	model.	Shaded	areas	in	(a)–(e)	and	whiskers	in	(f)	and	(g)	represent	the	95%	confidence	interval.	Each	of	
the	continuous	variables	was	significantly	associated	with	insect–host	associations.	For	insect	guilds,	galling	and	sap-	feeding	insects	were	
significantly different from the reference guild (folivores), and gymnosperms were significantly different from angiosperms. See also Table 1.
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on potential associations, including host geographic co- occurrence, 
insect feeding behavior and/or host shifts following non- native plant 
introduction	(Agosta,	2006;	Forister	et	al.,	2015).

4.2  |  Geography and sampling

While	 several	 other	 predictive	 frameworks	 have	 been	 developed	
centered around using host phylogeny to predict insect (and path-
ogen)	associations	 (Gilbert	et	al.,	2012;	Pearse	&	Altermatt,	2013), 
our results show that other factors are also important in predicting 
novel	insect	associations.	For	instance,	we	found	that	the	size	of	the	
host geographic range had a strong positive effect on identifying 
insect associations. The tendency for tree species with large geo-
graphic ranges to be associated with more species- rich communities 
of insect herbivores has been well documented and is considered 
to result in part from greater colonization probabilities, much like in 
island biogeography where large islands host more species- rich com-
munities (Brändle & Brandl, 2001; Southwood & Kennedy, 1983). 
Large- ranged host species not only extend over larger spatial ex-
tents, but also may occur over larger climatic gradients and may 
have higher local abundance (Sporbert et al., 2020), each of which 
offers greater opportunity for insect and host distributions to over-
lap. The tendency for large- ranged hosts to have a greater number 
of pest associations has been found in a variety of plant systems 
(Branco et al., 2015; Clay, 1995;	Miller,	2012), and could provide an 
explanation for why non- native hosts accumulate pests over time. 
As	non-	native	plants	spread	(or	are	introduced)	to	new	regions	and	
encounter the local pest community, pre- adapted pests may shift 

to the novel host, especially if the host lacks any evolved resist-
ance.	 Although	 native	 hosts	 are	 frequently	 preferred	 over	 novel,	
non- native hosts, novel hosts are rarely “ecological traps” (Yoon & 
Read, 2016)—facilitating host breadth expansion and insect accumu-
lation on novel hosts.

Sampling, as approximated by the number of citations attrib-
utable to host species, also played an important role on whether 
insects were observed as associations or non- associations. This 
sampling effect suggests that some of the tree species that are 
not recorded as hosts in our data may in fact be hosts of certain 
insect species but those relationships have not yet been observed. 
This pattern is reflected in the false- positive rate generated from 
the model predictions—that is, the insect–host pairs that the model 
predicts as associations, but are not actually observed in our data. 
These predictions may not necessarily be incorrect, as they may rep-
resent associations that are simply undocumented, or have not yet 
had the chance to occur (e.g., because host and insect geographic 
ranges	do	not	overlap).	Not	surprisingly,	several	of	the	host	species	
with the highest false- positive rate are large ranged, well studied, 
and have multiple closely related species in Europe (e.g., Fagus syl-
vatica, Quercus robur), each of which increase the predicted proba-
bility	of	insect	associations.	Although	more	work	would	need	to	be	
done to establish whether these associations could occur in natural 
settings, they nevertheless suggest that these species may be target 
species for detecting future host jumps, and may be of particular 
concern as insects and hosts shift their ranges with contemporary 
and future climate change.

Perhaps more worrisome than the false positives were the ob-
served host associations that were not predicted by the model. 

F I G U R E  2 True-	positive	rate	(TPR)	and	true-	negative	rate	(TNR)	rates	for	85	host	tree	species	included	in	our	model.	TPR	indicates	the	
proportion	of	insect	associations	that	were	accurately	predicted	by	the	model,	and	TNR	indicates	the	proportion	of	non-	associations	that	
were	accurately	predicted.	For	both	TPR	and	TNR,	higher	values	indicate	greater	predictive	accuracy.	Native	species	(n = 68)	were	used	to	
train the model, while non- native species (boldface, n = 17)	were	used	to	test	the	model.	Visualization	was	made	with	ggtree	(Yu	et	al.,	2017).

F I G U R E  3 True-	positive	rate	(TPR)	
and	true-	negative	rate	(TNR)	of	1592	
insect species used in our model. TPR 
indicates the proportion of hosts that 
were accurately predicted by the model, 
and	TNR	indicates	the	proportion	of	
non- hosts that were accurately predicted. 
Diamond symbols represent the aggregate 
TPR	and	TNR	of	five	feeding	guilds.	For	
both	TPR	and	TNR,	higher	values	indicate	
greater predictive accuracy.
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Not	 surprisingly,	 the	 false-	negative	 rate	 tended	 to	 be	highest	 in	
monotypic taxa, likely due to a combination of the importance of 
phylogeny in the model but the lack of close relatives. Consistent 
with Darwin's naturalization conundrum, non- native species 
were overrepresented among the monotypic taxa in Europe (e.g., 
R. pseudoacacia, A. altissima, E. globulus), although it is worth not-
ing there are also numerous native monospecific genera included 
in our dataset (e.g., Celtis australis, Euonymus europaeus, Aesculus 
hippocastanum). The influence of phylogeny likely was not as im-
portant for species in monospecific genera, as they have no close 
relatives. These species likely benefited from the inclusion of geo-
graphic range size, insect feeding guild, and sampling in the model, 
but	 they	perhaps	 require	 the	most	attention	 to	 fully	understand	
their host associations.

4.3  |  Implications

Predicting native and novel insect associations has important implica-
tions for managing pests and predicting and planning for future insect 
invasions.	While	insects	utilizing	non-	native	plants	do	not	present	an	in-
herent risk to native populations, they can nevertheless indicate a threat 
if the insects are introduced to the native range. In one well- known ex-
ample,	retrospective	analyses	revealed	that	American	ash	trees	planted	
in	 China	were	 susceptible	 to	 emerald	 ash	 borer	 (EAB),	 and	 this	 was	
known	decades	before	EAB's	introduction	to	the	United	States	(Dang	
et al., 2022).	While	EAB	is	one	high-	profile	example,	the	propensity	for	
tree pests to first attack trees outside their native ranges is not neces-
sarily	unique.	In	a	global	analysis,	Gougherty	and	Davies	(2022) showed 
that approximately ~23%	of	tree	pests	were	known	to	occur	only	out-
side the native ranges of their tree host species—indicating many re-
gions have native hosts for (potentially) hundreds of additional pests 
that are not yet known to occur. Identifying and predicting the actual 
insect–host associations before the associations can occur in the na-
tive range of the host can be an important tool to guide risk analyses to 
inform prevention and surveillance activities. Such predictions could be 
accomplished in the future through a combination of modeling efforts, 
like that described here, as well as by experimental sentinel plantings 
(Eschen et al., 2019; Raffa et al., 2023).

Predicting host–insect associations can also be useful for man-
aging non- native plants, whether seeking to reduce their ecologi-
cal impacts or facilitate their growth. Using our approach to predict 
potential novel host associations, for instance, could be useful for 
identifying potential candidate agents for use in biocontrol and iden-
tifying which, and how many, non- target plants may be at risk from 
spillover.	While	the	effects	of	biocontrol	agents	on	non-	target	plants	
have historically been small (Suckling & Sforza, 2014), predicting host 
associations could potentially help guide experimentation to ensure 
native plant communities are not at risk from biocontrol agents. On 
the other hand, predicting host–insect associations could also help 
guide where non- native plants, cultivated for agriculture or for-
estry, may best be planted to encourage enemy release and prevent 
pest damage. Phylogenetically distinct plants may need the least 

intervention against herbivore damage (Pearse & Rosenheim, 2020), 
especially if grown in relatively small areas, as opposed to expansive 
monoculture. Considering the regional plant and pest communities, 
thus	can	help	to	reduce	the	risk	of	unintended	consequences	when	
plants are introduced into new areas.
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