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A B S T R A C T   

Endophytic bacteria, living inside plants, are competent plant colonizers, capable of enhancing 
immune responses in plants and establishing a symbiotic relationship with them. Endophytic 
bacteria are able to control phytopathogenic fungi while exhibiting plant growth-promoting ac-
tivity. Here, we discussed the mechanisms of phytopathogenic fungi control and plant growth- 
promoting actions discovered in some major groups of beneficial endophytic bacteria such as 
Bacillus, Paenibacillus, and Pseudomonas. Most of the studied strains in these genera were isolated 
from the rhizosphere and soils, and a more extensive study of these endophytic bacteria is needed. 
It is essential to understand the underlying biocontrol and plant growth-promoting mechanisms 
and to develop an effective screening approach for selecting potential endophytic bacteria for 
various applications. We have suggested a screening strategy to identify potentially useful 
endophytic bacteria based on mechanistic phenomena. The discovery of endophytic bacteria with 
useful biocontrol and plant growth-promoting characteristics is essential for developing sus-
tainable agriculture.   

1. Introduction 

It has been estimated that 60 % more food will need to be produced by 2050 to feed the population of more than 10 billion people 
worldwide [1,2]. The production increase must be maintained despite the loss caused by crop pests and diseases to reach the food 
demand [2]. The mean global yield losses from crop diseases and pests were approximately 30.3 % in rice, 21.5 % in wheat, 22.6 % in 
maize, 21.4 % in soybean, and 17.2 % in potato [2]. Plant diseases cause not only significant crop yield losses but also reductions in the 
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quality of crops, which impacts human health [3]. 
Crop plants suffer from various diseases due to infection by phytopathogens. Phytopathogenic fungal infections cause the vast 

majority of diseases reported in plants. Cereal crops, such as rice, wheat, and maize, are vital sources of human foods, while crops such 
as tomato, banana, and kiwifruit are key sources of human nutrition. Various fungal pathogens very often colonize these crops. 
Magnaporthe oryzae, the rice blast pathogen, may cause a 10–35 % loss of rice [4]. Fusarium graminearum is a devastating fungus that 
may give rise to head blight, foot rot, and root rot [5] in wheat. This fungus does not only affect yield loss. Still, it may also adulterate 
wheat grain by producing deoxynivalenol and zearalenone as mycotoxins, which are hazardous to the health of humans and animals 
[6]. In maize cultivation, fungi are considered critical pathogens, with Fusarium spp. being causal agents for infecting roots, stalks, 
ears, and kernels [7]. In addition to yield loss, Fusarium can reduce grain quality by releasing fumonisin or deoxynivalenol [8,9]. 
Rhizoctonia solani may cause diseases in more than 200 species of various plants, including rice, tobacco, and horticultural crops such 
as tomato, brinjal, potato, pepper, etc. [10]. Botrytis cinerea can cause grey mold in various fruits. It can infect multiple fruits, such as 
grapes, strawberry, raspberry, blackberry, kiwifruit, apple, and pear [11]. It also causes diseases in cabbage, lettuce, broccoli, beans, 
and carrots [11]. Sclerotinia sclerotiorum is a serious cosmopolitan pathogen that causes soft rot or stem rot by infecting a broad range of 
plants, including sunflower, rapeseed, soybean, lentil, chickpea, peanut, onion, tulip, and various vegetables [12]. 

Plant disease control primarily depends on chemical pesticide application to manage plant pathogens or vectors of plant pathogens. 
However, the applications of pesticides may result in hazardous effects on the ecosystem and human lives. So, researchers and pro-
ducers are searching for eco-friendly disease control techniques. As an alternative tool, plant growth-promoting bacteria (PGPB) can be 
used to biocontrol plant pathogens [13]. PGPB may inhabit the rhizosphere, episphere, and inside plants [14]. Endophytes inhabit 
plant tissues without causing disease [15], and some endophytes are also PGPB and thus are considered plant growth-promoting 
endophytic bacteria (PGPEB) [14]. 

Endophytes are getting more attention for applications as biocontrol agents and plant growth promoters [16,17]. Endophytic 
bacteria can be used to control pre- and post-harvest plant pathogens [18]. These bacteria can restrict pathogens by occupying plant 
tissue space, producing lytic enzymes and secondary metabolites, and developing plant defenses [18,19]. 

Strains from the bacterial genera of Bacillus, Paenibacillus, Pseudomonas, Burkholderia, Enterobacter, Klebsiella, and Arthrobacter 
strains have been reported for their endophytic nature and tested for biocontrol and plant growth-promotion [20–25]. Bacillus can 
produce endospores, thick-walled survival structures allowing microorganisms to bypass stress and adverse environmental situations. 
These bacteria have a wide spectrum of biocontrol potential, can enhance plant growth, and trigger plant defenses [26,27]. Paeni-
bacillus can also produce endospores, live in adverse environments, and assist in controlling plant pathogens through antimicrobial 

Fig. 1. The schematic representation of endophytic bacterial effects on plant fitness by promoting plant growth and biocontrol of plant pathogens.  
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production or triggering induced systemic resistance [28]. Pseudomonas species are versatile metabolically and can adapt to various 
environmental conditions. Members of Pseudomonas can also restrict phytopathogens and enhance plant growth [22,29]. 

Recently, many governments around the world have placed various strategies to reduce the usage of agri-chemicals for pest control. 
In addition, the selection of biocontrol agents and the study of their metabolic and genetic profiles can be extremely important for the 
scientific community and stakeholders involved in food supply chains. In this review, we discussed the various mechanisms of 
phytopathogenic fungi control and growth-promoting activity by endophytic bacteria, emphasizing the species belonging to Bacillus, 
Paenibacillus, and Pseudomonas genera. In addition, we proposed a rapid potential screening approach to identify effective biocontrol 
and plant-growth-promoting agents. 

2. Biocontrol mechanisms of endophytic bacteria 

Endophytic bacteria may inhibit plant pathogens as these bacteria can produce various antimicrobial compounds and enzymes to 
control fungal growth. Endophytic bacteria may also stimulate defense systems through the induction of plant systemic resistance [30, 
[31]. The colonization of useful bacteria and their subsequent competition for nutrients and space can decrease the incidence of plant 
diseases [18,32]. A list of generalized biocontrol mechanisms is included in Fig. 1. Endophytic bacteria with antifungal and plant 
growth promotion reported in various studies are presented in Table 1. The biocontrol mechanisms of these bacteria can be described 
as direct and indirect mechanisms. 

2.1. Direct biocontrol mechanisms of endophytic bacteria 

2.1.1. Antibiosis 
Antibiosis is a process by which bacteria can restrict other microbes by producing antimicrobial compounds. Endophytic bacteria 

inhibit the growth of phytopathogenic microorganisms by synthesizing secondary metabolites with antifungal and antibacterial ac-
tivities [47]. Secondary metabolites, including surfactin, iturin, fengycin, bacillaene, subtilosin A, fusaricidin, polymyxin, 2,4-diace-
tylephloroglucinol (DAPG), phenazine-1-carboxylic acid, 2-hydroxyphenazine, pyrrolnitrine, viscosinamide, and Orfamide are well 
known for their antimicrobial activity [18,48–52]. For example, B. subtilis produces fengycin and inhibits B. cinerea in apple fruits [18], 
P. fluorescence produces DAPG and inhibits Thielaviopsis basicola in tobacco [18], and P. polymyxa produces fusaricidins and inhibits 
Fusarium, Rhizoctonia, Sclerotinia, etc. [52]. 

2.1.2. Hydrolytic enzymes 
Hydrolytic enzymes of endophytic bacteria may break down different polymeric components, including cellulose, chitin, proteins, 

and lipids [53]. These enzymes can degrade fungal cell walls [18]. The widely reported enzymes for biocontrol include protease, 
cellulase, β-1,3-glucanase, and chitinase. These enzymes can damage the cell walls of pathogens [54]. For instance, the extra-cellular 
chitinase of Pseudomonas aeruginosa was reported to be able to control Xanthomonas campestris, the causal agent of black rot disease in 
cruciferous crops [55]. The chitinase from B. subtilis, when incorporated into a PDA plate, showed a 42.3 % reduction in R. solani 

Table 1 
List of endophytic bacteria with biocontrol activity.  

Strain Origin Test fungal pathogens Inhibition mechanisms References 

Bacillus 
B. subtilis CB2 Wheat seeds F. graminearum Iturin [33] 
B. subtilis SG_JW.03 Maize seeds F. moniliforme Fengycin 

Iturin 
[34] 

B. amyloliquefaciens 
YN201732 

Tobacco seeds Erysiphe cichoracearum ISR [35] 

B. velezensis QSE-21 Tomato stem B. cinerea ISR [36] 
B. velezensis DMW1 Potato tubers R. solani 

S. sclerotiorum 
Fengycin 
Iturin 

[37] 

B. siamensis WB1 Walnut roots C. acutatum Fengycin, Iturin [38] 
B. safensis B21 Sweet olive fruits M. oryzae Iturin [39] 
B. aryabhattai B003 Sweet-grass root B. cinerea ISR [40] 
Paenibacillus 
P. polymyxa SF05 Maize sheath R. solani ISR [41] 
P. polymyxa WLY78 Bamboo roots F. oxysporum f. sp. cucumerium Fusaricidins 

ISR 
[42] 

P. peoriae RP51 Black locust nodule F. graminearum 
R. solani 
M. oryzae 

Fusaricidins [43] 

Paenibacillus sp. UY79 Wild peanut nodule B. cinerea 
F. oxysporum 
R. solani 

Fusaricidins [44] 

Pseudomonas 
P. bijieensis XL17 Rape crown gall B. cinerea DAPG [45] 
P. fluorescens HP72 Bentgrass root R. solani DAPG [46]  
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mycelial growth [56]. 

2.1.3. Volatile compounds 
Endophytic bacteria also release volatile organic compounds (VOCs), which are reported to be able to inhibit phytopathogenic 

fungi, bacteria, and nematodes [57]. Pseudomonas putida, isolated from black pepper root, inhibited Phytopthora capsici, Athelia rolfsii, 
Giberella moniliformis, R. solani, Pythium myriotylum, and Colletotrichum gloeosporioides by its VOCs [58]. The B. subtilis strain DZSY21, 
isolated from Eucommia ulmoides leaves, inhibited Curvularia lunata by producing VOCs, isopentyl acetate, and 2- heptanone [59]. VOCs 
of B. velezensis ZSY-1 strongly suppressed F. oxysporum, Alternaria solani, B. cinerea, Colletotrichum lindemuthianum [60]. 

2.1.4. Siderophores 
Some endophytes, including Bacillus, Paenibacillus, and Pseudomonas, can produce active low molecular weight compounds that can 

chelate iron (Fe), supply it in plant-available form, and deprive pathogens of iron [47]. Siderophores produced by endophytes such as 
hydroxymate, phenolate, catecholate, and pyoverdine have exhibited biocontrol activity [61–63]. For example, Yu et al. [64] reported 
that B. subtilis strain CAS15 inhibited fungal isolates of Colletotrichum, Fusarium, Magnaporthe, Pythium, and Phytopthora through 
bacillibactin (catecholate type siderophores) production. 

2.1.5. Interruption of quorum sensing 
Quorum sensing is a process that regulates activities like crosstalk among the cells, biofilm formation, reproduction, mutualism, 

adaption, and pathogenesis [65]. Some endophytes have been identified as having interrupted phytopathogenic signaling pathways by 
quenching quorum sensing [66]. Rhodococcus corynebacterioides, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia, which 
were isolated from various plants, destroyed quorum-sensing compounds, namely 3-hydroxy palmitic acid methyl ester of 
R. solanacearum, and thus suppress eggplant wilt [67]. 

2.1.6. Competition for nutrients and space 
Endophytic bacteria may also inhibit pathogens by competition for nutrients and space. Lastochkina et al. [68] reported that 

B. subtilis suppressed Phytopthora infestans and F. oxysporum by competing effectively for nutrients and space inside the potato tubers. 

2.2. Indirect biocontrol mechanisms of endophytic bacteria 

The indirect biocontrol mechanism involves the induction of plant defenses associated with microbes. Two kinds of induced de-
fenses have been proposed, namely induced systemic resistance (ISR) and systemic acquired resistance (SAR), based on the hormonal 
implications and the elicitor type [69]. ISR is triggered by rhizobacteria or other non-pathogenic microbes, while pathogenic microbes 
or chemical compounds trigger SAR [70]. ISR is operated by the jasmonic acid (JA) or ethylene (ET) pathways, and SAR is regulated by 
the salicylic acid (SA)-dependent signaling pathways following pathogenesis-related (PRs) proteins gene expression [71–73]. How-
ever, ISR may also depend on both SA and JA/ET signaling processes. The ISR driven by B. cereus strain AR156 depended on SA and 
JA/ET signaling process and NPR1 [74]. Another study showed that endophytic B. subtilis, producing antifungal lipopeptides (fengycin 
and iturin), protected maize from F. moniliforme and induced PR genes (PR-1 and PR-4) in maize [34]. 

Endophytic bacteria-mediated ISR can protect plants from phytopathogens [19,75]. For example, ISR was developed in saffron 
against F. oxysporum by Burkholderia gladioli [25], in grapevine and tomato against B. cinerea [76], and Verticillium dahliae [77] by 
Pseudomonas sp., in oak against Ceratocystis fagacearum by P. putida and P. denitrificans [78], in tomato against F. oxysporum f. sp. 
radicis-lycopersici by P. fluorescens [79], and pea against F. oxysporum f. sp. pisi by B. pumilus [80]. 

3. Biocontrol mechanisms of Bacillus 

The Bacillus genus is ubiquitous and can live in soil, water, and air, on the surface, inside plant and rhizosphere, gastrointestinal 
tracts, and other extreme environments [21,81]. Some Bacillus are used in agriculture for easy industrial production, satisfactory 
biocontrol efficacy, and environmental safety [82–84]. The species of Bacillus species have divergent secondary metabolisms and 
various antagonistic compounds. B. subtilis strains may contain up to 5 % of their whole genome for secondary metabolite synthesis 
[85]. B. amyloliquefaciens FZB42 comprises 8 % of the genome for secondary metabolites synthesis such as polyketides, lipopeptides, 
antimicrobial peptides antimicrobial peptides, siderophores, and bacteriocins [86,87]. 

Previous studies revealed that biosynthetic gene clusters (BGCs) are phylogenetically conserved in the Bacillus genus, and multiple 
species or clade-specific molecules have been discovered [88]. Xia et al. [89] reported that BGCs distribution is related to their 
phylogenetic position based on large-scale Bacillus genome analysis. The BGCs in the cereus clade include non-ribosomally synthesized 

Fig. 2. Biosynthetic gene clusters (BGCs) were identified by antiSMASH version 7.1.0 from whole genome sequences. (A) B. subtilis NCIB 3610 
(NZ_CP094361.1). Fourteen BGCs were found, including surfactin, fengycin, bacilysin, bacillibactin, and T3PKS. B. subtilis NCIB 3610 is a repre-
sentative strain in subtilis clade. (B) P. polymyxa ATCC 842 (NZ_CP024795.1). Twenty-one BGCs, including fusaricidin and polymyxin, were found. 
Paenibacillus polymyxa ATCC 842 is a representative strain in P. polymyxa complex. (C) P. protegens PS1 (NZ_CP081490.1). Seventeen BGCs were 
found, including 2,4-diacetylphloroglucinol (DAPG) and orfamide. Pseudomonas protegens PS1 is a representative strain of the P. corrugata subgroup 
under the P. fluorescens complex. Accession numbers were obtained from NCBI and submitted to antiSMASH on November 26, 2023 (https:// 
antismash.secondarymetabolites) to search the biosynthetic gene clusters [90]. 
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peptides (NRPS), fengycin, bacteriocin, bacillibactin, and petrobactin; thurincin, polyoxypeptin, and zwittermicin were found in some 
genomes of B. thuringiensis and B. cereus [89]. In the subtilis clade, fengycin, surfactin, bacillibactin, bacilysin, and T3PKS are primarily 
present (Fig. 2. A). Each group have specific BGCs like betalactone for B. pumilus, subtilosin and subtilin for B. subtilis, macrolactin and 
difficidin for B. velezensis and B. amyloliquefaciens too. Some genomes of B. velezensis and B. amyloliquefaciens contain plipastatin, 
mersacidin, and plantazolicin, and lichenysin may be produced by B. licheniformis [89]. In the megaterium clade, siderophore, sur-
factin, and T3PKS were found, and some can produce lanthipeptide, paeninodin, or bacteriocins. The major BGCs in the circulans clade 
were identified as T3PKS, and some produce siderophore, lanthipeptide, and bacteriocin [89]. The secondary metabolites of the 
Bacillus genus include NRPS, polyketide and lipopeptides, bacteriocins, and siderophores. NRPS and lipopeptides are a highly het-
erogeneous group consisting of amino acids, amino- or hydroxyl- fatty acids with various hydrocarbon chains, and sometimes these go 
under acylation, glycosylation, and methylation [81]. 

B. subtilis combines many useful features like plant colonization competence, growth-promoting activities, suppression of patho-
gens, and ISR activation [83,91]. The motile nature and biofilm formation are very important for B. subtilis to colonize roots and for 
biocontrol of phytopathogens [92]. Furthermore, phytohormones, lipopeptides, siderophores, and volatile compounds enable 
B. subtilis to promote plant growth and induce the immune system of plants [93]. According to Cawoy et al. [94], some B. subtilis/B. 
amyloliquefaciens strains can inhibit fungal pathogens. Iturins and fengycins are key factors for fungal inhibition [95,96]. The fengycin 
(fen) gene cluster constitutes fenA, fenB, fenC, fenD, and fenE. All five genes are conserved in B. siamensis and B. velezensis, while 
B. amyloliquefaciens has fenA and fenE [97]. 

Fengycin mechanisms involving cell death of the pathogens may be related to interactions with the cell membrane and cell 
permeability modification [98]. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that the 
application of B. subtilis BS155 synthesized fengycin caused damage to M. oryzae hyphae, cytoplasm, plasma membrane, and loss of cell 
membrane integrity, resulting in cell death [98]. Fengycin can be applied to manage rice blast caused by M. grisea [98], barley head 
blight caused by F. graminearum [99], cucurbit powdery mildew caused by Podosphaera fusca [100], grey mold caused by B. cinerea 
[101] and maize disease caused by Rhizomucor variabilis [102], etc. Iturin LPs family includes iturin A, C, D, and E, bacillomycin D and 
F, bacillopeptin, and mycosubtilin [103]. Bacillomycin-D produced by B. velezensis showed antagonism against various pathogens, 
such as Xanthomonas campestris pv. cucurbitae [104], F. graminearum [105], Aspergillus flavus [106], and F. oxysporum f. sp. cucumerinum 
[107]. SEM and TEM examination determined that bacillomycin-D altered the morphology of the cytoplasmic membrane, cell wall, 
conidia, and hyphae of F. graminearum. Bacillomycin-D of B. velezensis induced the expression of thioredoxin and glutathione reductase 
genes of F. graminearum, which are involved in reactive oxygen species (ROS) synthesis. The genes encoding catalase and peroxidase 
enzymes were downregulated when F. graminearum was treated with bacillomycin-D. The bacillomycin-D-induced ROS was associ-
ated with F. graminearum cell death [105]. Bacillus strains may produce huge amounts of surfactins but have less fungal inhibitory 
action. It has antibiotic actions [107,108], with rare antifungal activity [94]. Gu et al. [92] reported that B. subtilis produced subtilosin 
A and bacilysin and controlled Acidovorax citrulli, causing fruit blotch. Agarwal et al. [109] found that B. pumilus can inhibit R. solani 
and F. oxysporum by chitinase and surfactin production. An illustration of Bacillus lipopeptides like fengycin and iturin-driven anti-
fungal mechanisms of Bacillus is shown in Fig. 3. 

4. Biocontrol mechanisms of Paenibacillus 

Paenibacillus is well recognized for its secondary metabolites, including nonribosomal lipopeptides, polyketides, lassopeptides, 

Fig. 3. A generalized schematic representation of antifungal mechanisms of lipopeptides synthesized by Bacillus.  
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bacteriocins, and lantibiotics, which are valuable in medicine and agrobiotechnology [52,110]. The most found bioactive compounds 
in Paenibacillus are lipopeptides with diverse linear and cyclic structures with peptide chains containing 6 to 13 amino acids and 
variable fatty acid chains [52]. These lipopeptides include fusaricidins and LiF-antibiotics [111,112], paenilipoheptins [113], octa-
peptins [114,115], polypeptins [114], pelgipeptins (cyclic lipononapeptides, β-hydroxy fatty acid) [116], polymyxins, tridecapeptins 
[114] and paenibacterins [117]. P. polymyxa bacteria are potent plant growth-promoter colonizing rhizoplane [118] and can also live 
as endophytes inside the plant [20]. These strains can synthesize four lipopeptides: polymyxins, fusaricidins, paenilipoheptins, and 
tridecaptins. All of these are comprised of various structural homologs. In specifics, fusaricidins are an uncommon complexity of 
isoforms, resulting in a broad range of parallel substances with strong antifungal activities. Fusaricidins and polymyxins biosynthesis is 
accomplished non-ribosomally at multifunctional protein templates [52,119]. Most P. polymyxa complex members possess the 
biosynthetic gene clusters of fusaricidins and polymyxin (Fig. 2. B). 

Fusaricidin synthesis is controlled by the fusaricidin biosynthetic (fus) gene cluster. The cluster contains eight genes in the order of 
fusG, fusF, fusE, fusD, fusC, fusB, fusA, and fusTE; mutation analysis revealed that genes fusG, fusF, fusE, fusD, fusC, fusB, and fusA except 
fusTE were all responsible for the antifungal actions [42]. Among the eight genes, fusA is needed for the synthesis of cyclic polypeptide 
moiety, and the fusG, fusF, fusE, fusD, fusC, and fusB are essential for the synthesis of lipid moiety of fusaricidins. fusG, fusF, fusE, fusD, 
fusC, fusB, and fusA are arranged independently in a single operon, and its promoter transcribed fusTE [42]. The fusA gene contains 
modules of six amino acids activation and condensation to form a complete fusaricidin peptide chain [120]. 

After discovering fusaricidins [121], other researchers conducted further detailed studies [122,123]. Fusaricidins are great 
broad-spectrum antifungal compounds against a range of phytopathogenic fungi. For example, Li and Chen [42] reported that 
fusaricidin produced by P. polymyxa WLY78 inhibited the fungal development of F. oxysporum f. sp. cucumerinum causal agent of 
cucumber wilt. Its fusaricidin inhibited spore development and damaged F. oxysporum f. sp. cucumerinum hyphae. It also elicited the 
plant’s systemic resistance against fungal pathogens. Beatty and Jensen [124] observed that P. polymyxa PKB1 produced fusaricidin, 
which inhibited the Leptosphaeria maculans, a fungus of canola that causes blackleg disease. Mousa et al. [125] showed that fusaricidin 
produced by endophytic Paenibacillus inhibited F. graminearum, a causal agent of gibberella ear rot in maize. In a recent study, RNA-seq 
results revealed that fusaricidins producing P. polymyxa AF01 arrested some of the transcription as well as translation, hampered the 
structural dynamics of RNA and DNA, interrupted energy production and or conversion and transduction of signals, caused ROS 
accumulation, ultimately inhibited the biosynthesis of cell wall, altered membrane permeability and restricted protein biosynthesis 
[126]. A proposed mode of actions of fusaricidins has been illustrated based upon previous studies (Fig. 4). 

5. Biocontrol mechanisms of Pseudomonas 

The Pseudomonas genus consists of about 428 species (https://www.ncbi.nlm.nih.gov/genome/?term=pseudomonas, accessed on 
March 23, 2024) occurring in diverse habitat or niches including soils, water, animal guts, and plant tissues [127]. Many Pseudomonas 

Fig. 4. Schematic representation of possible mechanisms of fusaricidins, most commonly produced by the members of the P. polymyxa complex.  
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species were isolated and characterized as PGPB for their useful functions to plants [128]. Many Pseudomonas species are associated 
with plants belonging to the P. fluorescens lineage, and they phylogenetically fall into five groups such as P. fluorescens, P. putida, 
P. syringae, P. lutea, and P. asplenii [129]. Among these, some are useful for biocontrol or growth promotion, especially the species 
under the P. fluorescens group, and some others show plant pathogenicity, mostly under the P. syringae or P. asplenii groups [130]. The 
plant-beneficial Pseudomonas exhibits plant benefits in various ways: direct pathogens inhibition, plant resistance development, effects 
on plant growth, utilization of minerals, and environmental stress tolerance [131]. 

Non-ribosomally synthesized polyketides and cyclic lipopeptides are major secondary metabolites with antimicrobial activity 
synthesized by PGPB Pseudomonas [132,133]. P. protegens strain Pf-5, P. kilonensis strain F113, and P. fluorescens strains SBW25 and 
2P24 produced 2,4-diacetylphloroglucinol (DAPG), Orfamide, viscosin, phenazines, pyrrolnitrin, pyoluteorin, and amphisin showing 
direct phytopathogenic inhibition [134,135]. The cyclic lipopeptides may contribute to biofilm formation, swarming motility, 
pathogen virulence, and antifungal, antibacterial, anti-oomycete, antiviral, insecticidal, and anti-carcinogenic attributes [132,136]. 
The DAPG is a widely studied secondary metabolite with antibacterial, antifungal, antiviral, and antihelminthic properties [137]. 
Some strains of P. protegens and P. corrugata subgroups under the P. fluorescens complex comprise the DAPG biosynthetic gene cluster 
[135]. The biosynthetic gene clusters of a P. protegens strain are given here (Fig. 2. C). The phl gene cluster controls the DAPG pro-
duction and consists of phlACBDE operon associated with phlF, phlG, phlH, and phlI genes [138,139]. The phlD is essential for mon-
oacetylphloroglucinol (MAPG) synthesis, whereas phlA, phlB, and phlC are associated with transforming MAPG to DAPG [138]. 

Kwak et al. [140] discovered the action mechanisms of DAPG by using a mutant library of Saccharomyces cerevisiae, and they 
identified 231 mutants that were DAPG sensitive. The selected mutants were subjected to chemical, biochemical, and genetic analyses, 
and they reported three prime physiological activities relevant to DAPG sensitivity: membrane permeability, ROS regulation, and 
homeostasis of cells. According to Stepanov et al. [141], the antifungal actions of DAPG include damaging cellular permeability, 
malfunctioning of H + ATPase, and disturbance of mitochondrial respiration. The primary adverse effects of DAPG are respiration 
intervention and ATP synthesis, leading to growth inhibition [142]. Ali et al. [45] observed a DAPG-producing strain, P. bijieensis XL17, 
belongs to the P. corrugata subgroup, has damaged cell membrane and cytoplasm, causing cell wall leakage, and tends to lose cell 
organelles. An illustration of the probable fungal inhibition mechanism of DAPG is given below (Fig. 5). 

In addition to secondary metabolite-driven antagonism against pathogens, biocontrol control of Pseudomonas is also connected to 
ISR and siderophore-mediated iron competition [143]. P. simiae strain WCS417, including other strains, showed colonization 
competence in plant roots and triggered ISR, resulting in higher protection against plant pathogens [143]. The Type VI secretion 
system (T6SS) in Pseudomonas spp. is important for its biocontrol activity. The T6SS is a syringe-like structure resembling a phage tail 
capable of secreting effector proteins into targeted prokaryotic and eukaryotic cells [144,145]. This system has been recognized as a 
powerful antifungal weapon, and fungal-specific effector proteins, Tfe1 and Tfe2, have been identified. These effector proteins act 
through specific mechanisms in various fungal species by causing cell death. Tef1 causes the depolarization of the plasma membrane, 
and Tef2 interrupts nutrient uptake and induces autophagy [146,147]. 

Fig. 5. An illustration of possible antifungal mechanisms of DAPG.  
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6. Endophytic bacteria in plant growth promotion 

The PGPB includes free-living bacteria that may establish symbiosis with plants (e.g., Rhizobia spp.), endophytic bacteria in plant 
tissues, and cyanobacteria [17,31,148]. Despite the differences within different groups, all these bacteria utilize similar mechanisms. 
These bacteria contain some plant-growth promoting (PGP) traits. PGPB enhances plant growth by acquiring nutrients or phyto-
hormone modulation or inhibiting various plant pathogens [83,149] (Fig. 1). Some endophytic bacteria bearing plant 
growth-promoting attributes are listed in Table 2. 

6.1. Nutrient acquisition 

Nutrient or resource acquisition is the best-studied phenomenon of PGPB by which bacteria can provide nutrient resources (ni-
trogen, iron, phosphorus, etc.) in available form to plants [32,161,162]. Some endophytic bacteria can biologically fixed atmospheric 
nitrogen to the available state for utilization by plants using nitrogenase [163]. Nitrogen-fixing bacteria, such as Azospirillum brasilense 
and Azoarcus sp. BH72, Burkholderia spp., Herbaspirillum seropedicae, and Gluconacetobacter diazotrophicus increased plant growth by N2 
fixing in controlled environments [164]. 

Endophytic bacteria may solubilize fixed phosphates and become available to plants [161,162,165]. These endophytic bacteria 

Table 2 
List of plant growth-promoting endophytic bacteria.  

Strain Origin Test plants PGP traits References 

Bacillus 
B. subtilis 2S Maize stem Maize IAA 

Siderophore 
[21] 

B. subtilis 135 Honeysuckle root Wheat IAA 
Siderophore 

[150] 

B. cereus EPP5 Pearl millet stem Pearl millet IAA 
Siderophore 
Phosphate solubilization 
Potassium solubilization 

[151] 

B. amyloliquefaciens EPP62 Pearl millet root Pearl millet IAA 
Siderophore 
Phosphate solubilization 
Potassium solubilization 

[151] 

B. thuringiensis CR71 Tomatillo root Cucumber IAA 
Siderophore 

[152] 

B. altitudinis SB001 Sweet-grass root Tobacco 
Maize 
Soybean 

IAA [153] 

Paenibacillus 
P. polymyxa SK1 Tiger lily bulb Tiger lily IAA 

Siderophore 
Nitrogen fixation 
Phosphate solubilization 

[154] 

P. polymyxa 122 Honeysuckle root Wheat IAA 
Siderophore 
Phosphate solubilization 

[155] 

P. peoriae RP51 Black locust nodule Wheat IAA 
Siderophore 
Nitrogen fixation 
Phosphate solubilization 

[156] 

Pseudomonas 
P. bijieensis XL17 Rape crown gall Rice IAA 

Phosphate solubilization 
[45] 

Pseudomonas sp. CI-3 Chickpea root Chickpea IAA 
Siderophore 
Phosphate solubilization 

[155] 

Pseudomonas sp. n00132 Rice leaf Rice IAA 
Siderophore 
Phosphate solubilization 

[156] 

P. aeruginosa KAS6 Pearl millet seed Pearl millet IAA 
Phosphate solubilization 

[157] 

P. flourescens L228 Elephant grass leaf Pea Phosphate solubilization [158] 
P. flourescens L321 Elephant grass leaf Rapeseed IAA 

Siderophore 
Phosphate solubilization 

[159] 

P. aeruginosa Ld-08 Lily bulb Lily IAA 
Siderophore 
Phosphate solubilization 

[160]  
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may also assimilate soluble phosphorus by preventing phosphate fixation and its adsorption in phosphate-limiting conditions [166]. In 
this way, they can serve as reservoirs of phosphorus for plants. 

Endophytic bacteria produce siderophores, chelate insoluble ferric ions, and supply iron to plants [167]. Pseudomonas strain GRP3, 
a siderophore-producing bacterium, was inoculated in mung beans under iron deficit conditions, which increased chlorophyll levels 
compared to untreated plants [168]. P. flourescens synthesized Fe-pyoverdine complex was uptaken by Arabidopsis thaliana, increasing 
iron levels in plants with increasing plant growth [169]. 

6.2. Modulating phytohormones 

Endophytes produce phytohormones that regulate plant physiology, growth and development [31,170,171]. Indole-3-acetic acid 
(IAA), cytokinins, gibberellins and ethylene are important hormones in the interactions between plants and bacteria [84,161,167, 
171]. IAA of endophytic bacteria increases root volume, surface area, and lateral roots in plants [172]. For example, Tsavkelova et al. 
[173] observed that the IAA of orchids inhabiting endophytic bacteria had effects on increasing root length and number of roots of 
kidney beans used during bioassay. 

Biotic and abiotic stresses can trigger ethylene synthesis in plants [31][84]. A higher level of ethylene may deter plant root 
development. Endophytic bacteria synthesize 1-aminocyclopropane-1- carboxylate (ACC) deaminase and can hydrolyze ACC, the prior 
product of plant ethylene. The ACC deaminase-producing bacteria break ACC into α-ketobutyrate and ammonia [174]. Hence, these 
bacteria can improve plant growth by ameliorating stress conditions [14]. 

Endophytic bacteria can also produce cytokinins and gibberellins [84,171,175]. Cytokinins regulate cell division, seed germina-
tion, elongation of the root, differentiation of chloroplast and xylem, axillary and flowering bud growth, fruit set, leaf senescence, and 
increase biotic and abiotic tolerance [176–181]. The root inoculation of P. flourescens strain G20–18, which can produce cytokinins, 
promoted tomato growth and increased drought tolerance [182]. Endophytic P. resinovorans strain Gp e1 and P. polymyxa strain Gp e2 
were shown to produce cytokinin-like substances [183]. Gibberellins enhance seed germination, promote stem and leaf growth, 
develop flowers and fruits, and restrict plant ageing [184,185]. B. amyloliquefaciens RWL-1 and P. pseudomonas strains improved plant 
growth by gibberellins production [186,187]. 

6.3. Stress tolerance 

Biotic and abiotic stresses reduce crop growth and in some scenarios, give negative effects to soil fertility and health [17,188]. 
Endophytic bacteria can inhibit pathogens through biocontrol potentials and improve systemic plant resistance. They can reduce 
abiotic stresses by osmotic adjustments, antioxidant enzyme production, phytohormone alteration, and modification of plant 
morphology and signal system [17,188,189]. Heat-tolerant endophytes and rhizobacteria like B. amyloliquefaciens and P. putida 
compensate for heat stress in rice and wheat by modulating antioxidant defense enzymes and plant hormones [190,191]. Endophytic 
B. cereus enhanced rice salinity tolerance by modulating IAA, abscisic acids, and gibberellins [20]. P. polymyxa CR1 primed drought 
stress tolerance and root growth of soybean and arabidopsis [192]. It was found that endophytes can transfer and solubilize nutrient 
elements like phosphorus, nitrogen, potassium, and other micronutrients and make them available to plants [193,194]. 

7. Future perspectives and the suggested screening approaches to identify biocontrol and plant growth-promoting agents 

Endophytic bacteria are capable of living inside the plant system. Therefore, it is a great opportunity to select the most promising 
ones from these bacterial diversity for applications in sustainable agriculture. Research on effectiveness, perspectives, and implications 
for the usage of endophytic bacteria in biological control are crucial, in addition to the antifungal activity. Many endophytic bacteria 
have been selected for biocontrol and plant growth promotion. However, most of them were evaluated under in vitro conditions, and 
further operational evaluation should be confirmed under field conditions. When proven successful, these bacteria can be used to 
replace the agrochemicals in delivering natural biocontrol functionality in agriculture. 

In this review, we suggested a rapid approach to screen and identify the broad-spectrum biocontrol bacteria belonging to various 
known groups, for example, Bacillus subtilis clade, Paenibacillus polymyxa complex, and Pseudomonas fluorescens complex, etc. The 
screening strategies may include the following steps: 

First step: Confrontation cultures of bacterial isolates and pathogens screen out antimicrobial bacteria. 
Second step: 16S rRNA gene sequences analysis phylogenetically to identify antimicrobial strains of known taxonomic groups, 

which are most probably able to produce plant growth-promoting IAA, fix N2, and produce broad-spectrum antimicrobials. 
Third step: Matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) analyses to identify 

lipopeptide producers. 
Fourth step: PCR amplification and sequencing of key biosynthesis genes, such as phlD and nifH, to identify a key biocontrol or 

plant growth-promoting trait. 
Fifth step: Gnotobiotic assay of plant seedlings, a biocontrol strain, and a target pathogen to screen biocontrol strains with plant 

colonizing capacity and in planta biocontrol ability. 
Sixth step: Field trials using promising biocontrol and plant growth-promoting strains to determine practical application. 
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8. Conclusion 

Endophytic bacteria are effective and useful alternative biological tools to agrochemicals. They can control phytopathogenic fungi 
and promote plant growth without negatively impacting the agroecosystem. The underlying antifungal mechanisms mostly involve 
lipopeptides and polyketides. Fengycin, fusaricidins, and DAPG are key metabolites for antifungal activity in the case of endophytic 
Bacillus, Paenibacillus, and Pseudomonas, exhibiting dual biocontrol and plant-growth promotion functionality. Proper screening of 
these endophytic bacteria is crucial. Most studies on endophytic bacteria-driven biocontrol and plant growth promotion are conducted 
under laboratory conditions. Moving forward, more endophytic bacteria should be screened initially in the laboratory, and tests should 
be extended to realistic and operational conditions (e.g. farm level) for their utilization in developing sustainable agriculture. 
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[66] P. Kusari, S. Kusari, M. Lamshöft, S. Sezgin, M. Spiteller, O. Kayser, Quorum quenching is an antivirulence strategy employed by endophytic bacteria, Appl. 
Microbiol. Biotechnol. 98 (2014) 7173–7183, https://doi.org/10.1007/s00253-014-5807-3. 

[67] G.A. Achari, R. Ramesh, Characterization of bacteria degrading 3-hydroxy palmitic acid methyl ester (3OH-PAME), a quorum sensing molecule of Ralstonia 
solanacearum, Lett. Appl. Microbiol. 60 (2015) 447–455, https://doi.org/10.1111/lam.12389. 

[68] O. Lastochkina, A. Baymiev, A. Shayahmetova, D. Garshina, I. Koryakov, I. Shpirnaya, L. Pusenkova, I.d. Mardanshin, C. Kasnak, R. Palamutoglu, Effects of 
endophytic Bacillus subtilis and salicylic acid on post-harvest diseases (Phytophthora infestans, Fusarium oxysporum) development in stored potato tubers, Plants 
9 (2020) 76, https://doi.org/10.3390/plants9010076. 

[69] C.M. Pieterse, S.C. van Wees, J.A. van Pelt, M. Knoester, R. Laan, H. Gerrits, P.J. Weisbeek, L.C. van Loon, A novel signaling pathway controlling induced 
systemic resistance in arabidopsis, Plant Cell 10 (1998) 1571–1580, https://doi.org/10.1105/tpc.10.9.1571. 

[70] B. Mauch-Mani, I. Baccelli, E. Luna, V. Flors, Defense priming: an adaptive part of induced resistance, Annu. Rev. Plant Biol. 68 (2017) 485–512, https://doi. 
org/10.1146/annurev-arplant-042916-041132. 

[71] E.R. Ward, S.J. Uknes, S.C. Williams, S.S. Dincher, D.L. Wiederhold, D.C. Alexander, P. Ahl-Goy, J.P. Metraux, J.A. Ryals, Coordinate gene activity in response 
to agents that induce systemic acquired resistance, Plant Cell 3 (1991) 1085–1094, https://doi.org/10.1105/tpc.3.10.1085. 

[72] L.C. Van Loon, E.A. Van Strien, The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins, Physiol. Mol. 
Plant Pathol. 55 (1999) 85–97, https://doi.org/10.1006/pmpp.1999.0213. 

[73] V.R. Van Oosten, N. Bodenhausen, P. Reymond, J.A. Van Pelt, L.C. Van Loon, M. Dicke, C.M.J. Pieterse, Differential effectiveness of microbially induced 
resistance against herbivorous insects in arabidopsis, Mol. Plant Microbe Interact. 21 (2008) 919–930, https://doi.org/10.1094/mpmi-21-7-0919. 

[74] D. Niu, X. Wang, Y. Wang, X. Song, J. Wang, J. Guo, H. Zhao, Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired 
resistance through a NPR1-and SA-dependent signaling pathway, Biochem. Biophys. Res. Commun. 469 (2016) 120–125, https://doi.org/10.1016/j. 
bbrc.2015.11.081. 
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