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A B S T R A C T   

Surplus production models (SPMs) have a long history in fisheries ecology and are important for the assessment 
and management of marine species and stocks. However, the implementation, application, and usage of these 
models vary across regions and case studies. Good practice guidelines can streamline modelling workflows, 
inform the acceptance or rejection of an assessment, and facilitate the derivation of management advice from 
accepted assessments. This paper discusses current practices in the application of SPMs and proposes good 
practice guidelines for their use in stock assessment. We complement our recommendations with results from a 
simulation study examining the performance of an age-based operating model and a SPM assessment model 
under 60 scenarios with various assumptions regarding data quantity, quality, and model priors. We provide 
specific good practice guidelines for two widely used state-space SPMs: SPiCT and JABBA. Finally, we discuss 
current limitations and suggest avenues for future developments for SPMs.   

1. Introduction 

Seventy years after their development and first application (Schae-
fer, 1957, 1954), surplus production models (SPMs) still play an 
important role for the assessment of fish stocks and, thus, fisheries 
management advice for their sustainable exploitation. SPMs are used to 
provide official conservation and management advice by at least five 
international fisheries advice bodies: International Council for the 
Exploration of the Sea (ICES), International Commission for the Con-
servation of Atlantic Tunas (ICCAT), Indian Ocean Tuna Commission 
(IOTC), Northwest Atlantic Fisheries Organisation (NAFO), and the 
General Fisheries Commission for the Mediterranean (GFCM). In fact, 
more than half of the stocks within ICCAT were assessed with SPMs in 
2022 (Cousido-Rocha et al., 2022). SPMs have additionally been 
implemented for several data-limited domestic stocks, such as in the 
United States (e.g., Kapur et al., 2019), Japan (e.g., Chiba et al., 2023), 
or South Africa (Winker et al., 2020b). SPMs have been applied to 
demersal flatfish species such as megrim Lepidorhombus spp. (ICES, 
2021a) and brill Scophthalmus rhombus (ICES, 2023a), pelagic species 

such as albacore Thunnus alalunga (ICCAT, 2017a) and swordfish Xiphias 
gladius (ICCAT, 2017b), elasmobranchs such as blue shark Prionace 
glauca (ISC, 2017) and thornback ray Raja clavata (ICES, 2023a), in-
vertebrates such as Norway lobster Nephrops norvegicus (González Her-
raiz et al., 2023) and tiger prawn Penaeus monodon (Zhou et al., 2009), 
and marine mammals such as fin whales Balaenoptera physalus (Moore 
and Barlow, 2011). SPMs have also been applied to global data sets 
investigating how the productivity of fish populations varies between 
taxonomic groups (Thorson et al., 2012) or used to couple environ-
mental conditions with population dynamics (Free et al., 2020; Fréon, 
1986). 

SPMs are based on the ecological theory of density-dependent pop-
ulation growth with exponential population growth at low abundance 
(numbers or biomass) and low population growth when abundance is 
close to the stock carrying capacity (K). For most implementations, 
biomass is aggregated across ages, sizes, and sexes. SPMs rely on the 
following assumptions: (i) the modelled biomass belongs to a closed 
population, where there is no immigration or emigration, (ii) only the 
part of the population that is vulnerable to fishing fleet is modelled, i.e., 
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the exploitable biomass, (iii) there are no lag effects, and (iv) typically 
estimated variables are constant throughout the extent of the available 
data. The generalised SPM includes a parameter that determines the 
shape of the production curve (n) and can be expressed in terms of 
biomass (B) by the following differential equation (Pella and Tomlinson, 
1969): 

dBt

dt
=

r
n − 1

Bt

(

1 −
[

Bt

K

]n− 1
)

− FtBt (1)  

where r is the intrinsic population growth rate and F is the instantaneous 
fishing mortality rate. Surplus production is the amount of the biomass 
that can be sustainably harvested while maintaining population size. 
The relationship between the surplus production and stock biomass is 
described by the production curve, where the maximum corresponds to 
the maximum sustainable yield (MSY). Two common assumptions for 
the shape parameter, which determines the skewness of the production 
curve, are: the Schaefer model that assumes a symmetrical production 
curve with MSY corresponding to the biomass at half of carrying ca-
pacity K (n = 2; Schaefer, 1954) and the Fox model that has an asym-
metrical production curve with MSY at 37% of carrying capacity K (n → 
1; Fox, 1970). 

SPMs typically require a time series of fishery removals and a relative 
measure of stock abundance (either as catch-per-unit-effort or from a 
survey index). There is a long history of estimating parameters using 
surplus production models and estimation methods have evolved 
considerably since their first introduction. Early approaches relied on 
the assumption that the stock is at equilibrium wherein the relationship 
between the index and effort is linear. This facilitates parameter esti-
mation but must be avoided as these methods often over-estimate sur-
plus production and FMSY (Hilborn and Walters, 1992), especially when 
the data are from a period where the stock has been declining. 

Non-equilibrium methods were developed with the advent of com-
puters, including observation-error and process-error estimators and 
more recently state-space formulations that estimate both types of un-
certainty. Several studies compared these methods with varying results 
(e.g., Pedersen and Berg, 2017; Polacheck et al., 1993; Punt, 2003; 
Williams and Prager, 2002). Observation-error-only models seem to 
perform better than process-error models, while both are out-performed 
by state-space models in most cases. We recommend using 
non-equilibrium methods and especially state-space methods that are 
readily available as well-documented, user-friendly, free, and 
open-source software implementations. 

Like in any model, the process equation (Eq. 1) is a simplified version 
of the real world that neglects many aspects affecting the population, 
such as ecosystem and environmental effects or population structure. A 
useful model ideally captures important characteristics of the popula-
tion and can, therefore, be used to do short-term forecasts and support 
scientific advice. Process variability is modelled by adding an error term 
to the deterministic equation of surplus production (Eq. 1), most often as 
lognormally distributed deviations or as a Wiener process for continuous 
time models like the Stochastic surplus Production model in Continuous 
Time (SPiCT; Pedersen and Berg, 2017). SPiCT is using the Fletcher 
reparameterization of Eq. 1 (Fletcher, 1978) with parameters m =

rK/nn/(n− 1), which is the deterministic maximum sustainable yield, and 
the purely numerical γ = nn/(n− 1)/(n − 1). Adding the stochastic part 
leads to the stochastic differential equation: 

dBt =

(

γm
Bt

K
− γm

[
Bt

K

]n

− FtBt

)

dt + σBBtdWt (2)  

where σB is the standard deviation of the biomass process noise and Wt is 
Brownian motion. The underlying assumption is that the deterministic 
model is correct except for random deviations due to unmodelled pro-
cesses. This assumption can be tested by evaluating the process re-
siduals. 

The unobserved processes are estimated using the observation 
equations describing the biomass index, It, and catch, Ct : 

log(It) = log(qtBt)+ et (3)  

log(Ct) = log
(∫ t+Δt

t
FsBsds

)

+ εt (4)  

where qt is the catchability parameter of the abundance index and 
et ∼ N

(
0, σ2

I
)
, ϵt ∼ N

(
0, σ2

C
)

are independent normal deviates; σI and σC 

are the standard deviations of the index and catch observation errors, 
respectively. The catch is observed over a time interval Δt. A time- 
varying catchability qt is presented in the above formulation, but 
catchability is often assumed to be constant. The quantities are modelled 
in log-space ensuring strictly positive observations and transforming the 
multiplicative error structure to additive, which leads to a more stable 
fitting problem (Pedersen and Berg, 2017). The independence of the 
observations implies that any dependence between responses is only due 
to the unobserved states (Aeberhard et al., 2018). 

Various SPM implementations relax some of the baseline assump-
tions, e.g., SPMs can include time-varying model parameters (Chang 
et al., 2020; Mildenberger et al., 2020). In theory, every assessment 
model involves the concept of surplus production (Schnute and 
Richards, 2002). However, many other widely-used population dy-
namics and stock assessment models such as the state-space assessment 
model (SAM; Berg and Nielsen, 2016; Nielsen and Berg, 2014) or Stock 
Synthesis (Methot and Wetzel, 2013) model the age structure of the 
population and separately represent the processes of recruitment, so-
matic growth, maturation, and natural mortality. SPMs, on the other 
hand, only track the aggregated exploitable stock abundance over time 
(Pedersen and Berg, 2017) and the population dynamics processes are 
lumped together into a single production function (Eq. 1), while 
ignoring maturation and time lag effects of recruitment into the fishery 
(Aalto et al., 2015). The spawning stock biomass (SSB) is not estimated 
in the model. It can be approximated by the exploitable biomass if the 
fishery selectivity ogive is similar to the maturity ogive and for higher 
biomass levels where the ratio of exploitable biomass to spawning stock 
biomass is constant (Winker et al., 2020a). 

While the model simplifications do not allow for inference about 
cohort length or age-specific processes, SPMs are valuable for the 
assessment of data-moderate stocks where assessment methods that 
model the population structure cannot be applied (Ludwig and Walters, 
1989, 1985). Here, we use the term "data-moderate” to describe stocks 
that lack sufficient age or length information but have time series of 
catch and one or more abundance indices; we use the term "data-rich” to 
describe stocks that can be assessed with age- or length-based methods. 

The modelled biomass B is the part of the biomass that is affected by 
the catch (Eq. 1) and therefore should be the exploitable biomass. 
Nevertheless, the assessment can be based on additional assumptions, e. 
g., that the fisheries selectivity ogive is very similar to the maturity 
ogive, i.e., B can be interpreted as the SSB. 

SPMs require only catch time series and an index of abundance, 
based either on a fishery-independent (scientific) survey or on a fishery- 
dependent catch per unit of effort (CPUE) time series. The influential 
and difficult to estimate natural mortality rate does not need to be 
explicitly defined or estimated (Maunder et al., 2023; Punt et al., 2021). 
Here, we focus on biomass-dynamic models, and do not cover other 
types of production models like age-structured production models 
(ASPM; Hilborn, 1990), or extensions to SPMs that directly incorporate 
additional information (e.g., life-history parameters, selectivity), like 
Just Another Bayesian Biomass Assessment-select (JABBA-Select; 
Winker et al., 2020a), because these models rely on different underlying 
assumptions and an extended set of stock parameters. 

Because of the low data requirements, SPMs are often applied to 
data-moderate fish stocks. To estimate parameters that define the shape 
(n), height (MSY) and width (K) of the production curve and therefore be 
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able to reliably estimate reference points, it is necessary to have obser-
vations (catch and index) from periods where the stock was highly and 
mildly exploited (Kai and Yokoi, 2019) such that the stock’s response in 
terms of surplus production at various stock sizes can be inferred. The 
term ‘contrast’ describes how much of the production curve has been 
observed, e.g., low contrast indicates that the available data only cover a 
limited part of the production curve. When the contrast is low, there is 
insufficient information in the data, hindering reliable estimation of 
model parameters. A common way to estimate model parameters under 
these conditions is to use auxiliary information to define prior distri-
butions for key model parameters. For that reason, most generalised 
SPMs are either fully Bayesian or have the option to specify prior-like 
penalties in a maximum likelihood framework. 

The Johannesburg declaration on sustainable development identifies 
as first action for sustainable fisheries to “maintain or restore stocks to 
levels that can produce the maximum sustainable yield with the aim of 
achieving these goals for depleted stocks” (UN, 2003). This translates to 
management using target MSY reference points. An advantage of SPMs 
over other common stock assessment methods is that such target refer-
ence points are clearly defined within the model and derived from pa-
rameters estimated by the model. The uncertainty around the estimated 
reference points is also quantified. These reference points imply the 
existence of a fishing mortality FMSY that on the long term will bring the 
stock to a biomass BMSY at which the maximum yield can be extracted 
from the population. 

Focusing mainly on data-rich stock assessment methods, Punt (2023) 
provides good practice guidelines for stock assessment and recommends 
age-structured population models. This paper extends those guidelines 

to situations where age or length measurements are unavailable or only 
sporadically sampled, but reliable time-series of catch and fishing effort 
data are available. Besides low commercial importance, a lack of reliable 
and regularly collected age and length data is still one of the main 
reasons why the majority of global exploited stocks remains unassessed 
(Blasco et al., 2020; Costello et al., 2012; Hilborn et al., 2020; Neubauer 
et al., 2013). We propose good practice guidelines for SPMs regarding: 
(1) Input data and data preparation, (2) Model configuration and fitting 
procedures, (3) Model performance diagnostics and model acceptance, 
(4) Choice of model, and sensitivity analysis, and (5) Management 
advice (Fig. 1). The guidelines synthesise lessons learnt and recom-
mendations from several recent method development and assessment 
working groups (e.g., ICES, 2023b, 2021a, 2020a), build upon existing 
recommendations for SPMs (Cousido-Rocha et al., 2022), and are 
further supported with additional insights from a simulation study based 
on 60 scenarios used to explore effects of process variation, index pre-
cision, time-series length, missing data, and model priors. The simula-
tion study is based on an age-based operating model parameterised 
according to the life-history parameters of the haddock (Melanogrammus 
aeglefinus, L. 1758) stock in the Celtic Sea (ICES, 2019; Supplementary 
Fig S1), one of the most important demersal species in the area that has 
an age-based assessment. SPiCT is used as the assessment model (See 
Supplementary Section S1 for a detailed description of the 
simulation-estimation framework and the scenarios including a baseline 
assessment in Fig S2 and the effect of observation and process uncer-
tainty to results in Figs S3–4). We provide comprehensive good practice 
guidelines for SPMs in general, with a specific emphasis on the two most 
used SPMs in the above listed fisheries advice organisations: SPiCT 

Fig. 1. Flowchart of good practices for surplus production models. MCMC refers to Markov Chain Monte Carlo. ESB is the exploitable stock biomass. CPUE is the 
catch per unit of effort. 
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(Pedersen and Berg, 2017) and JABBA (Winker et al., 2018). Finally, we 
discuss shortcomings of SPMs based on literature and simulation studies, 
and outline areas of future model research. 

2. Input data and data preparation 

The minimum data requirements for SPMs are a time series of catch 
and an index of abundance (Hilborn and Walters, 1992). Some SPMs 
make use of an optional effort time series (Pedersen and Berg, 2017) for 
the purpose of informing the underlying fishing mortality process. 
Finally, for Bayesian methods, prior distributions are required for all 
estimated model parameters. 

2.1. Catch 

The commercial catch time series provides important information 
about the absolute scale of the fish stock and the total removals from the 
population resulting from fishing pressure. The catch time series has to 
be as complete as possible and should represent either landings or total 
catch (landings and discards), but not a combination of both (i.e., some 
years with and others without discard information). Catch should be 
used as total weight (or total numbers) caught within the same time 
interval used in the model (Eq. 4). Catches are typically annual, but in 
the case of continuous-time models like SPiCT, shorter time intervals (e. 
g., quarters) can be used if more disaggregated data is available (e.g., 
Mildenberger et al., 2020). 

Recreational fisheries can constitute a substantial fraction of or be 
even higher than commercial catches. Appropriate quantification of 
discards and recreational harvest is important to avoid estimation bias, 
particularly if the discarding or recreational fishing mortality rate varies 
over time, which can result in sub-optimal management of the stock 
(Omori et al., 2016). Reliable recreational fishery data is often scarce 
(van Gemert et al., 2022) and reconstruction of total removals can be 
difficult. 

A common problem for many stocks is uncertain catch information 
during the early part of the time series due to missing historical discard 
rates, a lack of species disaggregated information, or misreporting ac-
cording to species allocation of landings. Although it can be difficult to 
reconstruct historical catches (landings and discards), rough estimates 
(with an additional time-series of uncertainty included in the model; see 
section about variance estimates and uncertainty scaling below) can still 
be useful for SPMs as they may contain additional information and in-
crease the contrast in the data. When historical catches constitute the 
highest observed catches, it adds to the contrast as there are observa-
tions from a wider range of exploitation levels. State-space SPMs can 
account for observation errors, such that time-periods with more un-
certain catch observations can be included in the model without giving 
them undue leverage on model estimates (Pedersen et al., 2011). 

2.2. Abundance index 

Indices of abundance constitute the other important type of input 
data for SPMs. The main assumption is that they are proportional to the 
exploitable part of the stock biomass and provide information on the 
relative stock size over time rather than the absolute population scale. 
SPMs can operate using absolute biomass estimates if such time series 
are available (e.g., Antarctic blue whales; Hamabe et al., 2023). The 
catchability parameter does not need to be estimated and is used as a 
constant q = 1 in Eq. 3, when absolute abundance is available. 

Abundance indices can be derived from one or more fishery- 
independent scientific surveys or from commercial catch per unit 
effort (CPUE) series, the latter ideally from the part of the fishing fleet 
that is responsible for the majority of the catches. Abundance indices are 
assumed to be snapshots at given points in time (Eq. 3), such as a single 
month during the fishing year. Thus, in a SPM with sub-annual time 
steps (e.g., SPiCT), the exact timing of the observations must be 

specified, or the indices must be assigned to their closest model time 
steps. Commercial CPUEs, which are based on annual catch and effort 
observations, should be assigned either to the peak of fishing activity 
within the year (if such information is available) or to the middle of the 
year in a SPM with sub-annual time steps. 

The standardisation of CPUE indices plays an important role and 
good practices should be followed for any assessment method that uses 
CPUE, as unstandardised or wrongly standardised CPUE indices can 
introduce bias to the SPM estimates (Grüss et al., 2023; Maunder and 
Punt, 2004). The following is a set of considerations to inform good 
practice when standardising CPUE for use in SPMs; for a comprehensive 
review of CPUE standardisation methods, we refer to Hoyle et al. (2024). 

Standardisation of indices can incorporate different types of infor-
mation that are not otherwise available for data-moderate stocks. We 
describe how various data types can be used; in the absence of specific 
data, assumptions need to be made and sensitivity analyses should be 
performed to evaluate the impacts of each assumption. Assessors should 
consider that factors such as targeting, spatial patterns, or technological 
creep that may bias the perception in abundance trends when unac-
counted for (Maunder and Punt, 2004; Nielsen, 2015). The standardi-
zation of commercial CPUE should account for the spatial distribution of 
the stock either on a fine (Thorson et al., 2016) or in a coarse spatial 
scale (Grüss et al., 2019). Typically, a fishery will have greater temporal 
coverage, but will be spatially focused on areas of certain life stages and 
likely not cover the full stock distribution area. Conversely, scientific 
surveys may have better spatial coverage of the stock distribution, but 
less temporal coverage and proportion of stock caught influencing cer-
tainty of density and abundance estimates (e.g., Nielsen, 2015; Rufener 
et al., 2021). Multiple surveys that each cover only a subset of the stock 
area (e.g., country specific surveys) should not be used as independent 
indices in the model, rather they should be combined into a single stock 
index, if possible. However, several independent representative indices 
should not be combined. For example, brill in the North Sea is assessed 
using SPiCT and includes three indices, the first two represent first and 
second semester indices and combine several national beam trawl sur-
veys, while the third index is based on the first quarter North Sea In-
ternational Bottom Trawl Survey (NS-IBTS Q1; ICES, 2023a). 

Zero observations must be modelled properly (Maunder and Punt, 
2004) and different assumptions of technological creep should be 
explored (Eigaard et al., 2014). The targeting behaviour of mixed fish-
eries fleets must be considered (Winker et al., 2013) as well as alter-
native error distributions and model formulations for the 
standardisation procedure. CPUE models should not include terms that 
smooth over time to avoid introducing autocorrelation in the index es-
timates, as these will render the resultant time series to be 
non-independent through time, breaking an important assumption of 
the SPM. The uncertainty of the indices should be quantified and used in 
the SPM as relative weights if uncertainties change over time, and/or 
used to inform the model about observation variance parameters, e.g., 
through priors. 

A main assumption of SPMs is that the modelled biomass is the 
exploitable or vulnerable biomass. To satisfy this assumption, the 
abundance indices should represent the exploitable part of the stock 
corresponding to the subset of the stock that is exploited by (or 
vulnerable to) the overall fisheries fleet. For commercial CPUEs, this is 
per definition the case, but for fisheries independent indices some steps 
need to be taken during standardisation to satisfy this assumption, 
otherwise additional uncertainty or bias can be introduced to the model 
estimates. It is common that scientific surveys capture a larger part of 
the population due to difference in selectivity compared to the com-
mercial fleet; often the smallest individuals are only caught during sci-
entific surveys. Excluding the non-exploitable part of the survey catches 
can be done in different ways, depending on available information. 
Expert knowledge can be used to exclude all individuals below a certain 
size that is assumed not to be caught by the commercial fleet. If size (or 
age) distributions from the survey and the commercial catches are 
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available, a simple correction factor can be calculated based on the ratio 
of the two distributions and used to adjust the catches from scientific 
survey so that they correspond to the vulnerable part of the population 
(cf. case study in Pedersen and Berg, 2017). We suggest keeping such 
correction factors constant through time. If there are major time trends 
in the selectivity, we caution against the use of SPMs as this will intro-
duce time varying MSY reference points as well. 

Finally, the abundance index can be defined in a different way when 
the modelled biomass is the SSB instead of exploitable biomass or when 
the stock is exploited by many different gears with different selectivities. 
The former case occurs when the selectivity of the commercial fleet can 
be assumed to be similar to the maturity ogive and an SSB index should 
be used, calculated solely from mature individuals caught in the survey. 
In practice, a known or assumed length at 50% maturity (L50) can be 
used as cut-off. For the latter case, there is no clear definition of 
exploitable biomass for stocks that are harvested by multiple gears with 
different selectivity ogives. Additional assumptions are required about 
the abundance index and consecutively about the assessment in general. 
Since catches are a result of the combined selectivity of all commercial 
fishing gears, the index should ideally approximate the selectivity pro-
file of the major fleets. When a single fleet is responsible for the majority 
of the catches, a CPUE index that corresponds to the selectivity of that 
fleet can be used. A cut-off length can be used to calculate exploitable 
biomass index, or the ratio of proportions at length or age can be used if 
length or age distributions are available from the survey and the fishery 
(Pedersen and Berg, 2017). 

2.3. Effort 

Another potentially informative data type, which is less frequently 
used in SPMs, is total fishing effort that can provide important infor-
mation regarding the trend in fishing mortality. An effort time series is 
informative if it corresponds to a substantial part of the fishing fleet that 
catches the stock, and if the catchability of the fleet representing the 
effort does not change significantly, e.g., by extensive technological fleet 
developments. Therefore, effort data are more easily included in models 
that have an unobserved process for fishing mortality (e.g., SPiCT). The 
main motivation for using observations of total effort rather than 
deriving commercial CPUE from them, is that observation errors on 
effort and catch should be independent, whereas errors on catch and 
CPUE are not independent because the error in catches affects both. 
Good effort information is not always easy to obtain for several reasons 
and the following caveats should be considered. Effort information is not 
always routinely monitored like commercial catches and information 
collected from scientific surveys. It is even more difficult to collate effort 
information further back in time. Further, it is not straightforward to 
harmonise effort from diverse fishing fleets and fishing gears, e.g., effort 
from static gillnets and from active trawls, and to select fleets that target 
the species or that are responsible for substantial catches as bycatch (e. 
g., Nielsen, 2015; Nielsen et al., 2006; Ulrich et al., 2012). Furthermore, 
effort information is considered sensitive economic information and 
there are issues of sharing and combining effort information especially 
for stocks that are shared between different political entities that jointly 
exploit the stock. 

2.4. Length of time series 

The time series length of available input data is important, and a 
general guidance can be derived from the number of observations 
relative to model parameters. For example, SPiCT and JABBA have 8 and 
5 model parameters using one abundance index and default settings, 
respectively. The simulation study shows that at least 15 years of data 
are required for the time-series to be informative enough and have 
contrast to estimate all model parameters. A shorter time series can lead 
to inaccurate and imprecise estimates (Supplementary Figs S5 and S6). 
Increasing time series length reduces uncertainty in all model estimates 

and derived states, but only in the case of increasing contrast in the data 
(Supplementary Figs S5-S10). The results of the simulation study 
confirm findings by Hilborn and Walters (1992) on the importance of the 
contrast in the data: Overall the more contrast the better, low contrast 
leads to non-convergence, biased estimates, and high uncertainty ac-
cording to the simulation study (Supplementary Figs S9 and S10). Pe-
riods of low fishing pressure and high stock biomass are of particular 
importance, which can likely be attributed to the fact that these periods 
carry information to estimate K. Lack of information due to data quan-
tity (e.g., short time series length) or data quality (e.g., lack of contrast) 
demands more informative model priors. One-way historical exploita-
tion patterns can lead to biased and uncertain estimates (Supplementary 
Figs S11 and S12). 

2.5. Variance estimates and uncertainty scaling 

The input data time series discussed above are typically results of 
monitoring and data collection as well as modelling and simulation ef-
forts. It is common that these time-series are varying in precision 
throughout their duration. Several factors can affect the relative un-
certainty of these time series. For example, early catch statistics could be 
more uncertain compared to more recent ones as argued above, e.g., due 
to improving data collection, or scientific surveys could be disrupted by 
weather conditions or global pandemics that reduce sampling in some of 
the years. The observation errors for abundance indices can be formu-
lated based on annual standard error estimates from the index stand-
ardisation model, both in terms of inter-annual and absolute precision. 
Accordingly, the relative uncertainty can be determined qualitatively or 
quantitatively, respectively. An additional time series of uncertainty can 
be included in the model for each of the observation time series (catch, 
index, effort). For each observation, the corresponding uncertainty acts 
as a multiplier to the overall observation standard deviation, thus acting 
as scaling of the estimated uncertainty of that observation. In SPiCT, the 
error structure in Eqs. 3 and 4, is effectively et ∼ N

(
0,ψ t σ2

I
)
, 

ϵt ∼ N
(
0,ϕt σ2

C
)
, where ψ and ϕ are the uncertainty scaling vectors; the 

ψ and ϕ vectors need to be standardised to have an average of one to 
avoid having an effect on the estimate of the overall observation error 
and changing the interpretation of the estimated variance parameters 
and their prior distributions. Additional uncertainty time series can be 
used in a different way. In JABBA, annual variance estimates for the 
abundance index can be specified as additional input time-series and are 
treated as minimum observation error as they are added to the overall 
fixed and estimable variances to calculate the total variance of each 
observation (Winker et al., 2018). 

Qualitative scaling requires an assumption on the relative weights 
for the different uncertainty periods. To illustrate, we consider a situa-
tion where there is knowledge about changes in the catch monitoring 
process of a stock where the sampling was much lower in the first part of 
the time series compared to the latter part. A reasonable assumption is 
that catch observations are more uncertain in the first part and a scaling 
time series can be used informing the model that the earlier observations 
are, e.g., twice as uncertain as the rest. Of course, the level of uncertainty 
difference is unknown and the effect of that assumption to the results 
should be tested with a sensitivity analysis, where alternative levels are 
selected. In addition to relative uncertainties, absolute estimates of 
observation variance can be very useful for SPMs, because time-series 
are often too short to reliably separate process error from observation 
error in the model. 

3. Model configuration and fitting procedures 

The implementation and fitting procedures of SPMs have evolved 
from simple models assuming equilibrium conditions and perfect ob-
servations, to models that estimate observation or process errors, and, 
finally, to complex state-space models with seasonal processes and 
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multivariate prior distributions (Cousido-Rocha et al., 2022; Hilborn 
and Walters, 1992). Good practice is to use state-space models, i.e., 
models that include a set of functions that describe the unobserved 
stochastic processes over time based on a model of the system’s dy-
namics and a set of functions that relate the noisy observations to the 
unobserved quantities. Thus, the surplus production of state-space SPMs 
does not only depend on the biomass (density dependence, Eq. 1), but 
also on a random component (process error) that describes stochastic 
variability around the deterministic biomass process equation (Eq. 2). 
Most observation and process error estimators are nested within the 
more complex state-space SPMs (Polacheck et al., 1993). While most 
modern SPMs include an unobserved process for the production func-
tion, to the knowledge of the authors, only SPiCT also assumes an un-
observed process for fishing mortality (F). This enables the estimation of 
the uncertainty associated with catch observations, and the prediction of 
F at any time independent of the catch observations, including periods 
with abundance index observations but without catch observations, and 
prediction of missing catch observations. The unobserved process for F 
increases the model complexity, requiring more parameters to be esti-
mated from limited data and difficulty to define the underlying F process 
(for example, SPiCT assumes a random walk). Another aspect that varies 
between different SPM implementations is whether the models are 
discrete models with annual time steps (e.g., Winker et al., 2018), or are 
formulated in continuous time (e.g., Pedersen and Berg, 2017; Prager, 
1994). Sub-annual model time steps make it possible to include seasonal 
model processes for F and B when sampling occurs at irregular intervals, 
such as combining yearly and quarterly data (Mildenberger et al., 2020). 

The estimation of some model parameters can be problematic. Two 
common examples are the estimates of the intrinsic growth rate r and 
carrying capacity K that are known to be correlated (Fletcher, 1978), 
and the shape of the production curve (n), which is notoriously difficult 
to estimate (see discussions in Maunder, 2003; Prager, 2002). The pa-
rameters and posterior distributions for these state-space models cannot 
be estimated analytically due to the large number of parameters (fixed 
parameters and random effects) and nonlinearity of the surplus pro-
duction function (Eq. 1). Thus, parameters are typically estimated by 
either maximising the log-likelihood function (e.g., SPiCT) or applying a 
general-purpose Markov chain Monte Carlo method (MCMC; e.g., 
JABBA). While MCMC allows including priors directly, optional priors 
can be included in the former by multiplying them with the likelihood 
function to obtain posterior distributions. The maximum of the posterior 
distributions defines the Bayesian maximum a posteriori parameter es-
timates. While current modelling frameworks and fitting procedures for 
SPMs have reached a high level of sophistication, there are still some 
considerations to account for (Best and Punt, 2020), and ultimately, any 
model is only as robust as the data that went into it. 

3.1. Prior distributions 

A priori knowledge about model parameters can be included in a 
model as prior probability distributions (here referred to as priors). For 
true Bayesian models such as JABBA, all model parameters require a 
prior. On the other hand, state-space models that are fit with maximum 
likelihood such as SPiCT, priors for some of the model parameters can be 
added as likelihood penalties. These priors are optional but might be 
important for ensuring model convergence or addressing residual issues 
of conflicting abundance indices. Ideally, priors are specified based on 
empirical information about the stock under study or, alternatively, 
from closely related stocks or species with similar life histories or 
domain knowledge. This information can be obtained from large data-
bases such as FishBase (Froese and Pauly, 2023) and by means of R 
packages such as rfishbase (Boettiger et al., 2012) and FishLife (Thorson 
et al., 2023). Alternative sources for defining priors are meta-analyses 
(e.g., Thorson, 2020; Thorson et al., 2012), auxiliary information, or 
expert knowledge. In absence of auxiliary information, informative 
priors should be avoided. Truly uninformative priors do not exist, and 

sensitivity analysis is required to evaluate differences between prior 
choices. Thorson and Cope (2017) warn against the use of seemingly 
uninformative uniform priors on the logarithm of the population scale 
(the carrying capacity in SPMs) and showed that the chosen upper 
bound of these uniform priors can be very influential to the estimates. 
The mean of any prior corresponding to quantities on log scale should be 
bias corrected by subtracting the variance of the mean divided by two 
(Finney, 1941). In general, priors for stock-specific model parameters 
(K, MSY) should be avoided in SPMs with maximum likelihood esti-
mation and uninformative (wide) priors should be preferred for 
Bayesian SPMs. Such parameters are rarely transferrable between stocks 
or species and making good guesses about their magnitude is not 
straightforward. Finally, informative priors have to be selected with 
caution as they can lead to biased estimates, as is illustrated from the 
results of the simulation study (Supplementary Figs S13-,16). It is 
therefore recommended to always perform sensitivity analyses of all 
priors used in a production model to avoid a situation where key model 
output is driven by one or more priors, or at least be aware about it. 

Conceptually, it is only possible to estimate the shape of the pro-
duction curve if a stock had remained notably below BMSY over several 
years of the time series. The simulation study confirmed that the shape 
parameter is a parameter that is difficult to estimate for SPMs even with 
sufficient contrast and a long time series. However, a wide prior (here: 
SD = 2–10) can help the model to converge without causing substantial 
bias even if misspecified (Supplementary Figs S13-,16). At the same 
time, a misspecified n prior can also cause biased estimates if a tighter 
standard deviation is used (here: SD < 2). When the misspecified n prior 
has a mean larger than the true n, the bias was towards the precau-
tionary side (median relative error < +/- 21%), i.e., overestimating F/ 
FMSY and underestimating B/BMSY, and is less precautionary (median 
relative error between − 34% and 56%, for the two quantities respec-
tively) when the mean of the n prior is smaller than the true n (Sup-
plementary Figs S13-,16). 

3.1.1. Priors from meta-analyses 
Meta-analyses can be useful for defining priors for some SPM pa-

rameters. Model parameters that largely depend on life-history param-
eters of a species, such as the intrinsic growth rate (r) or the shape of the 
production curve (n) are generally better candidates for borrowing in-
formation from other studies and systems, than model parameters 
specifying stock-specific quantities such as the carrying capacity K (and 
maximum productivity m for SPiCT). Two meta-analyses are available 
that suggest taxonomic prior values for r (Thorson, 2020) and n (Thor-
son et al., 2012). While r and n are likely to be more comparable between 
different stocks, it should be noted that stock- and fishery-specific fac-
tors, such as the fleet selectivity and the exploitation history can imply 
different shapes of the production curve and thus affecting n and r (e.g., 
Szuwalski, 2019). In addition, before borrowing model parameters from 
the literature, it should be confirmed that the values are biologically 
reasonable, and that the parameterisation of the meta-analysis model 
used to derive prior distributions is consistent with the stock-assessment 
model. Moreover, model parameter estimates of n, r and K are often 
correlated and consequently are the stock’s reference points (MSY, FMSY, 
BMSY); this fact has to be accounted for when borrowing information 
between assessments or from meta-analyses. Keeping all other param-
eters constant, the reference points depend on the shape of the pro-
duction curve, with smaller n implying larger FMSY and MSY and smaller 
BMSY (Fig. 2 A). The same is true the other way round: keeping all 
reference points constant, the parameter r and K (and the maximum 
surplus production parameter m of SPiCT) depend on the shape of the 
production curve, with smaller n implying smaller r and larger K (Sup-
plementary Fig S17). In the context of using meta studies to inform 
priors, all parameter values of the model used for the meta-analysis 
should be considered when defining a prior for a model parameter. 
We recommend borrowing parameters between equivalent models, e.g., 
use meta studies based on the Schaefer model to construct priors for a 
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Schaefer model. Nevertheless, in many cases parameter estimates will 
not be available from the same model and transferring parameter values 
comes with some caveats and needs to be scrutinised. Borrowing pa-
rameters between models with different production curves will lead to 
different reference points as illustrated with the following example. 
Setting a prior for the intrinsic growth, r, with mean equal to 0.4 for a 
Fox production model (n = 1) based on a meta-analysis that used a 
Schaefer production model (n = 2) implies that FMSY is twice as large as 
in the meta-analysis (0.4 instead of 0.2). To ensure that the FMSY is kept 
the same, a prior mean of 0.2 should be used for the Fox model. In other 
words, FMSY is transferable between models, but the intrinsic growth rate 
is not. The relationship between model parameters (r and K) and 
reference points can be approximated as equations that imply constant 
reference points for any n > 1 (Table 1). However, due to the correlation 
between r and K only one of the reference points can be kept constant 

and holding one constant might strengthen the effect of n to the others 
(Fig. 2B-D). 

Not accounting for these relationships between parameters might 
have unintended consequences for the model fit and lead to biased 
reference points. In addition, it should be noted that different model 
implementations (such as a continuous time implementation versus one 
in discrete time), will lead to different parameter estimates for the same 
data. These differences are most pronounced for stocks with fast dy-
namics (high values of r), so extra care is advised for such stocks when 
using priors generated from other model implementations. 

Another model parameter that is a suitable candidate for a prior from 
meta studies is the biomass process error. The biomass variability likely 
depends on the life history parameters of a species and their suscepti-
bility to changes of environmental and ecological factors. 

3.1.2. Priors from stock-specific (auxiliary) information 
Separation of observation and process error is challenging and re-

quires a large amount of data (De Valpine and Hilborn, 2005). In many 
cases the available data are insufficient and estimating simultaneously 
process and observation error parameters proves problematic. We sug-
gest that observation errors of SPMs should be compared to those esti-
mated by raw data to check if these estimates are reasonable. SPMs 
observation errors are not expected to be substantially lower than the 
raw data estimates (cf. Maunder and Punt, 2004). On the other hand, 
larger SPM estimates are plausible, e.g., when a survey index that does 
not sample the whole population distribution will potentially be noisier 

Fig. 2. The relationship between the shape of the production curve (n) and the biological reference points based on maximum sustainable yield (FMSY, BMSY, and 
MSY) for three different combinations of the intrinsic growth rate (r) and carrying capacity (K) estimated with a Schaefer production model (n = 2). The first column 
(A1-3) does not use any adjustment, the second column (B1-3) adjust r so that FMSY is independent on n, the third column (C1-3) adjusts K so that BMSY is independent 
on n, and the fourth column (D1-3) adjusts r (solid lines) or K (dotted lines) so that MSY is independent of n. The equations for the adjustments are listed in Table 1. 

Table 1 
Equations to adjust r or K to calculate reference points (FMSY, BMSY, MSY) for any 
n > 1. Where x is the n parameter of the meta study, y is the n parameter value of 
the assessment model (or mean of the prior), ζ = (1/n)(1/(n− 1)

), and γ =

n(n/(n− 1)/(n − 1).  

Reference point Adjust r Adjust K 

FMSY rn=y = rn=xn/x No effect 
BMSY No effect Kn=y = Kn=x ζn=x/ζn=y 

MSY rn=y = rn=x γn=y/γn=x Kn=y = Kn=x γn=y/γn=x  
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than estimated just by raw data. Circumventing this issue often requires 
including informative priors on each of the error terms based on avail-
able data or other stock assessments. For instance, a prior for the 
abundance index uncertainty could be based on the estimated coeffi-
cient of variation (CV) (or standard deviation (SD) on log scale) of the 
model used for the standardisation of the abundance index or com-
mercial CPUE. 

It is common to have an initial period where only catch information 
is available; in such situations, it may be necessary to provide additional 
information about the initial depletion level of the population to achieve 
model convergence. For instance, the use of this prior increased the 
convergence rate from 65% to up to 92% in the simulation study 
(Supplementary Fig S18). In SPiCT and JABBA, the prior on initial 
depletion is specified as the ratio of year-one biomass to carrying ca-
pacity (By=1/K). The choice of this prior should ideally be informed by 
knowledge of the fishery in the period preceding the start of the included 
time series. If there was no established fishery before the start of 
available data, it is reasonable to assume that the stock was close to 
carrying capacity, i.e., a prior for initial depletion with mean value close 
to one (e.g., 0.9) can be used. On the other hand, if there is knowledge of 
high catches an initial depletion prior with a lower mean should be used. 
We suggest choosing initial depletion priors with caution and to perform 
sensitivity analysis to investigate the effects of alternative choices, both 
on model estimates and on the short-term forecast; vague, uninforma-
tive priors should be preferred. The choice of the initial depletion prior 
can be very influential on the accuracy and precision of the estimated 
reference points and absolute states when the historical abundance 
index is missing. Relative states, on the other hand, seem to be more 
robust to misspecified initial depletion level priors when the historical 
abundance index is missing according to the simulation study (Supple-
mentary Figures S18–19). However, when historical catches are missing, 
the initial depletion level prior can have unintended negative effects 
even on the relative states if misspecified and should, thus, only be used 
with caution (Supplementary Figures S20–21). When historical infor-
mation is available, a misspecified prior for the initial depletion level 
with a standard deviation of 0.5 or larger did not affect the results 
negatively apart from an extreme depletion prior with mean 0.01 
(Supplementary Figures S22–23). 

3.2. Model performance diagnostics and model acceptance 

All mathematical models are a simplified version of the real world 
and, therefore, are constructed on a set of underlying assumptions. The 
above-mentioned assumptions of SPMs must be carefully considered 
during all stages of model application and use, from the data prepara-
tion, model fitting, and scrutinising the results. Violation of the under-
lying assumptions can give misleading, biased, and/or meaningless 
results. By extending the model it is possible to relax or completely 
remove some of these assumptions. For instance, SPiCT can estimate 
time-varying productivity and/or time-varying carrying capacity (Mil-
denberger et al., 2020), and JABBA-Select can model selectivity changes 
and, thus, fleet specific estimates of exploitable stock biomass and 
reference points (Winker et al., 2020a), or using a Pella-Tomlinson 
hockey-stick composite model for surplus production, where the sur-
plus production is equal to the Pella-Tomlinson model above a threshold 
of B/K and decreases linearly to zero when it is below that threshold 
(Winker et al., 2018). 

Diagnostic tools are an important part of all modern implementa-
tions of assessment methods. Assessments should be checked for mis-
specifications and evaluated according to four criteria: model 
convergence, fit to the data, model consistency, and prediction skill 
(Carvalho et al., 2021). Similar sets of tests are now used around the 
world to scrutinise model fits before using them to provide management 
advice (e.g., in ICES areas: ICES, 2023c; in the United States: Karp et al., 
2022). We consider the following seven key points as a good practices 
checklist supporting the acceptance or rejection of an assessment based 

on a state-space (Bayesian) SPM, such as SPiCT or JABBA. Any deviation 
from this list should be investigated before basing scientific advice on 
the SPM assessment. 

3.2.1. Optimisation convergence 
The process of estimating model parameters and random effects in-

volves an optimisation procedure, which should converge to a well- 
defined optimum in case of maximum likelihood estimation or equilib-
rium distributions for MCMC fitting. It is crucial that all parameters, 
derived variables, and their variances should be numeric and finite, 
ensuring the validity of the estimation process. Failure to reach 
convergence could indicate mismatches between the available data and 
the model specification and additional scrutiny of the underlying as-
sumptions is necessary. Additional or different assumptions can alleviate 
the issue, e.g., using a more informative prior. As always, restrictive 
priors should come from auxiliary information and sensitivity analysis 
should investigate the effects of choosing different priors to model es-
timates, derived quantities, and short-term projections. 

3.2.2. Residuals 
In state-space SPMs, two types of residuals are usually considered: 

residuals of the observation processes for the catches and abundance 
indices (referred to as observation residuals), and residuals of the 
biomass process and, if utilised, the fishing mortality process (referred to 
as process residuals). As the state estimates (and hence naive residuals) 
are correlated in time (Trijoulet et al., 2023), the calculation and testing 
of observation residuals from state-space models demands specific 
treatment depending on the estimation method used: for models using 
TMB (e.g., SPiCT) there is the one-step-ahead (OSA) method, for MCMC 
models (e.g., JABBA) the "one sample from the posterior" method, and 
for models using the Kalman filter, residuals should be based on 
state-estimates from running the filter forward, but without the back-
ward smoothing step (Thygesen et al., 2017). Autocorrelation in the 
index observation residuals can arise if there are conflicts in the signals 
between multiple indices. Variance priors may be used to resolve this 
issue. Process residuals of the model should also be independent and 
normally distributed. Deviations indicate disagreement between model 
and available data, e.g., we expect problematic process residuals when 
we have time-varying processes and use a model that assumes them 
constant through time. In cases where the SPM models fishing mortality 
(F) as an unobserved process, the residuals of this process are less 
important than the biomass process residuals and more likely to be 
violated as management measures or fishers’ behaviour could lead to 
abrupt changes in fishing effort and therefore fishing mortality, thus, 
violating the assumption of commonly assumed F processes, such as a 
random walk (e.g., Pedersen and Berg, 2017). 

3.2.3. Prior – posterior distributions 
While any prior should be carefully selected and based on the best a 

priori knowledge, it is important to evaluate the prior and posterior 
distributions. A posterior distribution for a given parameter (or derived 
variable) that is identical to the prior distribution indicates that there is 
no information about this parameter in the data and the prior de-
termines the posterior. It is recommended to conduct sensitivity tests, i. 
e., contrasting results from alternative prior distributions. On the other 
hand, if the posterior distribution is far from the prior, this is not 
necessarily problematic, but may highlight that the a priori assumptions 
about parameter values oppose the information in available data. In a 
case where the standard deviation of the prior distribution has a big 
effect on the model estimates, it is suggested to conduct a sensitivity 
analysis using different standard deviation values for the prior distri-
bution; the sensitivity analysis is even more important when the SD was 
arbitrarily determined. 

3.2.4. Retrospective analysis 
A retrospective analysis consists of a series of assessments with 
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decreasing length of time-series and the investigation of final-year es-
timates. Retrospective biases are any “systematic inconsistency among a 
series of estimates of population size, or related assessment variables, 
based on increasing periods of data” (Mohn, 1999) and can reveal 
conflicts in observations or assumption violations. The retrospective 
trajectories of the relative fishing mortality (F/FMSY) and relative 
biomass (B/BMSY) should be inside the credible intervals of the base run 
(i.e., the run that includes the full length of the time-series) and there 
should not be any strong retrospective patterns, i.e., no tendency of 
consistent under- or overestimation in successive assessments. Although 
it is difficult to give a specific threshold for Mohn’s ρ, Hurtado-Ferro 
et al. (2015) suggest rule-of-thumb thresholds depending on life-history 
characteristics of the stock; these thresholds are used by ICES (ICES, 
2020b). 

3.2.5. Hindcasting analysis 
The hindcast follows a similar procedure to the retrospective anal-

ysis, where recent data are removed, and the model is refitted using the 
remaining data (Carvalho et al., 2021). Instead of unobserved quantities 
that are model-dependent, in the hindcast, observations are compared to 
their estimated counterparts in a model-free validation (Kell et al., 
2016). In SPiCT and JABBA the hindcast is implemented so that the 
index observations are sequentially removed, whereas catch observa-
tions are included in the fitting procedure (cf. Kell et al., 2021). The 
ability of the model to predict the abundance index is quantified with 
the mean absolute scaled error (MASE), which measures how well the 
SPM predicts the index compared to a naïve forecast, i.e., that the index 
in the following year will be equal to the last observation (Hyndman and 
Koehler, 2006). Values higher than 1 indicate that the model is per-
forming worse than the naïve predictor. 

3.2.6. Jitter analysis 
During maximum likelihood optimisation, initial parameter values 

should not affect the parameter estimates, provided there are no local 
optima in the likelihood function. A simple test, referred to here as jitter 
analysis, compares parameter estimates for a set of initial parameter 
values (Carvalho et al., 2021). When the jitter analysis is based on 
random initial values, non-converged runs can be neglected, as it is 
possible that a set of parameters is not appropriate as a starting point for 
the optimisation. Large deviations in the parameter estimates indicate 
that multiple local optima exist; it should be ensured that the global 
optimum is used, or unrealistic parameter values are avoided using 
vague priors. 

3.2.7. Biologically meaningful parameter estimates and uncertainty 
Estimated parameters and derived quantities have to be within the 

ranges that are expected according to our understanding of the life- 
history of the stock, i.e., which are biologically meaningful and not 
too uncertain. For instance, very skewed production curves, e.g., BMSY/K 
< 0.5, would imply infinite population growth at small stock size and are 
biologically difficult to explain. We caution against models that have 
very skewed production curves; we argue for models that have n > 1 in 
line with a more precautionary approach. This is also considering the 
two potential sources of positive biases in SPMs: (1) Ignoring the lag 
effects between reproduction and recruitment can lead to overly opti-
mistic estimates of rebuilding times for depleted stocks under highly 
skewed instant surplus production expectations and (2) the typical 
smaller size at selectivity than maturation can lead to a disproportion-
ally stronger decrease in spawning biomass than exploitable biomass 
(Winker et al., 2020a). On the other hand, it is important to note that 
SPMs model the exploitable stock biomass and, therefore, B = 0 does not 
imply that SSB or total stock biomass (TSB) or SSB are equal to zero. 
Thus, it is possible that a part of the SSB (or TSB) is not vulnerable due 
to, e.g., gear selectivity or spatial extent of the fishery, which theoreti-
cally could lead to large surplus production even when the exploitable 
stock biomass is very low. High parameter uncertainty, could indicate a 

lack of contrast in the input data or violation of assumptions, e.g., using 
constant parameters for a population that has changed productivity over 
time. If the 95% credible intervals for the estimated stock status, B/BMSY 
and F/FMSY, span more than one order of magnitude, the assessment is 
likely too uncertain to be used as basis for scientific advice. Further, a 
population in the stochastic Pella-Tomlinson model cannot persist with a 
large biomass process error and the upper limit of process error depends 
on the intrinsic growth rate r and the shape parameter n (Bordet and 
Rivest, 2014), therefore, large process error estimates require extra 
scrutiny. Alternative or additional assumptions can help reducing the 
estimated uncertainty; it is of course still crucial that best available 
expert judgement is used to formulate such assumptions and sensitivity 
of the results to alternative models should be checked. 

3.3. Choice of model, and sensitivity analysis 

Model configurations and performance diagnostics play an impor-
tant role in the acceptance and evaluation of assessments with SPMs and 
the selection of the best fitting model configuration. In some cases, 
alternative model configurations pass the model diagnostics and provide 
meaningful and equally likely results. While from an ecological and 
scientific point of view these alternative models are relevant and 
interesting, fisheries management usually requires a single best model 
(e.g., ICES, 2022a). In cases where multiple competing models pass all 
diagnostic tests but imply differences in estimated stock status and lead 
to very different catch advice, it is often difficult to choose a single best 
model. When all input data are the same between competing models, 
information criteria can be used to objectively choose the best model (e. 
g., Akaike Information Criterion, Akaike, 1998); “same data” here in-
cludes the input time series of observation and used priors. If manage-
ment objectives prioritise the precautionary approach, the model 
leading to the most precautionary advice could be chosen. Otherwise, 
approaches that use multiple models as a range of uncertainty (e.g., in 
Japan stock assessment using SPMs used multiple base case models; 
Chiba et al., 2023) or ensemble modelling approaches (Anderson et al., 
2017) can be used. In most cases, advice based on an assessment model 
will be more robust than alternative trend-based empirical rules for 
giving advice on catch quotas (Jardim et al., 2015), and especially 
compared to catch-only methods (Ovando et al., 2022). In addition to 
scenarios with different prior assumptions, alternative scenarios should 
be considered that explore different options, such as competing as-
sumptions regarding the qualitative relative uncertainty weights, or 
different fixed parameter values, e.g., exploring the Schaefer or Fox 
models if the shape of the production curve is not freely estimated. 

4. Management advice 

4.1. Biological reference points 

Management is based on biological reference points that act as tar-
gets, thresholds, or limits. SPMs directly define target reference points 
that aim at maximising the yield while not compromising the long-term 
survival of the stock, relating to catch (MSY), fishing pressure (FMSY) and 
exploitable stock biomass (BMSY). In state-space implementations of 
SPMs, where observation and process errors are estimated, it is recom-
mended to use stochastic versions of these reference points that include 
correction factors that depend on estimated error of the biomass process 
(σB). The stochastic FMSY will be lower than the deterministic one and 
thus becomes more precautionary with increasing process error, but 
only when n > 1 (Pedersen and Berg, 2017). Therefore, it is recom-
mended to use stochastic reference points when considering models with 
shape parameter n > 1 and deterministic ones otherwise. Although 
maximising the yield is traditionally the aim of fisheries management, 
more precautionary targets might be considered, e.g., in Australia the 
biomass that maximises the economic yield (BMEY) is used as the target 
reference point and is approximated as 1.2BMSY (DAWR, 2018). 
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Additional to target reference points, fisheries management relies on 
threshold and limit reference points (e.g., ICES, 2021b). These are set to 
prevent the stock declining to levels where the population is at reduced 
reproductive capacity or at risk of collapsing. When the biomass of the 
population is below the threshold reference point (Bthreshold) increased 
precaution is suggested, e.g., lower catch advice or advising lower 
fishing effort. When the biomass is below the limit reference point (Blim) 
closure of the fishery should be considered. There are three common 
ways to derive biomass limit reference points for SPMs. First, biomass 
threshold and limit reference points can be defined as fractions of BMSY. 
Mildenberger et al. (2022) suggest that both Bthreshold and Blim should 
depend on a common reference point, e.g., BMSY. Second, these reference 
points can be defined as a fraction of the carrying capacity K with 
commonly suggested values around 0.2 K for Blim and 0.48 K for Bthres-

hold (DAWR, 2018; Dichmont et al., 2017; Winker et al., 2018). The third 
way to define Blim is based on the productivity of the stock, e.g., Blim is 
defined as the biomass where the population can sustain half of the yield 
compared to MSY; this corresponds to 0.3BMSY for the Schafer model 
(ICES, 2013). 

4.2. Harvest control rule 

An accepted assessment with a surplus production model does not 
only indicate the current stock status, but can also be used to derive 
fisheries management advice, such as the total allowable catch (TAC), 
most often based on a short-term forecast (ICES, 2022a). These catch 
quotas can be based on target reference points directly, such as the 
predicted catch corresponding to F = FMSY or incorporate more complex 
rules with additional threshold and limit reference points and uncer-
tainty buffers. A commonly used example of a more complex harvest 
control rule (HCR) is the hockey-stick rule, where the target fishing 
mortality is equal to FMSY when the population is above a threshold 
reference point Bthreshold, e.g., MSY Btrigger used in ICES (ICES, 2021b), is 
linearly reduced from FMSY to zero when the biomass in the last year 
(Blast) is below that threshold (Ftarget = FMSY Blast/Bthreshold), and is zero 
when the biomass in the last year is below a limit reference point (Blim). 
Ideally, HCRs should be based on relative states (e.g., B/Bthreshold) rather 
than absolute states (e.g., B) and absolute reference points; absolute 
estimates are typically more uncertain than their relative counterparts 
(Pedersen and Berg, 2017). The simulation study presented here 
revealed that the median relative error over all scenarios was around 
+/- 6.5% for the relative states and around +/- 25% for the absolute 
states and reference points (Supplementary Table S1). Besides a target 
fishing mortality rate and threshold and limit reference points in the 
HCR, good advisory practices demand to incorporate an uncertainty 
buffer (Mildenberger et al., 2022). Uncertainty buffers refer to fractiles 
of projected distributions of catch and B/BMSY that are lower than the 
median estimate, or in the case of F/FMSY higher than the median. Un-
certainty buffers, therefore, incorporate the estimated assessment un-
certainty in the projected TAC and are more precautionary. Higher 
biomass thresholds and uncertainty buffers can lead to the same 
long-term yield while leading to more precautionary fisheries manage-
ment advice (Mildenberger et al., 2022). Within ICES, a hockey-stick 
HCR as described above is used that has Bthreshold = 0.5 BMSY and uses 
the 35th percentile of the predicted catch distribution, with a biomass 
limit reference point depending on BMSY (ICES, 2022b). A lower 
percentile (15th) has been recommended for less productive and more 
sensitive species, such as elasmobranchs (ICES, 2023b). Here, we 
covered some generic considerations based on large simulation studies 
of artificial populations with very different life-history characteristics (e. 
g., ICES, 2023b, 2020a; Mildenberger et al., 2022). Ideally, a HCR 
should be selected after evaluation of performances among alternative 
candidate rules with management strategy evaluation (MSE) para-
meterised as closely as possible to the stock that is assessed (Milden-
berger et al., 2022). MSE is an important tool to evaluate the 
performance, input data, and assumptions of SPMs and associated 

harvest control rules (Punt et al., 2016). 

5. Recommendations for future research 

We are confident that SPMs will remain an important component of 
the future stock assessment toolbox. Not least for needed management 
advice on non-targeted stocks and stocks caught as bycatch in mixed 
fisheries without detailed sampling protocols, or stocks in regions where 
the collection of age and length information is infeasible hindering the 
application of more complex age or length structured models. When 
good practice guidelines as outlined in this paper are followed, SPMs can 
be the basis of effective management that leads to high yields while 
being precautionary. Although SPMs could be used as alternatives to 
age- or length-based models as basis for the advice, we are not sug-
gesting that they should replace them as SPMs are not able to detect 
changes in population structure, often have higher uncertainty and 
likely lead to more conservative advice to maintain risk equivalency to 
data-rich assessments (Roux et al., 2022). Although the development of 
SPMs and good practice guidelines has increased substantially during 
recent years, there are still areas for improvement regarding model 
functionality as well as their application. In the following, we focus on 
the main limitations of SPMs and outline possibilities and avenues for 
future research to overcome them. 

5.1. Limitations regarding model functionality 

Most SPMs assume time-invariant parameters and model density 
dependence as a simple, often symmetric, function of biomass, and 
ignore possible detailed information about the population, its environ-
ment, and the fishery. These assumptions are likely to be violated for 
many stocks and, therefore, future research should investigate the ef-
fects of violating them. Spatially explicit SPMs have been developed in 
the past, but they should be evaluated using simulation testing in their 
ability to be used for management and their performance on reaching 
management objectives (Thorson et al., 2017). Multispecies surplus 
production models that aggregate stocks within a region and can esti-
mate multispecies reference points can be found in the literature 
(Mueter and Megrey, 2006), but it’s an open question how these can be 
used to inform management decisions. 

Despite frequently being employed in data-moderate situations, 
where all available information should be utilised, stock assessments 
with SPMs often neglect certain available information. This includes the 
non-exploitable part of the abundance index, incomplete discard and 
recreational catches, sporadic length information, and fishing effort 
information. Both data pre-processing and the specification of selectivity 
curves, which determine the fraction of the biomass that is exploitable, 
could be informed by sporadically sampled length-frequency data ob-
tained from fishery-dependent and independent sources. While JABBA- 
Select allows for the inclusion of multiple fleets (Winker et al., 2020a), 
future research efforts could allow for these fleets to represent discarded 
fish to improve accuracy and precision of forecasting. 

5.2. Limitations regarding application of SPMs 

Although the functionality for SPMs with time-varying parameters, 
such as productivity, catchability, or selectivity are available (Milden-
berger et al., 2020; Nesslage and Wilberg, 2019; Winker et al., 2020a), 
their application is the exception. This is likely due to the increased data 
requirements for the added flexibility, as well as the challenge of 
establishing priors for the time-varying process parameters. Future 
research should investigate and contribute to a better understanding 
SPMs with time-varying processes and to facilitate their application. 
Another approach to inform time-varying processes might be to link 
them to environmental or ecological covariates, such as sea surface 
temperature, or to abundance of a predator or prey (e.g., CLIMPROD 
software, Fréon et al., 1993). 
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As previously mentioned, SPMs often suffer from excessive uncer-
tainty due to short input time-series with limited contrast. This uncer-
tainty may be reduced if the parameter space of the model can be 
restricted. We recommend that more meta-analysis studies (such as in 
Thorson, 2020; Thorson et al., 2012), are undertaken to overcome issues 
of limited data and get insights on plausible ranges for model parame-
ters. Using this information, we can formulate priors or parameter 
bounds that can help assess many stocks that have the required input 
data (catch, abundance index) but lack enough contrast to get an 
acceptable assessment and base management advice on them. 

5.3. Management advice 

Future research should also revisit meaningful definitions of 
threshold and limit reference points for HCRs based on SPMs. These 
reference points could be based on data-rich reference points, or target 
reference points defined as threshold/limit reference points. HCRs based 
on SPMs that use a reference period and trends rather than reference 
points could be useful in cases where reference points are not identifi-
able due to a lack of contrast in data. 

Identifying the most appropriate HCR for a stock is crucial for 
effectively managing a stock, aiming to optimise yield while minimising 
the risk of overexploitation. MSE is an invaluable tool for selecting the 
best HCR, ideally incorporating an operating model that is capable of 
simulating population dynamics with a high degree of realism, based on 
age or length. However, in cases where detailed age or length data are 
lacking, and knowledge of essential life-history parameters is limited, it 
is difficult to set up a realistic operating model. SPMs could be used in a 
full simulation loop, i.e., used both as the operating and the assessment 
model. SPiCT and JABBA estimate the observation and process error and 
therefore could be used to condition operating models, i.e., parameter-
ising the operating model to follow the stock assessment closely (Chiba 
et al., 2023), thus providing realistic estimates of uncertainty for man-
agement purposes. 
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Fréon, P., Mullon, C., Pichon, G., 1993. CLIMPROD: experimental interactive software 
for choosing and fitting surplus production models including environmental 
variables. Computerized Information Series: Fisheries (FAO). 

Froese, R., Pauly, D., 2023. FishBase [WWW Document]. URL 〈https://www.fishbase. 
org〉. 
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