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A B S T R A C T   

To protect human health, wildlife and the aquatic environment, “safe uses” of pesticides are determined at the EU 
level while product authorization and terms of use are established at the national level. In Sweden, extra pre-
caution is taken to protect drinking water, and permits are therefore required for pesticide use within abstraction 
zones. This paper presents MACRO-DB, a tool for assessing pesticide contamination risks of groundwater and 
surface water, used by authorities to support their decision-making for issuing such permits. MACRO-DB is a 
meta-model based on 583,200 simulations of the physically-based MACRO model used for assessing pesticide 
leaching risks at EU and national level. MACRO-DB is simple to use and runs on widely available input data. In a 
qualitative comparative assessment for two counties in Sweden, MACRO-DB outputs were in general agreement 
with groundwater monitoring data and matched or were more protective than the national risk assessment 
procedure for groundwater.   
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1. Introduction 

Simulation models are used to assess the risks of leaching to 
groundwater and surface waters in the approvals procedure in the Eu-
ropean Union (EU) for the active ingredients in plant protection prod-
ucts under regulation no. 1107/2009 (European Commission, 2009). 
The modelled scenarios used in these risk assessments at the EU level are 
designed to identify “safe uses” and are intended to represent “realistic 
worst-case” agro-environmental conditions. Similar model-based risk 
assessment procedures are also often employed for product 

authorizations at the member state level. For example, the leaching 
model MACRO (Larsbo et al., 2005) has been parameterized for three 
national groundwater scenarios to support risk assessments of plant 
protection products in Sweden. MACRO is also one of four leaching 
models recommended for use in pesticide leaching risk assessments at 
the harmonized EU-level, and the only leaching model used for drainage 
risk assessment at EU level. It is also the only model that considers 
preferential flow. 

Despite the intended worst-case (i.e. protective) nature of these risk 
assessments at national and European scales, it can be argued that there 
is a need for additional precautionary measures at the local level, for 
example in drinking water abstraction zones. Thus, in Sweden, farmers 
and landowners are legally obliged to apply to local authorities for 
permits to use pesticides, if their land lies within a drinking water 
abstraction zone (Swedish EPA, 2015). Clearly, in such cases, reliable, 
transparent and easy-to-use methods are needed to support local 
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authorities in their decision-making. In the past, the regulatory body 
responsible for national authorizations (the Swedish Chemicals Agency, 
KEMI), supported local authorities in this work by identifying a list of 
substances that were thought to represent a risk to groundwater on the 
basis of model simulations performed using the MACRO model during 
product authorization. In practice, local authorities did not issue permits 
for the use of these compounds within drinking water abstraction zones. 
This approach was necessarily conservative and prescriptive, as it could 
not account for local and regional variations in soil, land use and cli-
matic conditions. Furthermore, KEMI did not have the resources to 
maintain an up-to-date list as new compounds came onto the market and 
it was subsequently withdrawn in 2011. Consequently, the SLU Centre 
for Pesticides in the Environment (CKB) at the Swedish University of 
Agricultural Sciences (SLU) received funding from the Swedish Gov-
ernment and public authorities to develop a decision-support tool for 
site-specific pesticide risk assessments for drinking water abstraction 
zones in Sweden based on the MACRO model used for EU and national 
authorization. This tool should give accurate predictions, as well as 
being fast to run, easy-to-maintain, simple to use and understand by 
stakeholders, and only requiring data inputs that are widely available 
nationally. These multiple aims are not easy to reconcile. Empirical 
leaching indices or analytical (steady-state) solutions of 
physically-based models of pesticide leaching are simple and require few 
inputs (e.g. Jury et al., 1987; Gustafson, 1989; Stenemo et al., 2007a; 
Pavlis et al., 2010), but they cannot adequately reflect pesticide leaching 
in strongly heterogeneous soil profiles where adsorption and degrada-
tion vary with depth, nor under the highly transient conditions pre-
vailing in the field driven by weather conditions in relation to the timing 
of pesticide applications. These approaches may provide reliable rank-
ings of relative risk for pesticides of contrasting properties, but this is of 
little use when predictions must be compared to acceptable concentra-
tions in a legislative context (e.g. the drinking water standard of 0.1 μg 
L− 1 in the EU). Numerical solutions of process-based models are better 
able to reflect the complexities of the processes determining pesticide 
leaching risks, but they require extensive parameter inputs, which poses 
serious difficulties for large-scale model applications. 

Meta-models can enable and simplify the use of complex numerical 
simulation models, whilst retaining much of their realism. Meta-models 
are designed and constructed to approximate the (usually) non-linear 
input-output mappings produced by simulation models (Piñeros-Gar-
cet et al., 2006). Various methods have been used to develop 
meta-models of numerical pesticide leaching models including simple 
“look-up” tables (e.g. Holman et al., 2004), analytical models assuming 
steady-state water flow (Tiktak et al., 2006) and various machine 
learning techniques (Stenemo et al., 2007b; Lindahl and Bockstaller, 
2012; Trépos et al., 2012). 

Here, we present a new web-based decision-support tool for local 
pesticide leaching risk assessments in Sweden called MACRO-DB 
(https://macrodb.slu.se/shinyMACRO_DB/). This tool has been con-
structed as a meta-model of MACRO based on the results of pre- 
calculated simulations stored in “look-up tables”. The simulations are 
parameterized using a comprehensive suite of pedotransfer functions (i. 
e. a soil inference system, McBratney et al., 2002) that includes a novel 
approach to predict the strength of preferential flow (e.g. Jarvis et al., 
2009; Moeys et al., 2012). We also linked the parameterization of the 
MACRO model to a novel hydrological classification scheme, such that 
the simulations are capable of reflecting contrasting water balances 
found at sites characterized by different geological and pedological 
conditions. In this paper, we describe the meta-model and 
decision-support tool MACRO-DB and perform a global sensitivity 
analysis to better understand the main factors controlling its predictions 
of leaching risk in different situations. We also show the results of a 
qualitative “reality check” comparing risks of leaching predicted for six 
widely used pesticides of contrasting properties with relevant ground-
water monitoring data in south-west Sweden. These predictions also 
allowed us to judge the protectiveness of MACRO-DB in relation to the 

three national groundwater assessment scenarios used in Sweden for 
authorizing the use of plant protection products. 

2. Materials and methods 

2.1. General approach, overview and scope 

MACRO-DB is a web-based risk assessment tool that predicts the 20- 
year average pesticide concentrations in either surface water or 
groundwater. In the context of surface water, it should be noted that 
MACRO-DB is only used to estimate the long-term average concentra-
tions in larger surface water bodies that are relevant for drinking water 
supply and not the short-term peak concentrations in surface water that 
determine acute toxicity to aquatic life, especially in smaller streams. 
This latter aspect is handled at the national level during product 
authorization. Similarly, the tool only considers inputs of pesticides to 
surface waters via drainage and subsurface flow and not via surface 
runoff or spray drift. Losses of pesticides by spray drift and runoff/ 
erosion are considered at product authorization and are also targeted by 
mandatory and voluntary risk management practices (e.g. no-spray 
zones and vegetated buffer strips) designed to minimize impacts on 
surface water (Reichenberger et al., 2007). Even without the adoption of 
these mitigation measures, surface runoff/erosion and spray drift are 
thought to be generally less important than drainage losses to surface 
waters under the agro-environmental conditions prevailing in Sweden 
(e.g. Boye et al., 2012; Larsbo et al., 2016; Sandin et al., 2018), although 
they clearly do occur on occasions and losses can become significant 
locally. 

MACRO-DB comprises a web user interface connected to look-up 
tables containing the results of more than half a million simulations 
with the MACRO model, and algorithms for calculating and presenting 
the results (Fig. 1). These MACRO simulations were performed for 150 
hypothetical substances and representative scenarios covering the 
whole of Sweden, accounting for the variability of climate, crop devel-
opment and associated agricultural practices, soils and parent materials 
(Fig. 1). The development of meta-models necessarily involves many 
simplifications and limitations. For example, in the development of 
MACRO-DB we did not account for the impacts of contrasting soil and 
crop management systems (e.g. tillage and irrigation). This is partly due 
to a lack of knowledge of the impacts of soil management practices on 
important model parameters (Larsbo et al., 2009), but also because it 
would have multiplied the number of simulations, to the point where it 
would not be practicable to implement. Another limitation is that the 
tool cannot simulate the potential impacts of climate change on leaching 
risks (e.g. Steffens et al., 2015), since the climate driving variables are 
fixed in our approach based on “look-up” tables. However, although 
climate variables can be treated as predictors in other types of 
meta-models, the relationships between weather patterns and leaching 
risks are so complex that they cannot be easily captured or summarized 
by simple climate variables (e.g. annual precipitation and temperature), 
especially for a model like MACRO that accounts for preferential flow (e. 
g. Nolan et al., 2008). 

The MACRO simulations were parameterized for the scenarios using 
the model inference system (McBratney et al., 2002) developed by 
Moeys et al. (2012) and Steffens et al. (2015). A tri-linear interpolation 
in the substance parameter space (i.e. for the sorption constant, the slope 
of the Freundlich sorption isotherm and the degradation half-life) of the 
results of the MACRO simulations for hypothetical compounds is per-
formed in MACRO-DB in order to estimate 20-year average pesticide 
concentrations in leachate for the actual active ingredient of interest. 
Again, to limit the number of simulations to a manageable number, we 
used a fixed dose (1 kg ha− 1) in the leaching simulations for these hy-
pothetical compounds. Such a large dose will generally result in pre-
cautionary assessments, as a linear scaling is applied to estimate 
leaching of the actual substance, which will overestimate risk for 
non-linearly adsorbing compounds used at lower doses. 
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The end-users of MACRO-DB are farmers and their advisors who are 
applying for permits to use plant protection products in water protection 
areas. Local authorities base their decisions on exceedance of the 
acceptable concentration for a single pesticide in drinking water in the 
EU (i.e. 0.1 μg L− 1). In their decision-making, users at the local au-
thorities can account in a simple way for dilution from water originating 
from non-agricultural land in the catchment, by making the simplifying 
assumption that groundwater recharge from the non-sprayed land is the 
same as that from the treated field. However, the groundwater and 
surface water risk assessments in MACRO-DB are also to some extent 
precautionary, as they do not account for dissipation processes that can 
reduce pesticide concentrations both in surface-water and groundwater 
bodies. In Sweden, surface water is pumped up from both rivers and 
larger lakes. MACRO-DB should give reasonable worst-case estimates for 
river water as residence times are usually short in relation to time-scales 
of dissipation. However, the approach will likely severely overestimate 
pesticide concentrations in the large lakes with long residence times that 
are commonly utilized for drinking water supplies in Sweden. It should 
be possible to include simple algorithms in future versions of MACRO- 
DB to estimate pesticide concentrations in large groundwater reser-
voirs and lakes based on estimated dissipation rates and information on 
hydrological residence times. 

2.2. The MACRO model and its parameterization 

MACRO (Larsbo et al., 2005; Jarvis and Larsbo, 2012) is a 
one-dimensional process-based model developed to simulate the field 
water balance and the fate and transport of pesticides at plot and field 

scales. A full water balance is considered including precipitation, 
evapotranspiration, percolation to groundwater and water flow to field 
drains. MACRO is a dual-permeability model, with water flow and solute 
transport simulated in two interacting pore regions (matrix and mac-
ropores) defined at a matric potential equivalent to the diameter of the 
smallest macropore (Šimůnek, et al., 2003). Soil water retention in the 
micropores is given by a modified version of the van Genuchten (1980) 
equation (Vogel et al., 2000). Water flow is calculated using Richards’ 
equation in the micropores and by a kinematic wave equation (Germann 
and Beven, 1985) in the macropores. Water flow to field drains is 
calculated from saturated soil layers in the profile using seepage po-
tential theory (Leeds-Harrison et al., 1986). Solute transport in the mi-
cropores is calculated using the advection-dispersion equation. 
Dispersion is neglected in the macropores, since transport is assumed to 
be dominated by convection. The solute concentration in water routed 
into macropores at the soil surface is calculated assuming immediate 
equilibrium and complete mixing of infiltrating water with the water 
stored in a shallow surface soil layer, or ‘mixing depth’ (Steenhuis and 
Walter, 1980). A proxy parameter (‘effective diffusion pathlength’) 
reflecting soil structure controls the exchange of both water and solute 
between the two pore regions. Pesticide degradation is assumed to 
follow first-order kinetics, with the rate coefficients given as a function 
of soil temperature (Boesten and van der Linden, 1991) and moisture 
content (Schroll et al., 2006). Pesticide sorption is calculated with a 
Freundlich isotherm and can either be simulated as an instantaneous or 
kinetic process using a two-site model (Altfelder et al., 2000). 

The MACRO model has been extensively tested against numerous 
experiments carried out at column and plot scales in both the laboratory 

Fig. 1. Schematic view of MACRO-DB including the pre-preparations and simulations with MACRO v.5.2.  
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and in the field (see the review by Köhne et al., 2009a, 2009b). The 
model was generally shown to perform satisfactorily and was therefore 
considered “fit for purpose” for use in pesticide regulation in the EU 
(FOCUS, 2000; FOCUS, 2001). However, these research applications of 
the model invariably involved a considerable degree of model calibra-
tion against the measurements in order to obtain estimated values for 
various parameters that are either difficult or impossible to measure 
(Jarvis and Larsbo, 2012). For this reason, the modelling scenarios for 
MACRO that are used in the pesticide authorization procedures in the 
EU are mostly based on real field sites for which the MACRO model has 
been calibrated. The three national groundwater scenarios that are used 
for product authorization in Sweden were parameterized from a com-
bination of direct measurements, model calibration and expert judge-
ment based on previous model applications to similar sites in other 
locations. Clearly, the use of a model such as MACRO for site-specific 
simulations of leaching risk without the benefit of extensive site data 
to support model calibration is a challenge. 

The parameterization of the MACRO simulations in MACRO-DB 
constitutes a complete parameter “inference system” based on a suite 
of class and continuous pedotransfer functions for the soil and crop 
parameters in the model presented by Moeys et al. (2012). This system 
to support model predictions with the MACRO model was successfully 
tested against comprehensive data on water outflows and the leaching of 
non-reactive tracers obtained from a series of long-term outdoor 
lysimeter experiments (Moeys et al., 2012). Steffens et al. (2015) further 
developed this parameter inference system to enable applications at the 
regional scale by accounting for site hydrological conditions. They 
compared MACRO simulations parameterized with this updated infer-
ence system with groundwater monitoring data for the county of Skåne 
in the far south of Sweden and found that the model correctly distin-
guished “leachable” from “non-leachable” compounds. 

The parameter inference system, which is now embedded in MACRO- 
DB, utilizes information on scenario definitions as input. These scenarios 
are described in the following sections. The MACRO parameterization 
algorithms are described in section S1 in Supplementary Material. 

2.3. Scenario definitions 

In MACRO-DB, user-supplied information on parent material, soil 
texture, soil organic matter and drainage status completely and uniquely 
defines one of 72 representative soil scenarios. Likewise, 54 represen-
tative scenarios on application dates are defined through user choices 
concerning climate zone and season of application. These scenarios are 
described in detail below. 

2.3.1. Parent material and soils 
Each soil scenario is based on a soil profile divided into five horizons 

down to a depth of 200 cm, with horizon thicknesses and designations 
determined by the parent material (see Table S1, Supplementary Ma-
terial). Eight types of parent materials are considered by MACRO-DB 
(Esker, Sedimentary rock, Moraine, Hard rock, Coarse silt/fine sand, 
sand or gravel, Clay/silt, Alluvium and Organic soil) based on a 
simplification of the classification system for quaternary geology 
developed by the Swedish Geological Survey. However, no soil scenarios 
were defined for organic soils, since this parent material is assumed to 
pose no risk of pesticide leaching. 

Five different texture classes are included in the soil scenarios based 
on a modified version of the texture triangle of the Soil Map of Europe 
(Fig. 2 and Table S2 in the Supplementary Material). According to the 
inventory of arable land in Sweden (Eriksson et al., 2010), texture class 5 
is very unusual (approximately 3% of the land area) and was considered 
to be sufficiently represented by texture class 4 without compromising 
the risk assessment (see Fig. 2). On the other hand, preliminary analyses 
showed a necessity to split texture class 2, which is by far the most 
common texture class for arable land in Sweden (see Fig. 2), into two 
classes. The class representing the coarser part of texture class 2 (where 

the sand content exceeds 40%) is called 2a, and the other part repre-
senting the finer-grained part is called 2b. Representative values of clay, 
silt and sand content were selected for each texture class (Fig. 2 and 
Table S2 in the Supplementary Material). This particle size distribution 
is assumed constant throughout the whole soil profile in all of the sce-
narios since, in Swedish arable land, soil texture is usually very similar in 
the topsoil and subsoil (Eriksson et al., 2010). Unrealistic combinations 
of soil texture and parent material were omitted from the simulations i.e. 
all soil textures apart from class 1 for Esker, texture classes 1 and 2a for 
Clay/Silt and texture class 4 for Coarse silt/fine sand, sand or gravel. 

The uppermost two horizons in each soil scenario are characterized 
by one of three different organic carbon contents (1.3%, 2.6% and 5.2% 
for organic matter class u, n and h, respectively as shown in Table S3, 
Supplementary Material). These represent a simplification of the six 
classes of soil organic matter content defined by the Swedish Board of 
Agriculture. Due to a lack of supporting data, the organic carbon con-
tents in subsoil horizons were set to constant values (0.5% in the upper 
subsoil horizon 3, 0.3% in horizon 4 if it is not bedrock and 0.1% for 
horizon 5 and rock horizons) based on limited soil survey data for 
Swedish arable subsoils. 

2.3.2. Site hydrology 
Each soil profile belongs to one of four distinct hydrological classes.  

• Class L represents highly permeable soils with drainage to deep-lying 
groundwater.  

• Class W and Class Y represent soils with slowly-permeable parent 
materials that allow both percolation to groundwater and discharge 
into surface water either via field drainage systems or shallow lateral 
groundwater flow. The groundwater table is located within the soil 
profile. Class Y soils are artificially-drained soils with significantly 
lower permeability in the subsoil and/or in the parent material 
compared to class W, which means that the groundwater rises higher 
in the profile of class Y soils.  

• Class U soils represent either impermeable parent materials (i.e. 
impermeable clay) or soils located in low-lying terrain within the 
catchment area (i.e. discharge areas). 

The hydrological classes are determined from parent material, soil 
texture and drainage status according to the classification flow chart 

Fig. 2. Topsoil texture for 3,303 arable soils in Sweden (+ in grey) and topsoil 
textures included in the soil scenarios (x in black) on the texture triangle of the Soil 
Map of Europe. 
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shown in Table 1 and Fig. 3. The resulting hydrological classes of the 72 
soil profiles are shown in Table S4 in the Supplementary Material. The 
bottom boundary condition of the 200 cm soil profile in the MACRO 
model depends on the soil hydrological class (L, W, Y or U). For class L, a 
hydraulic unit gradient is assumed, while the percolation rate is defined 
as a linear function of the height to the groundwater table for class W 
and Y. The chosen parameterization produces deeper water tables in 
class W soils. Zero flow at the base of the profile is assumed for class U 
soils. These four different boundary conditions translate into strong 
contrasts in simulations of site hydrology and the water balance. 

2.3.3. Climate 
Sweden is divided into 22 so-called crop production zones (see sec-

tion S1.3, Supplementary Material) based on climate and other agro- 
environmental conditions. Twenty-six years of daily weather data 
(1970–1995) provided by the Swedish Meteorological and Hydrological 
Institute (SMHI) for representative climate stations located in each of 
these production zones was used to drive the MACRO simulations. The 
reason for using this period is that the MACRO-based tool (MACRO-in- 
FOCUS) used by the Swedish Chemicals Agency for assessing risks to 
Swedish groundwater during product authorization uses this same 
period and it was considered important to maintain compatibility be-
tween these two model tools. 

Preliminary analyses of the simulated water balances showed that 
the weather data of zone 13 can be used for zone 14, and the data of zone 
16 for the zones 15, 17 and 18, without compromising the risk assess-
ment. The weather data comprised all input driving data required by 
MACRO, i.e. daily rainfall (mm), daily minimum and maximum tem-
peratures (◦C), solar radiation (W m− 2), vapour pressure (kPa) and wind 
speed (m s− 1). The daily rainfall data from SMHI was disaggregated into 
hourly rainfall data using a cascade model developed by Olsson (1998), 
with the parameterization based on a time series of high time-resolution 
rainfall data from Lund in southern Sweden (Güntner et al., 2001). 

2.3.4. Pesticide applications 
Three pesticide application seasons (i.e. spring, summer and 

autumn) are considered. A set of 26 dates of application (one specific 
date for each simulation year) were defined for each of three aggregated 
climate zones (north, central, and southern Sweden) within pre-defined 
“application windows” (Table S8, Supplementary Material), resulting in 
a total of 9 possible scenarios of pesticide application dates. The actual 
dates of application were determined using the rule-based PAT (“Pesti-
cide Application Timer”) algorithm, which was developed for regulatory 
modelling within the EU (FOCUS, 2000). PAT determines “reasonable 
worst case” application dates depending on the rainfall pattern within 
the application window. 

2.4. MACRO-DB 

2.4.1. The simulation database 
The MACRO-DB database contains the results of 583,200 MACRO 

simulations that were parameterized for every combination of 18 
climate scenarios, 72 soil scenarios, three application seasons and 150 
hypothetical compounds. A spring cereal crop was simulated in all cases 
(section S1.4 in Supplementary Material). This simplification was 
considered necessary in order to make significant savings in the 
computation time required by limiting the number of simulations. The 
impact of the different crops commonly grown in Sweden on the water 
balance is rather limited and preliminary analyses showed that the ef-
fects of these differences on pesticide leaching are small in comparison 
with the large sensitivity of leaching to pesticide properties. 

The parameters describing adsorption and degradation of the 150 
hypothetical substances were defined by combinations of eight 
normalized Freundlich coefficients, Kfoc, ranging from 3 to 10,000 L 
kg− 1 and seven reference degradation half-lives DT50, ranging from 3 to 
200 d (Table 2), combined with three different Freundlich exponents nf 
(0.75, 0.85 and 1). Combinations of Kfoc and DT50 that were considered 
unrealistic for authorized active ingredients or that would almost 
certainly not yield any leaching, were omitted to save computation time 
(Table 2). The substances were applied yearly at an effective dose (i.e. 
without crop interception) of 1 kg ha− 1. 

Following the procedure used in risk assessment in the EU for 
groundwater (FOCUS, 2000), the MACRO simulations were run for 26 
years, with the first six years discarded as a warm-up period. The 
average concentration in leachate percolating to groundwater under a 
treated field predicted by MACRO for the hypothetical compounds, Cgw 

(m) (μg L− 1) is calculated as the total leached pesticide mass during the 
20-year assessment period Sp (mg m− 2) divided by the total percolation 
Wp (m): 

Cgw(m) =
Sp

Wp
(1) 

The average concentration of pesticide entering surface water from a 
treated field Csw(m) was calculated from the outputs of the MACRO 
simulations in a similar way, making the worst-case assumption that 
pesticide leached to groundwater is also routed to surface water through 
shallow groundwater flow without any degradation: 

Csw(m) =
Sd + Sp

Wd + Wp
(2)  

where Sd is the total pesticide mass loss in drainage in the 20 year 
assessment period (mg m− 2) and Wd is the total drainage (m). These 
post-processing calculations were performed in R using the R package 
macroutils (Moeys, 2017) and the results were stored in a MS Access 
database. 

Table 1 
Hydrological classes within MACRO-DB. For class L soil water flow to groundwater which also reaches surface water via baseflow, for class W and the less permeable 
class Y soil water flow to both groundwater and surface water and for class U soil water flow to surface water only. Combinations of parent material, texture and 
presence or absence of artificial drainage that do not normally occur in practice are marked with a slash (/). Empty cells represents organic soils, which hydrologically 
behaves like U soils. However, MACRO-DB does not calculate pesticide concentrations for these soils since they are assumed to pose no risk of pesticide leaching.  

Parent material Texture class Hydrologic class 

Drained Undrained 

Esker All relevant textures / L 
Sedimentary rock All relevant textures / L 
Hard rock All relevant textures / Y 
Moraine Coarse (=1), coarse medium (=2a) / W 

fine medium (=2b), medium-fine (=3) Y W 
Fine (=4) Y / 

Alluvial sediment All relevant textures U / 
Coarse silt/fine sand, sand or gravel All relevant textures U W 
Clay/silt All relevant textures U W 
Organic soil     
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2.4.2. Calculations for the selected active ingredient and scenario 
An estimate of the predicted leachate concentration under a treated 

field for the actual active ingredient selected by the user through the 
MACRO-DB interface is derived by performing a tri-linear interpolation 
(Akima, 1978) in the parameter space of Kfoc, DT50 and nf for the loga-
rithms of the two target variables (i.e. log10(Cgw(m)) and log10(Csw(m)), 
making use of the stored results for the 150 hypothetical substances. The 
values of Kfoc, DT50 and nf for the active ingredient of interest are taken 
from the PPDB database developed and maintained by the Agriculture & 
Environment Research Unit (AERU) at the University of Hertfordshire 
(Lewis et al., 2016), which summarizes the properties used in regulatory 
risk assessments at the harmonized EU level. The interpolation is per-
formed using the nearest neighbours (up to 8) of the selected active 
ingredient in the 3D substance parameter grid. Since the target variables 
are logarithmic, censoring of very low simulated concentrations is 
necessary to avoid distortions of the estimate. Consequently, concen-
trations simulated with MACRO (equations (1) and (2)) were 
left-censored at 0.1 ng L− 1. A performance check of the trilinear inter-
polation method for 5,000 MACRO validation runs generated with Latin 
Hypercube Sampling and a training data set of 18,720 simulations 
showed some border effects due to the censoring, which however only 
produced a few false positives (erroneously predicted concentrations 
above 0.1 μg L− 1) for the application rate of 1 kg ha− 1 (Fig. S6, 

Supplementary Material). 
This interpolated concentration is then converted to an estimate for 

the defined scenario by accounting for the actual substance dose, crop 
interception and dilution. Thus, predicted concentrations in ground-
water (Cgw, μg L− 1) and surface water (Csw, μg L− 1) are calculated as: 

Cgw =Cgw(m)

(
D

1000

)

(1 − fint)fappfagr gw (3)  

Csw =Csw(m)

(
D

1000

)

(1 − fint)fappfagr sw (4)  

where D is the dose of the compound being assessed (g ha− 1), fint is the 
effective intercepted fraction, fapp is the application frequency (=1 for 
application every year, 0.5 for every other year, 0.3333 for every third 
year, etc.) and fagr_gw is the proportion of agricultural land to the land 
area in the catchment while fagr_sw is the proportion of agricultural land 
to the total area of the catchment since precipitation on water bodies 
also contributes to the dilution. In the case of metabolites, an effective 
dose is estimated from the maximum occurrence fraction (as a surrogate 
for the molar formation fraction) and the ratio of molar masses of the 
metabolite and parent compound. The intercepted fraction fint is based 
on the crop type and its stage of development at the time of application 
specified by the user (see Supplementary Material, see section S2.6). 
Some plant protection products are applied multiple times in a single 
growing season to the same crop. Even though all the simulation results 
in the database are for single applications, a risk assessment can still be 
carried out in MACRO-DB for multiple applications by performing the 
calculations for all relevant crop development stages and then summing 
the resulting predicted concentrations to obtain a final estimate. Despite 
the rather gross approximation inherent in this approach, it does appear 
to produce reasonable results (Table S12 in supplementary information). 

2.5. Applications 

2.5.1. Sensitivity analysis 
Global sensitivity analyses (GSAs) were conducted for MACRO-DB to 

illustrate the most important input factors influencing predicted pesti-
cide concentrations in drinking water resources in Sweden. We used the 

Fig. 3. Flow chart for determining hydrological class.  

Table 2 
Combinations of Kfoc and DT50 simulated with MACRO (dotted cells). These 50 
combinations are combined with 3 values of the Freundlich exponent (nf), 
resulting in a total of 150 hypothetical compounds. Combinations marked with 
crosses (X) were excluded.   

Kfoc (L kg− 1) 

3 10 30 100 300 1000 3000 10,000 

DT50 (d) 3 ● ● ● ● ● ● ● X 
6 ● ● ● ● ● ● ● X 
12 ● ● ● ● ● ● ● X 
25 ● ● ● ● ● ● ● ● 
50 ● ● ● ● ● ● ● ● 
100 X ● ● ● ● ● ● ● 
200 X X ● ● ● ● ● ●  
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Sobol’ method (Sobol’, 1993; Gatel et al., 2020), since it does not rely on 
linearity, monotonicity or additivity of the model. The method ranks the 
input factors according to their importance and allows identification of 
both first-order (direct) and higher-order (interaction) effects for each 
input factor (Sobol’, 1993; Saltelli et al., 2005; Lauvernet and 
Muñoz-Carpena, 2018). The first-order sensitivity index (Si) for each 
input factor Xi is defined as the fraction of the output variance Y asso-
ciated with the direct effect of that factor (Sobol’, 1993). The total 
sensitivity index (STi) is calculated as the fraction of output variance 
associated with factor Xi and its interactions with other input factors 
(Homma and Saltelli, 1996). In the case of a purely additive model (i.e. a 
model without interactions between inputs) both the sum of Si and the 
sum of STi are equal to 1. Otherwise, the sum of Si is < 1 and the sum of 
STi is > 1. Models with a sum of Si > 0.6 can be considered as “mostly 
additive” (Saltelli et al., 2004). 

The target variables for the GSAs reported here are Cgw and Csw 
(equations (1) and (2)) in logarithmic form. Taking logarithms of the 
variables substantially reduces the impact of extremely high concen-
trations on their variances. Two GSAs were performed for the whole 
parameter space for substance properties (GSA_1) based on two variants 
for the input factors regarding soil type.  

1) Variant GSA_1a: Soil type was sampled as a discrete variable (Soil 
type).  

2) Variant GSA_1b: The four soil variables that together constitute the 
soil type were sampled individually: hydrological class (HSG), 
texture class (TXT), presence of hard rock in subsoil (HR), and 
organic matter class (OMC). 

For both variants, the Freundlich exponent was sampled uniformly, 
whereas a uniform distribution of log(Kfoc) and log(DT50) was assumed. 
Application season (Season) and climate zone (Climate) were sampled as 
discrete variables (see Table S13, Supplementary Material). The 
remaining input factors, all of which have a linear effect on the (non- 
logarithmic) target variables, were kept constant, as follows.  

• All land area within the catchment area is arable land, i.e. fagr_gw = 1.  
• A dose (D) of 1 kg ha− 1.  
• Yearly application, i.e. fapp = 1.  
• No interception of the applied dose, i.e. fint = 0. 

The sample sizes for GSA_1a and GSA_1b were 32,000 and 66,000, 
respectively. 

The contribution of a factor to the total output variance strongly 
depends on the input distribution of this factor. The chosen substance 
parameter distributions of GSA_1 reflect the whole substance parameter 
space included in MACRO-DB (Table S13, Supplementary Material). The 
obtained sensitivity measures will therefore correspond to the entire 
input factor space of the meta-model and not for an individual active 
substance. These sensitivity analyses are intended to give a broad 
perspective on the most important factors that will control overall 
pesticide contamination risks in drinking water protection areas at the 
national scale in Sweden. 

The influence of substance parameters will be smaller for input dis-
tributions reflecting uncertainty for a single compound than for input 
distributions covering the whole simulated range. To quantify this dif-
ference in sensitivity, two additional GSAs (GSA_2) were carried out 
with a narrower range of substance properties (Table S14, Supplemen-
tary Material) for the same input factors and sample sizes as in GSA_1a 
and GSA_1b. These input ranges are intended to approximately reflect 
the natural variability of sorption and degradation parameters for a 
given substance across different soils and climates (e.g. Wauchope et al., 
2002; Fenner et al., 2007; Ghafoor et al., 2011, 2013). The results of 
these second type sensitivity analyses provide information on the main 
causes of variation in the outcome of risk assessments for a given sub-
stance in water protection areas in Sweden with contrasting soil types 

and climates. The hypothetical compound studied in GSA_2 has a geo-
metric mean Kfoc value of 100 L kg− 1 (range 50–200 L kg− 1) and a 
geometric mean DT50 value of 30 d (range 15–60 d) (also shown in 
Table S14, Supplementary Material). The mean value of the Freundlich 
exponent nf is 0.9 with a variation of ± 0.1. 

All GSA calculations were done in R, making the use of the R script 
sobol_sensitivity from the European Commission Joint Research Centre 
(Zambrano-Bigiarini et al., 2013) for Sobol’ quasi-random sampling and 
calculating Sobol’ sensitivity indices. 

2.5.2. Assessment of the protectiveness of MACRO-DB 
MACRO-DB was run for the maximum recommended doses of some 

widely used active ingredients in the two southern-most climate zones 
(1a and 1b). Pesticide use is largest in the south of Sweden compared 
with the rest of the country, due to a favorable climate for cultivating a 
wider variety of crops as well as greater weed, pest and disease pres-
sures. This analysis was carried out partly as a qualitative “reality- 
check” by comparing the results with available groundwater monitoring 
data and also to assess the protectiveness of MACRO-DB in comparison 
with the national groundwater risk assessment of pesticides for general 
approval in Sweden. Note that we do not compare MACRO-DB simula-
tions with surface water monitoring data because these may be impacted 
by transport pathways not considered in MACRO-DB (i.e. point sources 
due to spills and accidents, surface runoff/erosion and spray drift). 

The geographical distributions of the quaternary geology within 
climate zones 1a and 1b were retrieved from the Geological Soil Survey 
of Sweden at the scale of 1:25,000. Geographical distributions of classes 
of topsoil organic carbon content and texture were derived from digital 
soil maps available at CKB. The soil map is based on measurements of 
texture and organic carbon content made on 2200 samples in arable 
topsoil (0–30 cm) collected within the Swedish environmental moni-
toring program as well as aerial measurements of gamma emissions 
carried out by the Geological Soil Survey of Sweden (Tranter et al., 
2011). Climate zone 1a includes 54 of the 72 soil scenarios of 
MACRO-DB (as well as the organic soil class). Fewer soil scenarios (39) 
are found in climate zone 1b (in addition to organic soils), which in 
contrast to climate zone 1a, completely lacks sedimentary rock. For soils 
that can either be artificially drained or not (see Fig. 3), both possibil-
ities were assumed to be represented within the climate zones. 

Commonly used pesticides relevant for the study areas were chosen 
based on sales for agricultural use according to the Swedish Chemicals 
Agency (KEMI, 2022) and reported use within two catchments, M42 in 
the county of Skåne and N34 in the county of Halland (see Fig. S8, 
Supplementary Material), that are part of the Swedish national envi-
ronmental monitoring program for pesticides. These two catchments are 
included in the national monitoring program for pesticides because they 
are considered to be representative for Swedish agriculture. 

Information on pesticide use and crop cultivation within these 
catchments are collected every year through interviews with the local 
farmers. Both catchments have a high proportion of agricultural land 
(89–95%) and 80–90% of the arable land is treated with pesticides. 

The selection of pesticides to include in the assessment were based on 
three conditions.  

1. The quantity of the pesticide sold in Sweden in 2022 should exceed 
10 tonnes.  

2. The pesticide must have been used every year during the ten-year 
period 2011–2020 in at least one of the two catchments M42 and 
N34. Such pesticides were assumed to be frequently used throughout 
both climate zones 1a and 1b.  

3. The application frequency during the cropping season must be the 
same throughout the ten year period for a large proportion of the 
fields of catchments M42 or N34. Hence, pesticides with irregular 
application patterns in both catchments were not considered. 

Six pesticides that met the requirements listed above were included 
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Table 3 
Fate parameters according to PPDB (AERU, 2023) of the pesticides (parent or metabolite) included in the conservative assessment of MACRO-DB in climate zone 1a and 
1b. Quantities of the pesticides sold in Sweden for agricultural use in 2022 and their frequencies of findings in groundwater in 1986–2014. N indicates the number of 
samples for which the substance has been analyzed.  

Pesticide Kfoc
a (mL g− 1) Soil DT50 Lab  

(days) 
Freundlich exponent,  
nf 

Quantity sold  
(tonnes) 

Detection in groundwater samples 1986–2014b 

Number of findings Detection rate (%) Mean of detected  
concentrations (μg L− 1) 

Bentazone 59.6 20 0.93 27.5 607 (N = 10,348) 5.9 1.2 
Clopyralid 5 23.2 – 15.0 49 (N = 4,058) 1.2 1.2 
Diflufenican 2,215 94.5 0.87 15.3 0 (N = 31) 0 – 
MCPA 57.96 12.07 0.822 187.9 64 (N = 9,995) 0.6 39 
Prosulfocarb 1,693 11.9 0.96 270.3 2 (N = 228) 0.9 0.02c 

Prothioconazole-desthiod 575.4 215 0.91 38.5e 0 (N = 51) 0 –  

a Koc for Clopyralid since Kfoc is not given by PPDB (AERU, 2023). 
b According to a compilation by the Swedish Agency for Marine and Water Management (HaV, 2014). 
c Both findings <0.1 μg L− 1. 
d Since the DT50 of Prothioconazole is ≤ 2d, its metabolite Prothioconazole-desthio is assessed instead. 
e The sold quantity applies for the parent compound, i.e. Prothioconazole. 

Fig. 4. Sobol’ indices for logarithmised groundwater pesticide concentration for the entire parameter space using a) soil type (GSA_1a), and b) soil variables 
(GSA_1b) and with substance parameter input distributions reflecting variability for a single compound using c) soil type (GSA_2a), and d) soil variables (GSA_2b). 
Whole column: total sensitivity index STi; blue: first-order sensitivity index Si; red: interactions. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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in the analysis (see Table 3). These compounds had Kfoc values ranging 
from 5 to 2,215 mL g− 1, with Freundlich exponents varying between 
0.822 and linear adsorption (Clopyralid) and DT50 values between 11.9 
and 215 days. For all the pesticides selected, the application frequency 
was once a year for more than 86% of pesticide application scenarios 
(PAS) were created by combining each of the selected substances with 
target crops, the timing of application in relation to their development 
stage and maximum permitted doses according to the terms of use for 
products containing the specific active ingredients as determined by the 
Swedish Chemicals Agency. The resulting 58 PAS are given in Table S18 
in the Supplementary Material. 

Combinations of the PAS and the soils for both climate zones 
(including the MACRO-DB soil scenarios and the relevant organic soil 
types) were then run in MACRO-DB to estimate pesticide concentrations 
in groundwater within hypothetical water protection areas, assuming 
100% agricultural land (i.e. fagr_gw = 1). However, potatoes were 
assumed to be cultivated exclusively on coarse-textured soils (i.e. soils of 
texture class 1). All in all, the resulting numbers of runs were 3,495 and 
2,444 for climate zones 1a and 1b, respectively. 

3. Results and discussion 

3.1. Sensitivity analysis 

Both GSA_1 and GSA_2 showed only small differences in sensitivity 
indices between groundwater and surface water. The results for surface 
water are therefore presented in the Supplementary Material (Fig. S7). 
We focus here on the sensitivity analyses for groundwater. 

The results of the groundwater GSA for the entire substance 
parameter space (GSA_1) are shown in Fig. 4a and b, while the results for 
the reduced substance parameter space reflecting uncertainty of sorp-
tion and degradation parameters for a given compound across different 
soils and climates (GSA_2) are shown in Fig. 4c and d. Sensitivity 
rankings of the input factors are given in Tables S15 and S16, while sums 
of first order and total sensitivity indices are shown in Table S17 in the 
Supplementary Material. The sums of the first-order indices Si were 
0.83–0.88 (GSA_1) and 0.79–0.90 (GSA_2). Hence the MACRO meta- 
model with logarithmic target variables can be considered as approxi-
mately additive. 

For both variants 1a (soil type) and 1b (individual soil variables) of 
GSA_1 log(Kfoc) was by far the most important factor followed by log 
(DT50) (Fig. 4a, b and S7 and Tables S15 and S16). For variant 1b, the 
organic matter class (OMC), which determines sorption, was the most 
important of the four soil variables (Table S16, Supplementary Mate-
rial). In contrast, the influence of the soil hydrological class (HSG) was 
comparatively small. At first sight, this is somewhat surprising, because 
for groundwater scenarios, if a larger proportion of excess percolating 
water is diverted to surface water via drainage systems (e.g. in class Y 
soils) then downwards transport velocities are smaller, which should 
reduce leaching to groundwater. One reason for the low sensitivity to 
hydrological class found here may be that, following FOCUS procedures, 
the MACRO-DB inference system assumes that there is no pesticide 
degradation below 1 m in the soil profile, equivalent to drain depth in 
class Y soils, so that pesticides will always leach to groundwater once 
they reach below this depth. 

Given the narrower input distributions of substance parameters 
reflecting the natural variability of Kfoc, DT50 and nf for a given sub-
stance across different soils and climates, GSA_2 must generally attribute 
less importance to substance properties than GSA_1, where the input 
distributions correspond to the entire substance parameter space in the 
MACRO meta-model. This is shown by the results of GSA_2, where Soil 
type was by far the most important factor for variant 2a, followed by 
Climate, log(Kfoc) and log(DT50), while for variant 2b the most important 
factor was OMC, followed by TXT and Climate (Fig. 4c, d and S7 and 
Tables S15 and S16). It should be recognized that a sensitivity analysis 
for another compound located somewhere else in the substance 

parameter space may have yielded qualitatively different results. A GSA 
reflecting a risk assessment with MACRO-DB for a single compound 
applied to a specific farmer’s field would be run with a fixed climate and 
cover a narrower input distribution of soil parameters and would 
therefore almost certainly again give most weight to the sorption and 
degradation properties of the substance. Hence, the sensitivity and 
relative importance of the input factors depends very much on the sce-
nario definition (i.e. the questions being asked) and the associated 
appropriate spatial scale. 

3.2. Assessing the protectiveness of MACRO-DB 

All in all, 22% of the 5,939 MACRO-DB runs using PAS approved by 
the Swedish Chemicals Agency gave predicted average groundwater 
concentration exceeding the EU limit for drinking water (0.1 μg L− 1; see 
Fig. 5 for soils of hydraulic classes L, W and Y). In accordance with the 
sensitivity analyses (section 3.1), the magnitude of the estimated con-
centrations in groundwater is largely controlled by the pesticide fate 
parameters. MACRO-DB suggests that the two least mobile pesticides 
(Diflufenican and Prosulfocarb) do not pose a risk of exceeding 0.1 μg 
L− 1 within water protection areas for groundwater within the climate 
zones 1a and 1b, as all relevant soil types are predicted to give 
groundwater concentrations below the limit for drinking water (see 
Table 4 and Fig. 5). In contrast, more than half of the runs for the most 
mobile pesticide (Clopyralid) exceeded the limit for drinking water in 
both climate zone 1a and 1b (Table 4). Only soils belonging to hydraulic 
class U (U-soils) pose no risk of Clopyralid groundwater contamination 
due to the assumption of zero flow at the base of the profile for U-soils. 
Of the other two more moderately mobile pesticides, Bentazone gives 
rise to predicted average groundwater concentrations above the drink-
ing water limit to a much higher degree than MCPA (Table 4), which is 
less persistent (see Table 3). A minority of the MACRO-DB runs for the 
slightly mobile and most persistent of the substances, Prothioconazole- 
desthio, exceeded the limit for drinking water. 

A larger proportion of the results for climate zone 1a compared to 
climate zone 1b have concentrations above the drinking water limit 
(Table 4). This is largely due to differences in the soil scenarios occurring 
in the two climate zones, with a larger number of soils susceptible to 
leaching in climate zone 1a, rather than differences in climate and 
weather patterns. As also shown by the sensitivity analyses, Fig. 5 sug-
gests the important role of organic carbon in reducing pesticide losses. 
With the exception of Clopyralid, none of the substances gave average 
groundwater concentrations exceeding 0.1 μg L− 1 for soils with the 
highest organic matter class (h). For Clopyralid, which is very weakly 
adsorbed (Table 3), the highest leaching risk is predicted for coarse- 
textured soils (see Fig. 5), due to the potential for rapid transport 
through the soil matrix. The remaining five compounds are more 
strongly adsorbed, so that matrix leaching is negligible. For these sub-
stances, the largest average concentrations leaching to groundwater are 
predicted in fine-textured soils (i.e. texture class 4; Fig. 5), as the 
parameterization of the MACRO model reflects the fact that these soils 
are more prone to macropore flow (see Table S4 in the Supplementary 
Material). The overall effect of the other texture classes are weaker and 
overshadowed by interplay with other factors (i.e. effective dose, parent 
material and season of application), which is also the case for some fine- 
textured soils run for Prothioconazole-desthio. These differences in the 
effects of soil type on the leachate concentration demonstrate the 
complexity of the model in terms of the interplay of different input 
factors, such that the relative importance of input factors will vary 
depending on the investigated scenario. 

The drained moraine of soil type Y2bu within climate zone 1a co-
incides with one of the national groundwater scenarios. Fig. 6 suggests 
that for Clopyralid and Bentazone in climate zone 1a, the MACRO-DB 
risk assessment is more protective for soil type Y2bu than the national 
approvals procedure based on MACRO simulations, as predicted con-
centrations are more than ten times larger than the allowable limit. Note 
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that both MACRO-DB and the national regulatory assessment should 
have used the same sorption and degradation properties (i.e. the sub-
stance properties used for active ingredients at the EU-level), although 
this cannot be guaranteed. For the other selected pesticides, MACRO-DB 
gives the same result as the risk assessment performed for the national 
groundwater scenario (i.e. predicted groundwater concentrations <0.1 
μg L− 1). 

The protectiveness of MACRO-DB in climate zones 1a and 1b can also 
be evaluated in relation to the national groundwater risk assessment by 
considering the proportion of different soil types on arable land with 
concentrations predicted to exceed the drinking water limit. While 
pesticide applications according to all the PAS studied are permitted 
based on the national groundwater risk assessment, the risk assessment 
of MACRO-DB (which forbids application if the concentrations exceed 
0.1 μg L− 1) vary slightly between the different PAS and also depending 

on the proportions of the soils that are drained (see Table 4). For Clo-
pyralid and Bentazone, MACRO-DB is more protective than the national 
scenario for a majority of the arable land of climate zone 1a. Compared 
with the national scenario, MACRO-DB gives additional protection for 

Fig. 5. MACRO-DB estimated 20-year average pesticide (or metabolite) concentrations leaching to groundwater for all soils belonging to hydrological classes L, W, or 
Y in climate zones 1a and 1b and all approved combinations of crops and doses for six common pesticides. For soils of hydrological class U, MACRO-DB does not 
generate any groundwater pesticide leaching for any pesticide application scenario. 

Table 4 
The proportions of MACRO-DB runs, and the proportions of arable land, 
exceeding the concentration limit for drinking water (0.1 μg L− 1) for approved 
pesticide application scenarios for six selected pesticides (parent or metabolite) 
on all arable soils occurring in climate zone 1a and 1b. N is the total number of 
MACRO-DB runs.  

Pesticide Proportion of MACRO-DB 
runs exceeding the limit for 
drinking water (%) 

Proportion of arable land 
exceeding the drinking 
water limit (%) 

Climate 
zone 1a 

Climate 
zone 1b 

Climate 
zone 1a 

Climate 
zone 1b 

Bentazone 41, N = 441 27, N = 308 60–85 4–41 
Clopyralid 63, N = 945 55, N = 660 66–97 24–97 
Diflufenican 0, N = 630 0, N = 440 0 0 
MCPA 10, N = 315 9, N = 220 0.03–10 0–1 
Prosulfocarb 0, N = 209 0, N = 148 0 0 
Prothioconazole- 

desthioa 
3, N = 955 2, N = 668 0–0.04 0–0.03  

a Metabolite of Prothioconazole. 

Fig. 6. MACRO-DB estimated 20-year average pesticide (or metabolite) con-
centrations leaching to groundwater for the soil (soil type Y2bu) of the national 
groundwater scenarios located in climate zones 1a and all approved combina-
tions of crops and doses for six common pesticides. 
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up to 41% of the arable land of climate zone 1b for Bentazone and 97% 
for Clopyralid. However, the upper limits of these intervals are for the 
rather unrealistic condition that all soil types with drainage options 
within MACRO-DB were parameterized as undrained. For MCPA, 
MACRO-DB is more protective of up to 10% of the arable area within 
climate zone 1a but less than 1% for climate zone 1b, while MACRO-DB 
is more protective for less than 0.05% of the arable area of both climate 
zones for Prothioconazole-desthio. 

The results of the MACRO-DB simulations can also be compared with 
groundwater monitoring data. Specifically for climate zones 1a and 1b, 
shallow groundwater is sampled at four locations, four times a year, in 
each of the two model catchments M42 and N34. Approximately 170 
groundwater samples have been analyzed for pesticides during the 
period 2011 to February 2022 (SLU, 2023). In catchment M42, Benta-
zone and Clopyralid were detected in 28% and 0.6% (all findings at 
concentrations <0.1 μg L− 1) of the samples respectively, whereas the 
other four selected pesticides were never detected. None of the six 
selected pesticides were found in the groundwater samples taken in 
catchment N34. According to a compilation of several data sources from 
1986 to 2014 at the national scale, Prothioconazole-desthio and Diflu-
fenican have not been detected in Swedish groundwater, whereas the 
remaining four selected pesticides are occasionally found (HaV, 2014; 
see Table 3), although in the case of Prosulfocarb only at a maximum 
concentration of 0.02 μg L− 1 (HaV, 2014) which is below the limit for 
drinking water. These results are in general qualitative agreement with 
MACRO-DB. 

4. Conclusions 

An online risk assessment tool (MACRO-DB) has been developed 
based on the simulation model MACRO which allows end-users (staff at 
local authorities, farmers/landowners and consultants) to perform fast 
and reliable risk assessments for drinking water protection areas in 
Sweden. Although MACRO-DB is specifically designed for use in Swe-
den, there is no reason why components of the tool and its supporting 
parameter inference system, for example the novel approaches used to 
link model parameters controlling site hydrology and the strength of 
preferential flow to soil type, could not be applicable to other parts of 
the world. 

A Global Sensitivity Analysis of MACRO-DB suggested that the 
sorption and degradation properties of applied substances would be 
overall the most important factor influencing pesticide concentrations in 
Swedish drinking water resources. Soil type, climate zone and applica-
tion season were much less important than compound parameters. 
However, the analysis also showed that variations in contamination risk 
among groundwater protection areas in Sweden for any given substance 
would be more likely dominated by variations in soil type and that in 
this context differences in soil organic matter content would be most 
critical. 

In a qualitative “reality-check” using realistic application scenarios 
for six widely used pesticides in southern Sweden, the MACRO-DB tool 
clearly distinguished between substances that are detected in Swedish 
groundwater at concentrations above the limit for drinking water (e.g. 
Bentazone, Clopyralid and MCPA) and those that are not (e.g. Diflufe-
nican, Prosulfocarb and Prothioconazole-desthio). Model outputs qual-
itatively coincided with, or were more restrictive than, the national 
groundwater risk assessment, which is a desirable outcome as a greater 
degree of precaution should apply for pesticide usage within drinking 
water abstraction zones. The outputs were also in general agreement 
with catchment and national-scale groundwater monitoring data. 
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